DynamicModel.cc 146 KB
Newer Older
sebastien's avatar
sebastien committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
 * Copyright (C) 2003-2009 Dynare Team
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
#include <iostream>
sebastien's avatar
sebastien committed
21
#include <cmath>
22
#include <cstdlib>
23
#include <cassert>
sebastien's avatar
sebastien committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37

#include "DynamicModel.hh"

// For mkdir() and chdir()
#ifdef _WIN32
# include <direct.h>
#else
# include <unistd.h>
# include <sys/stat.h>
# include <sys/types.h>
#endif

DynamicModel::DynamicModel(SymbolTable &symbol_table_arg,
                           NumericalConstants &num_constants_arg) :
ferhat's avatar
ferhat committed
38
39
40
41
42
43
44
45
46
    ModelTree(symbol_table_arg, num_constants_arg),
    max_lag(0), max_lead(0),
    max_endo_lag(0), max_endo_lead(0),
    max_exo_lag(0), max_exo_lead(0),
    max_exo_det_lag(0), max_exo_det_lead(0),
    dynJacobianColsNbr(0),
    cutoff(1e-15),
    markowitz(0.7),
    block_triangular(symbol_table_arg, num_constants_arg)
sebastien's avatar
sebastien committed
47
48
49
{
}

sebastien's avatar
sebastien committed
50
51
52
53
54
55
NodeID
DynamicModel::AddVariable(const string &name, int lag)
{
  return AddVariableInternal(name, lag);
}

sebastien's avatar
sebastien committed
56
void
sebastien's avatar
sebastien committed
57
DynamicModel::compileDerivative(ofstream &code_file, int eq, int symb_id, int lag, map_idx_type &map_idx) const
ferhat's avatar
ferhat committed
58
59
60
61
62
63
64
65
  {
    //first_derivatives_type::const_iterator it = first_derivatives.find(make_pair(eq, getDerivID(symb_id, lag)));
    first_derivatives_type::const_iterator it = first_derivatives.find(make_pair(eq, getDerivID(symbol_table.getID(eEndogenous, symb_id), lag)));
    if (it != first_derivatives.end())
      (it->second)->compile(code_file, false, temporary_terms, map_idx);
    else
      code_file.write(&FLDZ, sizeof(FLDZ));
  }
sebastien's avatar
sebastien committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

void
DynamicModel::BuildIncidenceMatrix()
{
  set<pair<int, int> > endogenous, exogenous;
  for (int eq = 0; eq < (int) equations.size(); eq++)
    {
      BinaryOpNode *eq_node = equations[eq];
      endogenous.clear();
      NodeID Id = eq_node->get_arg1();
      Id->collectEndogenous(endogenous);
      Id = eq_node->get_arg2();
      Id->collectEndogenous(endogenous);
      for (set<pair<int, int> >::iterator it_endogenous=endogenous.begin();it_endogenous!=endogenous.end();it_endogenous++)
        {
ferhat's avatar
ferhat committed
81
          block_triangular.incidencematrix.fill_IM(eq, it_endogenous->first, it_endogenous->second, eEndogenous);
sebastien's avatar
sebastien committed
82
83
84
85
86
87
88
89
        }
      exogenous.clear();
      Id = eq_node->get_arg1();
      Id->collectExogenous(exogenous);
      Id = eq_node->get_arg2();
      Id->collectExogenous(exogenous);
      for (set<pair<int, int> >::iterator it_exogenous=exogenous.begin();it_exogenous!=exogenous.end();it_exogenous++)
        {
ferhat's avatar
ferhat committed
90
          block_triangular.incidencematrix.fill_IM(eq, it_exogenous->first, it_exogenous->second, eExogenous);
sebastien's avatar
sebastien committed
91
92
93
94
95
        }
    }
}

void
96
DynamicModel::computeTemporaryTermsOrdered(Model_Block *ModelBlock)
sebastien's avatar
sebastien committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
{
  map<NodeID, pair<int, int> > first_occurence;
  map<NodeID, int> reference_count;
  int i, j, m, eq, var, lag;
  temporary_terms_type vect;
  ostringstream tmp_output;
  BinaryOpNode *eq_node;
  first_derivatives_type::const_iterator it;
  ostringstream tmp_s;

  temporary_terms.clear();
  map_idx.clear();
  for (j = 0;j < ModelBlock->Size;j++)
    {
      // Compute the temporary terms reordered
      for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
        {
          eq_node = equations[ModelBlock->Block_List[j].Equation[i]];
          eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, j, ModelBlock, i, map_idx);
ferhat's avatar
ferhat committed
116
117
118
          if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE_S)
            if(ModelBlock->Block_List[j].Equation_Normalized[i])
              ModelBlock->Block_List[j].Equation_Normalized[i]->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, j, ModelBlock, i, map_idx);
sebastien's avatar
sebastien committed
119
120
121
122
123
124
125
126
        }
      for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
        {
          lag=m-ModelBlock->Block_List[j].Max_Lag;
          for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size;i++)
            {
              eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index[i];
              var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index[i];
127
              it=first_derivatives.find(make_pair(eq,getDerivID(symbol_table.getID(eEndogenous, var), lag)));
128
129
              //printf("it=%d eq=%d var=%s (%d)\n",it!=first_derivatives.end(), eq, symbol_table.getName(symbol_table.getID(eEndogenous, var)).c_str(), var);
              //if(it!=first_derivatives.end())
sebastien's avatar
sebastien committed
130
131
132
              it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, j, ModelBlock, ModelBlock->Block_List[j].Size-1, map_idx);
            }
        }
133
      /*for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
sebastien's avatar
sebastien committed
134
135
136
137
138
139
        {
          lag=m-ModelBlock->Block_List[j].Max_Lag;
          for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size_exo;i++)
            {
              eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_X_Index[i];
              var=ModelBlock->Block_List[j].IM_lead_lag[m].Exogenous_Index[i];
140
              it=first_derivatives.find(make_pair(eq,getDerivID(symbol_table.getID(eExogenous, var), lag)));
sebastien's avatar
sebastien committed
141
142
              it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, j, ModelBlock, ModelBlock->Block_List[j].Size-1, map_idx);
            }
143
        }*/
sebastien's avatar
sebastien committed
144
145
146
147
148
149
150
151
152
153
      //jacobian_max_exo_col=(variable_table.max_exo_lag+variable_table.max_exo_lead+1)*symbol_table.exo_nbr;
      for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
        {
          lag=m-ModelBlock->Block_List[j].Max_Lag;
          if (block_triangular.incidencematrix.Model_Max_Lag_Endo - ModelBlock->Block_List[j].Max_Lag +m >=0)
            {
              for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size_other_endo;i++)
                {
                  eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index_other_endo[i];
                  var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index_other_endo[i];
154
                  it=first_derivatives.find(make_pair(eq,getDerivID(symbol_table.getID(eEndogenous, var), lag)));
sebastien's avatar
sebastien committed
155
                  //it=first_derivatives.find(make_pair(eq,variable_table.getID(var, lag)));
156
                  //if(it!=first_derivatives.end())
sebastien's avatar
sebastien committed
157
158
159
160
161
162
163
                  it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, j, ModelBlock, ModelBlock->Block_List[j].Size-1, map_idx);
                }
            }
        }
    }
  for (j = 0;j < ModelBlock->Size;j++)
    {
ferhat's avatar
ferhat committed
164
      // Collecte the temporary terms reordered
sebastien's avatar
sebastien committed
165
166
167
168
      for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
        {
          eq_node = equations[ModelBlock->Block_List[j].Equation[i]];
          eq_node->collectTemporary_terms(temporary_terms, ModelBlock, j);
ferhat's avatar
ferhat committed
169
170
171
172
173
          if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE_S)
            if(ModelBlock->Block_List[j].Equation_Normalized[i])
              ModelBlock->Block_List[j].Equation_Normalized[i]->collectTemporary_terms(temporary_terms, ModelBlock, j);
          for(temporary_terms_type::const_iterator it = ModelBlock->Block_List[j].Temporary_Terms_in_Equation[i]->begin(); it!= ModelBlock->Block_List[j].Temporary_Terms_in_Equation[i]->end(); it++)
            (*it)->collectTemporary_terms(temporary_terms, ModelBlock, j);
sebastien's avatar
sebastien committed
174
175
176
177
178
179
180
181
        }
      for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
        {
          lag=m-ModelBlock->Block_List[j].Max_Lag;
          for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size;i++)
            {
              eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index[i];
              var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index[i];
182
              it=first_derivatives.find(make_pair(eq,getDerivID(symbol_table.getID(eEndogenous, var), lag)));
sebastien's avatar
sebastien committed
183
              //it=first_derivatives.find(make_pair(eq,variable_table.getID(var, lag)));
184
              //if(it!=first_derivatives.end())
sebastien's avatar
sebastien committed
185
186
187
              it->second->collectTemporary_terms(temporary_terms, ModelBlock, j);
            }
        }
188
      /*for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
sebastien's avatar
sebastien committed
189
190
191
192
193
194
        {
          lag=m-ModelBlock->Block_List[j].Max_Lag;
          for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size_exo;i++)
            {
              eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_X_Index[i];
              var=ModelBlock->Block_List[j].IM_lead_lag[m].Exogenous_Index[i];
195
              it=first_derivatives.find(make_pair(eq,getDerivID(symbol_table.getID(eExogenous, var), lag)));
sebastien's avatar
sebastien committed
196
197
198
              //it=first_derivatives.find(make_pair(eq,variable_table.getID(var, lag)));
              it->second->collectTemporary_terms(temporary_terms, ModelBlock, j);
            }
199
        }*/
sebastien's avatar
sebastien committed
200
201
202
203
204
205
206
207
208
209
      //jacobian_max_exo_col=(variable_table.max_exo_lag+variable_table.max_exo_lead+1)*symbol_table.exo_nbr;
      for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
        {
          lag=m-ModelBlock->Block_List[j].Max_Lag;
          if (block_triangular.incidencematrix.Model_Max_Lag_Endo - ModelBlock->Block_List[j].Max_Lag +m >=0)
            {
              for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size_other_endo;i++)
                {
                  eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index_other_endo[i];
                  var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index_other_endo[i];
210
                  it=first_derivatives.find(make_pair(eq,getDerivID(symbol_table.getID(eEndogenous, var), lag)));
sebastien's avatar
sebastien committed
211
                  //it=first_derivatives.find(make_pair(eq,variable_table.getID(var, lag)));
212
                  //if(it!=first_derivatives.end())
sebastien's avatar
sebastien committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
                  it->second->collectTemporary_terms(temporary_terms, ModelBlock, j);
                }
            }
        }
    }
  // Add a mapping form node ID to temporary terms order
  j=0;
  for (temporary_terms_type::const_iterator it = temporary_terms.begin();
       it != temporary_terms.end(); it++)
    map_idx[(*it)->idx]=j++;
}

void
DynamicModel::writeModelEquationsOrdered_M( Model_Block *ModelBlock, const string &dynamic_basename) const
ferhat's avatar
ferhat committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
  {
    int i,j,k,m;
    string tmp_s, sps;
    ostringstream tmp_output, tmp1_output, global_output;
    NodeID lhs=NULL, rhs=NULL;
    BinaryOpNode *eq_node;
    ostringstream Uf[symbol_table.endo_nbr()];
    map<NodeID, int> reference_count;
    int prev_Simulation_Type=-1, count_derivates=0;
    int jacobian_max_endo_col;
    ofstream  output;
    //temporary_terms_type::const_iterator it_temp=temporary_terms.begin();
    int nze, nze_exo, nze_other_endo;
    map<int, NodeID> recursive_variables;
    vector<int> feedback_variables;
    //----------------------------------------------------------------------
    //For each block
    for (j = 0;j < ModelBlock->Size;j++)
      {
        recursive_variables.clear();
        feedback_variables.clear();
        //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
        nze = nze_exo = nze_other_endo = 0;
        for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
          nze+=ModelBlock->Block_List[j].IM_lead_lag[m].size;
        /*for (m=0;m<=ModelBlock->Block_List[j].Max_Lead_Exo+ModelBlock->Block_List[j].Max_Lag_Exo;m++)
          nze_exo+=ModelBlock->Block_List[j].IM_lead_lag[m].size_exo;*/
        for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
          {
            k=m-ModelBlock->Block_List[j].Max_Lag;
            if (block_triangular.incidencematrix.Model_Max_Lag_Endo - ModelBlock->Block_List[j].Max_Lag +m >=0)
              nze_other_endo+=ModelBlock->Block_List[j].IM_lead_lag[m].size_other_endo;
          }
        tmp1_output.str("");
        tmp1_output << dynamic_basename << "_" << j+1 << ".m";
        output.open(tmp1_output.str().c_str(), ios::out | ios::binary);
        output << "%\n";
        output << "% " << tmp1_output.str() << " : Computes dynamic model for Dynare\n";
        output << "%\n";
        output << "% Warning : this file is generated automatically by Dynare\n";
        output << "%           from model file (.mod)\n\n";
        output << "%/\n";
        if (ModelBlock->Block_List[j].Simulation_Type==EVALUATE_BACKWARD
            ||ModelBlock->Block_List[j].Simulation_Type==EVALUATE_FORWARD
            /*||ModelBlock->Block_List[j].Simulation_Type==EVALUATE_BACKWARD_R
            ||ModelBlock->Block_List[j].Simulation_Type==EVALUATE_FORWARD_R*/)
          {
            output << "function [y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << j+1 << "(y, x, params, jacobian_eval, y_kmin, periods)\n";
          }
        else if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_FORWARD_COMPLETE
                 ||   ModelBlock->Block_List[j].Simulation_Type==SOLVE_BACKWARD_COMPLETE)
          output << "function [residual, y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << j+1 << "(y, x, params, it_, jacobian_eval)\n";
        else if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_BACKWARD_SIMPLE
                 ||   ModelBlock->Block_List[j].Simulation_Type==SOLVE_FORWARD_SIMPLE)
          output << "function [residual, y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << j+1 << "(y, x, params, it_, jacobian_eval)\n";
        else
          output << "function [residual, y, g1, g2, g3, b, varargout] = " << dynamic_basename << "_" << j+1 << "(y, x, params, periods, jacobian_eval, y_kmin, y_size)\n";
        output << "  % ////////////////////////////////////////////////////////////////////////" << endl
        << "  % //" << string("                     Block ").substr(int(log10(j + 1))) << j + 1 << " " << BlockTriangular::BlockType0(ModelBlock->Block_List[j].Type)
        << "          //" << endl
        << "  % //                     Simulation type "
        << BlockTriangular::BlockSim(ModelBlock->Block_List[j].Simulation_Type) << "  //" << endl
        << "  % ////////////////////////////////////////////////////////////////////////" << endl;
        //The Temporary terms
        if (ModelBlock->Block_List[j].Simulation_Type==EVALUATE_BACKWARD
            ||ModelBlock->Block_List[j].Simulation_Type==EVALUATE_FORWARD
            /*||ModelBlock->Block_List[j].Simulation_Type==EVALUATE_BACKWARD_R
            ||ModelBlock->Block_List[j].Simulation_Type==EVALUATE_FORWARD_R*/)
          {
            output << "  if(jacobian_eval)\n";
            output << "    g1 = spalloc(" << ModelBlock->Block_List[j].Size-ModelBlock->Block_List[j].Nb_Recursives
            << ", " << (ModelBlock->Block_List[j].Size-ModelBlock->Block_List[j].Nb_Recursives)*(1+ModelBlock->Block_List[j].Max_Lag_Endo+ModelBlock->Block_List[j].Max_Lead_Endo)
            << ", " << nze << ");\n";
            output << "    g1_x=spalloc(" << ModelBlock->Block_List[j].Size << ", " << (ModelBlock->Block_List[j].nb_exo + ModelBlock->Block_List[j].nb_exo_det)*(1+ModelBlock->Block_List[j].Max_Lag_Exo+ModelBlock->Block_List[j].Max_Lead_Exo) << ", " << nze_exo << ");\n";
            output << "    g1_o=spalloc(" << ModelBlock->Block_List[j].Size << ", " << ModelBlock->Block_List[j].nb_other_endo*(1+ModelBlock->Block_List[j].Max_Lag_Other_Endo+ModelBlock->Block_List[j].Max_Lead_Other_Endo) << ", " << nze_other_endo << ");\n";
            output << "  end;\n";
          }
        else
          {
            output << "  if(jacobian_eval)\n";
            output << "    g1 = spalloc(" << ModelBlock->Block_List[j].Size << ", " << ModelBlock->Block_List[j].Size*(1+ModelBlock->Block_List[j].Max_Lag_Endo+ModelBlock->Block_List[j].Max_Lead_Endo) << ", " << nze << ");\n";
            output << "    g1_x=spalloc(" << ModelBlock->Block_List[j].Size << ", " << (ModelBlock->Block_List[j].nb_exo + ModelBlock->Block_List[j].nb_exo_det)*(1+ModelBlock->Block_List[j].Max_Lag_Exo+ModelBlock->Block_List[j].Max_Lead_Exo) << ", " << nze_exo << ");\n";
            output << "    g1_o=spalloc(" << ModelBlock->Block_List[j].Size << ", " << ModelBlock->Block_List[j].nb_other_endo*(1+ModelBlock->Block_List[j].Max_Lag_Other_Endo+ModelBlock->Block_List[j].Max_Lead_Other_Endo) << ", " << nze_other_endo << ");\n";
            output << "  else\n";
            if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_COMPLETE || ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_SIMPLE)
              {
                output << "    g1 = spalloc(" << (ModelBlock->Block_List[j].Size-ModelBlock->Block_List[j].Nb_Recursives)*ModelBlock->Periods
                << ", " << (ModelBlock->Block_List[j].Size-ModelBlock->Block_List[j].Nb_Recursives)*(ModelBlock->Periods+ModelBlock->Block_List[j].Max_Lag+ModelBlock->Block_List[j].Max_Lead+1)
                << ", " << nze*ModelBlock->Periods << ");\n";
                output << "    g1_tmp_r = spalloc(" << (ModelBlock->Block_List[j].Nb_Recursives)
                << ", " << (ModelBlock->Block_List[j].Size)*(ModelBlock->Block_List[j].Max_Lag+ModelBlock->Block_List[j].Max_Lead+1)
                << ", " << nze << ");\n";
                output << "    g1_tmp_b = spalloc(" << (ModelBlock->Block_List[j].Size-ModelBlock->Block_List[j].Nb_Recursives)
                << ", " << (ModelBlock->Block_List[j].Size)*(ModelBlock->Block_List[j].Max_Lag+ModelBlock->Block_List[j].Max_Lead+1)
                << ", " << nze << ");\n";
              }
            else
              {
                output << "    g1 = spalloc(" << ModelBlock->Block_List[j].Size-ModelBlock->Block_List[j].Nb_Recursives
                << ", " << ModelBlock->Block_List[j].Size-ModelBlock->Block_List[j].Nb_Recursives << ", " << nze << ");\n";
                output << "    g1_tmp_r = spalloc(" << ModelBlock->Block_List[j].Nb_Recursives
                << ", " << ModelBlock->Block_List[j].Size << ", " << nze << ");\n";
                output << "    g1_tmp_b = spalloc(" << ModelBlock->Block_List[j].Size-ModelBlock->Block_List[j].Nb_Recursives
                << ", " << ModelBlock->Block_List[j].Size << ", " << nze << ");\n";
              }
            output << "  end;\n";
          }
sebastien's avatar
sebastien committed
334

ferhat's avatar
ferhat committed
335
336
337
338
339
340
341
342
343
        output << "  g2=0;g3=0;\n";
        if (ModelBlock->Block_List[j].Temporary_InUse->size())
          {
            tmp_output.str("");
            for (temporary_terms_inuse_type::const_iterator it = ModelBlock->Block_List[j].Temporary_InUse->begin();
                 it != ModelBlock->Block_List[j].Temporary_InUse->end(); it++)
              tmp_output << " T" << *it;
            output << "  global" << tmp_output.str() << ";\n";
          }
344
        if (ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_BACKWARD && ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_FORWARD)
ferhat's avatar
ferhat committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
          output << "  residual=zeros(" << ModelBlock->Block_List[j].Size-ModelBlock->Block_List[j].Nb_Recursives << ",1);\n";
        if (ModelBlock->Block_List[j].Simulation_Type==EVALUATE_BACKWARD)
          output << "  for it_ = (y_kmin+periods):y_kmin+1\n";
        if (ModelBlock->Block_List[j].Simulation_Type==EVALUATE_FORWARD)
          output << "  for it_ = y_kmin+1:(y_kmin+periods)\n";

        if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_COMPLETE || ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_SIMPLE)
          {
            output << "  b = zeros(periods*y_size,1);\n";
            output << "  for it_ = y_kmin+1:(periods+y_kmin)\n";
            output << "    Per_y_=it_*y_size;\n";
            output << "    Per_J_=(it_-y_kmin-1)*y_size;\n";
            output << "    Per_K_=(it_-1)*y_size;\n";
            sps="  ";
          }
sebastien's avatar
sebastien committed
360
        else
ferhat's avatar
ferhat committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
          if (ModelBlock->Block_List[j].Simulation_Type==EVALUATE_BACKWARD || ModelBlock->Block_List[j].Simulation_Type==EVALUATE_FORWARD )
            sps = "  ";
          else
            sps="";
        // The equations
        for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
          {
            temporary_terms_type tt2;
            tt2.clear();
            if (ModelBlock->Block_List[j].Temporary_Terms_in_Equation[i]->size())
              output << "  " << sps << "% //Temporary variables" << endl;
            for (temporary_terms_type::const_iterator it = ModelBlock->Block_List[j].Temporary_Terms_in_Equation[i]->begin();
                 it != ModelBlock->Block_List[j].Temporary_Terms_in_Equation[i]->end(); it++)
              {
                output << "  " <<  sps;
                (*it)->writeOutput(output, oMatlabDynamicModelSparse, temporary_terms);
                output << " = ";
                (*it)->writeOutput(output, oMatlabDynamicModelSparse, tt2);
                // Insert current node into tt2
                tt2.insert(*it);
                output << ";" << endl;
              }
            string sModel = symbol_table.getName(symbol_table.getID(eEndogenous, ModelBlock->Block_List[j].Variable[i])) ;
            eq_node = equations[ModelBlock->Block_List[j].Equation[i]];
            lhs = eq_node->get_arg1();
            rhs = eq_node->get_arg2();
            tmp_output.str("");
            lhs->writeOutput(tmp_output, oMatlabDynamicModelSparse, temporary_terms);
            switch (ModelBlock->Block_List[j].Simulation_Type)
              {
              case EVALUATE_BACKWARD:
              case EVALUATE_FORWARD:
evaluation:
                output << "    % equation " << ModelBlock->Block_List[j].Equation[i]+1 << " variable : " << sModel
                << " (" << ModelBlock->Block_List[j].Variable[i]+1 << ") " << block_triangular.c_Equation_Type(ModelBlock->Block_List[j].Equation_Type[i]) << endl;
                output << "    ";
                if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE)
                  {
                    output << tmp_output.str();
                    output << " = ";
                    rhs->writeOutput(output, oMatlabDynamicModelSparse, temporary_terms);
                  }
                /*else if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE_R)
                  {
                    rhs->writeOutput(output, oMatlabDynamicModelSparse, temporary_terms);
                    output << " = ";
                    output << tmp_output.str();
                    output << "; %reversed " << ModelBlock->Block_List[j].Equation_Type[i] << " \n";
                  }*/
                else if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE_S)
                  {
                    output << "%" << tmp_output.str();
                    output << " = ";
                    if (ModelBlock->Block_List[j].Equation_Normalized[i])
                      {
                        rhs->writeOutput(output, oMatlabDynamicModelSparse, temporary_terms);
                        output << "\n    ";
                        temporary_terms_type tt2;
                        tt2.clear();
                        ModelBlock->Block_List[j].Equation_Normalized[i]->writeOutput(output , oMatlabDynamicModelSparse, temporary_terms/*tt2*/);
                      }
                  }
                else
                  {
                    cerr << "Type missmatch for equation " << ModelBlock->Block_List[j].Equation[i]+1  << "\n";
                    exit(EXIT_FAILURE);
                  }
                output << ";\n";
                break;
              case SOLVE_BACKWARD_SIMPLE:
              case SOLVE_FORWARD_SIMPLE:
              case SOLVE_BACKWARD_COMPLETE:
              case SOLVE_FORWARD_COMPLETE:
                if (i<ModelBlock->Block_List[j].Nb_Recursives)
                  {
                    if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE_S)
                      recursive_variables[getDerivID(symbol_table.getID(eEndogenous, ModelBlock->Block_List[j].Variable[i]), 0)] = ModelBlock->Block_List[j].Equation_Normalized[i];
                    else
                      recursive_variables[getDerivID(symbol_table.getID(eEndogenous, ModelBlock->Block_List[j].Variable[i]), 0)] = equations[ModelBlock->Block_List[j].Equation[i]];
                    goto evaluation;
                  }
                feedback_variables.push_back(ModelBlock->Block_List[j].Variable[i]);
                output << "  % equation " << ModelBlock->Block_List[j].Equation[i]+1 << " variable : " << sModel
                << " (" << ModelBlock->Block_List[j].Variable[i]+1 << ") " << block_triangular.c_Equation_Type(ModelBlock->Block_List[j].Equation_Type[i]) << endl;
                output << "  " << "residual(" << i+1-ModelBlock->Block_List[j].Nb_Recursives << ") = (";
                goto end;
              case SOLVE_TWO_BOUNDARIES_COMPLETE:
              case SOLVE_TWO_BOUNDARIES_SIMPLE:
                if (i<ModelBlock->Block_List[j].Nb_Recursives)
                  {
                    if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE_S)
                      recursive_variables[getDerivID(symbol_table.getID(eEndogenous, ModelBlock->Block_List[j].Variable[i]), 0)] = ModelBlock->Block_List[j].Equation_Normalized[i];
                    else
                      recursive_variables[getDerivID(symbol_table.getID(eEndogenous, ModelBlock->Block_List[j].Variable[i]), 0)] = equations[ModelBlock->Block_List[j].Equation[i]];
                    goto evaluation;
                  }
                feedback_variables.push_back(ModelBlock->Block_List[j].Variable[i]);
                output << "    % equation " << ModelBlock->Block_List[j].Equation[i]+1 << " variable : " << sModel
                << " (" << ModelBlock->Block_List[j].Variable[i]+1 << ") " << block_triangular.c_Equation_Type(ModelBlock->Block_List[j].Equation_Type[i]) << endl;
                Uf[ModelBlock->Block_List[j].Equation[i]] << "    b(" << i+1-ModelBlock->Block_List[j].Nb_Recursives << "+Per_J_) = -residual(" << i+1-ModelBlock->Block_List[j].Nb_Recursives << ", it_)";
                output << "    residual(" << i+1-ModelBlock->Block_List[j].Nb_Recursives << ", it_) = (";
                goto end;
              default:
end:
                output << tmp_output.str();
                output << ") - (";
                rhs->writeOutput(output, oMatlabDynamicModelSparse, temporary_terms);
                output << ");\n";
sebastien's avatar
sebastien committed
469
#ifdef CONDITION
ferhat's avatar
ferhat committed
470
471
                if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_COMPLETE || ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_SIMPLE)
                  output << "  condition(" << i+1 << ")=0;\n";
sebastien's avatar
sebastien committed
472
#endif
ferhat's avatar
ferhat committed
473
474
475
476
477
478
              }
          }
        // The Jacobian if we have to solve the block
        if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_SIMPLE
            ||  ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_COMPLETE)
          output << "  " << sps << "% Jacobian  " << endl;
sebastien's avatar
sebastien committed
479
        else
ferhat's avatar
ferhat committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
          if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_BACKWARD_SIMPLE || ModelBlock->Block_List[j].Simulation_Type==SOLVE_FORWARD_SIMPLE ||
              ModelBlock->Block_List[j].Simulation_Type==SOLVE_BACKWARD_COMPLETE || ModelBlock->Block_List[j].Simulation_Type==SOLVE_FORWARD_COMPLETE)
            output << "  % Jacobian  " << endl << "  if jacobian_eval" << endl;
          else
            output << "    % Jacobian  " << endl << "    if jacobian_eval" << endl;
        switch (ModelBlock->Block_List[j].Simulation_Type)
          {
          case EVALUATE_BACKWARD:
          case EVALUATE_FORWARD:
          /*case EVALUATE_BACKWARD_R:
          case EVALUATE_FORWARD_R:*/
            count_derivates++;
            for (m=0;m<ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag+1;m++)
              {
                k=m-ModelBlock->Block_List[j].Max_Lag;
                for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size;i++)
                  {
                    int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index[i];
                    int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index[i];
                    int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ[i];
                    int varr=ModelBlock->Block_List[j].IM_lead_lag[m].Var[i];
                    output << "      g1(" << eqr+1 << ", " << /*varr+1+(m+variable_table.max_lag-ModelBlock->Block_List[j].Max_Lag)*symbol_table.endo_nbr*/
sebastien's avatar
sebastien committed
502
                    varr+1+m*ModelBlock->Block_List[j].Size << ") = ";
ferhat's avatar
ferhat committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
                    writeDerivative(output, eq, symbol_table.getID(eEndogenous, var), k, oMatlabDynamicModelSparse, temporary_terms);
                    output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                    << "(" << k//variable_table.getLag(variable_table.getSymbolID(ModelBlock->Block_List[j].Variable[0]))
                    << ") " << var+1
                    << ", equation=" << eq+1 << endl;
                  }
              }
            //jacobian_max_endo_col=(variable_table.max_endo_lag+variable_table.max_endo_lead+1)*symbol_table.endo_nbr;
            /*for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
              {
                k=m-ModelBlock->Block_List[j].Max_Lag;
                for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size_exo;i++)
                  {
                    int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_X_Index[i];
                    int var=ModelBlock->Block_List[j].IM_lead_lag[m].Exogenous_Index[i];
                    int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_X[i];
                    int varr=ModelBlock->Block_List[j].IM_lead_lag[m].Exogenous[i];
                    output << "      g1_x(" << eqr+1 << ", "
                           << varr+1+(m+max_exo_lag-ModelBlock->Block_List[j].Max_Lag)*symbol_table.exo_nbr() << ") = ";
                    writeDerivative(output, eq, symbol_table.getID(eExogenous, var), k, oMatlabDynamicModelSparse, temporary_terms);
                    output << "; % variable=" << symbol_table.getName(var)
                           << "(" << k << ") " << var+1
                           << ", equation=" << eq+1 << endl;
                  }
              }*/
            for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
              {
                k=m-ModelBlock->Block_List[j].Max_Lag;
                if (block_triangular.incidencematrix.Model_Max_Lag_Endo - ModelBlock->Block_List[j].Max_Lag +m >=0)
                  {
                    for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size_other_endo;i++)
                      {
                        int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index_other_endo[i];
                        int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index_other_endo[i];
                        int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_other_endo[i];
                        int varr=ModelBlock->Block_List[j].IM_lead_lag[m].Var_other_endo[i];
                        output << "      g1_o(" << eqr+1 << ", "
                        << varr+1+(m+max_endo_lag-ModelBlock->Block_List[j].Max_Lag)*symbol_table.endo_nbr() << ") = ";
                        writeDerivative(output, eq, symbol_table.getID(eEndogenous, var), k, oMatlabDynamicModelSparse, temporary_terms);
                        output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                        << "(" << k << ") " << var+1
                        << ", equation=" << eq+1 << endl;
                      }
                  }
              }
            output << "      varargout{1}=g1_x;\n";
            output << "      varargout{2}=g1_o;\n";
            output << "    end;" << endl;
            //output << "    ya = y;\n";
            output << "  end;" << endl;
            break;
          case SOLVE_BACKWARD_SIMPLE:
          case SOLVE_FORWARD_SIMPLE:
          case SOLVE_BACKWARD_COMPLETE:
          case SOLVE_FORWARD_COMPLETE:
            count_derivates++;
            for (m=0;m<ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag+1;m++)
              {
                k=m-ModelBlock->Block_List[j].Max_Lag;
                for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size;i++)
                  {
                    int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index[i];
                    int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index[i];
                    int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ[i];
                    int varr=ModelBlock->Block_List[j].IM_lead_lag[m].Var[i];
                    output << "    g1(" << eqr+1 << ", "
                    << varr+1 + m*(ModelBlock->Block_List[j].Size) << ") = ";
                    writeDerivative(output, eq, symbol_table.getID(eEndogenous, var), k, oMatlabDynamicModelSparse, temporary_terms);
                    output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                    << "(" << k << ") " << var+1
                    << ", equation=" << eq+1 << endl;
                  }
              }
            /*for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
              {
                k=m-ModelBlock->Block_List[j].Max_Lag;
                for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size_exo;i++)
                  {
                    int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_X_Index[i];
                    int var=ModelBlock->Block_List[j].IM_lead_lag[m].Exogenous_Index[i];
                    int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_X[i];
                    int varr=ModelBlock->Block_List[j].IM_lead_lag[m].Exogenous[i];
                    output << "    g1_x(" << eqr+1 << ", " << varr+1+(m+max_exo_lag-ModelBlock->Block_List[j].Max_Lag)*ModelBlock->Block_List[j].nb_exo << ") = ";
                    writeDerivative(output, eq, symbol_table.getID(eExogenous, var), k, oMatlabDynamicModelSparse, temporary_terms);
                    output << "; % variable=" << symbol_table.getName(var)
                           << "(" << k << ") " << var+1
                           << ", equation=" << eq+1 << endl;
                  }
              }*/
            for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
              {
                k=m-ModelBlock->Block_List[j].Max_Lag;
                if (block_triangular.incidencematrix.Model_Max_Lag_Endo - ModelBlock->Block_List[j].Max_Lag +m >=0)
                  {
                    for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size_other_endo;i++)
                      {
                        int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index_other_endo[i];
                        int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index_other_endo[i];
                        int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_other_endo[i];
                        int varr=ModelBlock->Block_List[j].IM_lead_lag[m].Var_other_endo[i];
                        output << "    g1_o(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives << ", "
                        << varr+1+(m+max_endo_lag-ModelBlock->Block_List[j].Max_Lag)*symbol_table.endo_nbr() << ") = ";
                        writeDerivative(output, eq, symbol_table.getID(eEndogenous, var), k, oMatlabDynamicModelSparse, temporary_terms);
                        output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                        << "(" << k << ") " << var+1
                        << ", equation=" << eq+1 << endl;
                      }
                  }
              }
            output << "    varargout{1}=g1_x;\n";
            output << "    varargout{2}=g1_o;\n";
            output << "  else" << endl;

            m=ModelBlock->Block_List[j].Max_Lag;
            //cout << "\nDerivatives in Block " << j << "\n";
            for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size;i++)
              {
                int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index[i];
                int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index[i];
                int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ[i];
                int varr=ModelBlock->Block_List[j].IM_lead_lag[m].Var[i];
                bool derivative_exist;
                ostringstream tmp_output;
                if (eqr<ModelBlock->Block_List[j].Nb_Recursives)
                  {
                    if (varr>=ModelBlock->Block_List[j].Nb_Recursives)
                      {
                        /*tmp_output << "    g1_tmp_r(" << eqr+1 << ", "
                        << varr+1-ModelBlock->Block_List[j].Nb_Recursives  << ") = ";
                        NodeID tmp_n;
                        if (ModelBlock->Block_List[j].Equation_Type[eqr] == E_EVALUATE)
                          tmp_n = equations[ModelBlock->Block_List[j].Equation[eqr]];
                        else
                          tmp_n = ModelBlock->Block_List[j].Equation_Normalized[eqr];
                        int deriv_id = getDerivID(symbol_table.getID(eEndogenous, var),0);
                        NodeID ChaineRule_Derivative = tmp_n->getChaineRuleDerivative(deriv_id ,recursive_variables);
                        ChaineRule_Derivative->writeOutput(output, oMatlabDynamicModelSparse, temporary_terms);
                        output << " %1 variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                        << "(" << k
                        << ") " << var+1
                        << ", equation=" << eq+1 << endl;*/
                      }
                  }
                else
                  {
                    if (varr>=ModelBlock->Block_List[j].Nb_Recursives)
                      {
                        output << "    g1(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives << ", "
                        << varr+1-ModelBlock->Block_List[j].Nb_Recursives  << ") = ";
                        /*writeDerivative(output, eq, symbol_table.getID(eEndogenous, var), k, oMatlabDynamicModelSparse, temporary_terms);*/
                        /*if (ModelBlock->Block_List[j].Equation_Type[eqr] == E_EVALUATE or ModelBlock->Block_List[j].Equation_Type[eqr] == E_SOLVE)
                          derivative_exist = equations[ModelBlock->Block_List[j].Equation[eqr]]->writeOutputDerivativesRespectToFeedBackVariables(tmp_output, oMatlabDynamicModelSparse, temporary_terms, eq, var, varr, 0, 0, recursive_variables, feedback_variables);
                        else
                          derivative_exist = ModelBlock->Block_List[j].Equation_Normalized[eqr]->writeOutputDerivativesRespectToFeedBackVariables(tmp_output, oMatlabDynamicModelSparse, temporary_terms, eq, var, varr, 0, 0, recursive_variables, feedback_variables);
                        //if (derivative_exist)
                          output << tmp_output.str() << ";";*/
                        NodeID tmp_n;
                        //if (ModelBlock->Block_List[j].Equation_Type[eqr] == E_EVALUATE or ModelBlock->Block_List[j].Equation_Type[eqr] == E_SOLVE)
                          tmp_n = equations[ModelBlock->Block_List[j].Equation[eqr]];
                        /*else
                          tmp_n = ModelBlock->Block_List[j].Equation_Normalized[eqr];*/
                        //cout << "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n";
                        //cout << "derivaive eq=" << eq << " var=" << var << " k0=" << k << "\n";
                        int deriv_id = getDerivID(symbol_table.getID(eEndogenous, var),0);
667
                        NodeID ChaineRule_Derivative = tmp_n->getChainRuleDerivative(deriv_id, recursive_variables);
ferhat's avatar
ferhat committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
                        ChaineRule_Derivative->writeOutput(output, oMatlabDynamicModelSparse, temporary_terms);
                        output << ";";
                        output << " %2 variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                        << "(" << k
                        << ") " << var+1
                        << ", equation=" << eq+1 << endl;
                      }
                  }
                /*if (eqr<ModelBlock->Block_List[j].Nb_Recursives or varr<ModelBlock->Block_List[j].Nb_Recursives)
                  output << "    g1(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives << ", "
                  << varr+1-ModelBlock->Block_List[j].Nb_Recursives << ") = ";
                writeDerivative(output, eq, symbol_table.getID(eEndogenous, var), 0, oMatlabDynamicModelSparse, temporary_terms);
                output << "; % variable=" << symbol_table.getName(var)
                << "(0) " << var+1
                << ", equation=" << eq+1 << endl;*/
              }
            output << "  end;\n";
            //output << "  ya = y;\n";
            break;
          case SOLVE_TWO_BOUNDARIES_SIMPLE:
          case SOLVE_TWO_BOUNDARIES_COMPLETE:
            output << "    if ~jacobian_eval" << endl;
            for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
              {
                k=m-ModelBlock->Block_List[j].Max_Lag;
                for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size;i++)
                  {
                    int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index[i];
                    int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index[i];
                    int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ[i];
                    int varr=ModelBlock->Block_List[j].IM_lead_lag[m].Var[i];
                    bool derivative_exist;
                    ostringstream tmp_output;
                    //cout << "ModelBlock->Block_List[" << j << "].Nb_Recursives=" << ModelBlock->Block_List[j].Nb_Recursives << "\n";
                    if (eqr<ModelBlock->Block_List[j].Nb_Recursives)
                      {
                        /*if (varr<ModelBlock->Block_List[j].Nb_Recursives)
                          {
                            if (k==0)
                              Uf[ModelBlock->Block_List[j].Equation[eqr]] << "+g1_tmp_r(" << eqr+1
                              << ", " << varr+1
                              << "+" << ModelBlock->Block_List[j].Size*ModelBlock->Block_List[j].Max_Lag << ")*y(it_, " << var+1 << ")";
                            else if (k>0)
                              Uf[ModelBlock->Block_List[j].Equation[eqr]] << "+g1_tmp_r(" << eqr+1
                              << ", " << varr+1
                              << "+" << ModelBlock->Block_List[j].Size << "*" << k+ModelBlock->Block_List[j].Max_Lag << ")*y(it_+" << k << ", " << var+1 << ")";
                            else if (k<0)
                              Uf[ModelBlock->Block_List[j].Equation[eqr]] << "+g1_tmp_r(" << eqr+1
                              << ", " << varr+1
                              << "+" << ModelBlock->Block_List[j].Size << "*" << k+ModelBlock->Block_List[j].Max_Lag << ")*y(it_" << k << ", " << var+1 << ")";
                            if (k==0)
                              tmp_output << "      g1_tmp_r(" << eqr+1 << ", "
                              << varr+1 << "+" << ModelBlock->Block_List[j].Size << "*" << ModelBlock->Block_List[j].Max_Lag << ") = ";
                            else if (k>0)
                              tmp_output << "      g1_tmp_r(" << eqr+1 << ", "
                              << varr+1 << "+" << ModelBlock->Block_List[j].Size << "*" << k+ModelBlock->Block_List[j].Max_Lag << ") = ";
                            else if (k<0)
                              tmp_output << "      g1_tmp_r(" << eqr+1 << ", "
                              << varr+1 << "+" << ModelBlock->Block_List[j].Size << "*" << k+ModelBlock->Block_List[j].Max_Lag << ") = ";
                            if (ModelBlock->Block_List[j].Equation_Type[eqr] == E_EVALUATE)
                              derivative_exist = equations[ModelBlock->Block_List[j].Equation[eqr]]->get_arg2()->writeOutputDerivativesRespectToFeedBackVariables(tmp_output, oMatlabDynamicModelSparse, temporary_terms, eq, var, varr, k, ModelBlock->Block_List[j].Max_Lag, recursive_variables, feedback_variables);
                            else
                              {
                                BinaryOpNode* tt = (BinaryOpNode*)ModelBlock->Block_List[j].Equation_Normalized[eqr];
                                derivative_exist = tt->get_arg2()->writeOutputDerivativesRespectToFeedBackVariables(tmp_output, oMatlabDynamicModelSparse, temporary_terms, eq, var, varr, k, ModelBlock->Block_List[j].Max_Lag, recursive_variables, feedback_variables);
                              }
                            if (derivative_exist)
                               output << tmp_output.str() << ";";
                            else
                              {
                                //output << "1" << ";";
                                if (ModelBlock->Block_List[j].Equation_Type[eqr] != E_EVALUATE)
                                  {

                                  }
                              }
                            //writeDerivative(output, eq, symbol_table.getID(eEndogenous, var), k, oMatlabDynamicModelSparse, temporary_terms);
                            output << " %1 variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                                   << "(" << k << ") " << var+1
                                   << ", equation=" << eq+1 << " derivative_exist=" << derivative_exist << " varr+1=" << varr+1 << endl;
                          }*/
                      }
                    else
                      {
                        if (varr>=ModelBlock->Block_List[j].Nb_Recursives)
                          {
                            if (k==0)
                              Uf[ModelBlock->Block_List[j].Equation[eqr]] << "+g1(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives
                              << "+Per_J_, " << varr+1-ModelBlock->Block_List[j].Nb_Recursives
                              << "+Per_K_)*y(it_, " << var+1 << ")";
                            else if (k==1)
                              Uf[ModelBlock->Block_List[j].Equation[eqr]] << "+g1(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives
                              << "+Per_J_, " << varr+1-ModelBlock->Block_List[j].Nb_Recursives
                              << "+Per_y_)*y(it_+1, " << var+1 << ")";
                            else if (k>0)
                              Uf[ModelBlock->Block_List[j].Equation[eqr]] << "+g1(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives
                              << "+Per_J_, " << varr+1-ModelBlock->Block_List[j].Nb_Recursives
                              << "+y_size*(it_+" << k-1 << "))*y(it_+" << k << ", " << var+1 << ")";
                            else if (k<0)
                              Uf[ModelBlock->Block_List[j].Equation[eqr]] << "+g1(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives << "+Per_J_, "
                              << varr+1-ModelBlock->Block_List[j].Nb_Recursives
                              << "+y_size*(it_" << k-1 << "))*y(it_" << k << ", " << var+1 << ")";
                            if (k==0)
                              tmp_output << "      g1(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives << "+Per_J_, "
                              << varr+1-ModelBlock->Block_List[j].Nb_Recursives << "+Per_K_) = ";
                            else if (k==1)
                              tmp_output << "      g1(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives << "+Per_J_, "
                              << varr+1-ModelBlock->Block_List[j].Nb_Recursives << "+Per_y_) = ";
                            else if (k>0)
                              tmp_output << "      g1(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives << "+Per_J_, "
                              << varr+1-ModelBlock->Block_List[j].Nb_Recursives << "+y_size*(it_+" << k-1 << ")) = ";
                            else if (k<0)
                              tmp_output << "      g1(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives << "+Per_J_, "
                              << varr+1-ModelBlock->Block_List[j].Nb_Recursives << "+y_size*(it_" << k-1 << ")) = ";
                            /*NodeID tmp_n;
                            if (ModelBlock->Block_List[j].Equation_Type[eqr] == E_EVALUATE or ModelBlock->Block_List[j].Equation_Type[eqr] == E_SOLVE)
                              tmp_n = equations[ModelBlock->Block_List[j].Equation[eqr]];
                            else
                              tmp_n = ModelBlock->Block_List[j].Equation_Normalized[eqr];*/
                            /*int deriv_id = getDerivID(symbol_table.getID(eEndogenous, var),k);
                            //cout << "-------------------------------------------------------------------------------------\n";
                            //cout << "derivaive eq=" << eq << " var=" << var << " k=" << k << "\n";
                            //output << " " << tmp_output.str();
                            map<int, NodeID>  recursive_variables_save(recursive_variables);
                            NodeID ChaineRule_Derivative = tmp_n->getChaineRuleDerivative(deriv_id ,recursive_variables, var, k);
                            recursive_variables = recursive_variables_save;
                            //ChaineRule_Derivative->writeOutput(output, oMatlabDynamicModelSparse, temporary_terms);
                            */
                            /*if (ModelBlock->Block_List[j].Equation_Type[eqr] == E_EVALUATE or ModelBlock->Block_List[j].Equation_Type[eqr] == E_SOLVE)
                              derivative_exist = equations[ModelBlock->Block_List[j].Equation[eqr]]->writeOutputDerivativesRespectToFeedBackVariables(tmp_output, oMatlabDynamicModelSparse, temporary_terms, eq, var, varr, k, ModelBlock->Block_List[j].Max_Lag, recursive_variables, feedback_variables);
                            else
                              derivative_exist = ModelBlock->Block_List[j].Equation_Normalized[eqr]->writeOutputDerivativesRespectToFeedBackVariables(tmp_output, oMatlabDynamicModelSparse, temporary_terms, eq, var, varr, k, ModelBlock->Block_List[j].Max_Lag, recursive_variables, feedback_variables);
                            if (derivative_exist)
                               output << tmp_output.str() << ";";*/

                            /*output << tmp_output.str();*/
                            //output << ";";
                            //output << "\n%";
                            output << tmp_output.str();
                            writeDerivative(output, eq, symbol_table.getID(eEndogenous, var), k, oMatlabDynamicModelSparse, temporary_terms);
                            output << ";";

                            output << " %2 variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                                   << "(" << k << ") " << var+1
                                   << ", equation=" << eq+1 << endl;
                          }
                        /*else
                          {
                            if (k==0)
                              tmp_output << "      g1_tmp_b(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives << ", "
                              << varr+1 << "+" << ModelBlock->Block_List[j].Size << "*" << ModelBlock->Block_List[j].Max_Lag << ") = ";
                            else if (k>0)
                              tmp_output << "      g1_tmp_b(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives << ", "
                              << varr+1 << "+" << ModelBlock->Block_List[j].Size << "*" << k+ModelBlock->Block_List[j].Max_Lag << ") = ";
                            else if (k<0)
                              tmp_output << "      g1_tmp_b(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives << ", "
                              << varr+1 << "+" << ModelBlock->Block_List[j].Size << "*" << k+ModelBlock->Block_List[j].Max_Lag << ") = ";
                            if (ModelBlock->Block_List[j].Equation_Type[eqr] == E_EVALUATE or ModelBlock->Block_List[j].Equation_Type[eqr] == E_SOLVE)
                              derivative_exist = equations[ModelBlock->Block_List[j].Equation[eqr]]->writeOutputDerivativesRespectToFeedBackVariables(tmp_output, oMatlabDynamicModelSparse, temporary_terms, eq, var, varr, k, ModelBlock->Block_List[j].Max_Lag, recursive_variables, feedback_variables);
                            else
                              derivative_exist = ModelBlock->Block_List[j].Equation_Normalized[eqr]->writeOutputDerivativesRespectToFeedBackVariables(tmp_output, oMatlabDynamicModelSparse, temporary_terms, eq, var, varr, k, ModelBlock->Block_List[j].Max_Lag, recursive_variables, feedback_variables);
                            if (derivative_exist)
                               output << tmp_output.str() << ";";

                            if (k==0)
                              Uf[ModelBlock->Block_List[j].Equation[eqr]] << "+g1_tmp_b(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives
                              << ", " << varr+1 << "+" << ModelBlock->Block_List[j].Size << "*" << ModelBlock->Block_List[j].Max_Lag
                              << ")*y(it_, " << var+1 << ")";
                            else if (k>0)
                              Uf[ModelBlock->Block_List[j].Equation[eqr]] << "+g1_tmp_b(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives
                              << ", " << varr+1 << "+" << ModelBlock->Block_List[j].Size << "*" << k+ModelBlock->Block_List[j].Max_Lag
                              << ")*y(it_+" << k << ", " << var+1 << ")";
                            else if (k<0)
                              Uf[ModelBlock->Block_List[j].Equation[eqr]] << "+g1_tmp_b(" << eqr+1-ModelBlock->Block_List[j].Nb_Recursives
                              << ", " << varr+1 << "+" << ModelBlock->Block_List[j].Size << "*" << k+ModelBlock->Block_List[j].Max_Lag
                              << ")*y(it_" << k << ", " << var+1 << ")";
                            output << " %2 variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                                   << "(" << k << ") " << var+1
                                   << ", equation=" << eq+1 << endl;
                          }*/
                      }
sebastien's avatar
sebastien committed
849
850

#ifdef CONDITION
ferhat's avatar
ferhat committed
851
852
                    output << "  if (fabs(condition[" << eqr << "])<fabs(u[" << u << "+Per_u_]))\n";
                    output << "    condition(" << eqr << ")=u(" << u << "+Per_u_);\n";
sebastien's avatar
sebastien committed
853
#endif
ferhat's avatar
ferhat committed
854
855
856
857
858
859
                  }
              }
            for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
              {
                if (i>=ModelBlock->Block_List[j].Nb_Recursives)
                  output << "  " << Uf[ModelBlock->Block_List[j].Equation[i]].str() << ";\n";
sebastien's avatar
sebastien committed
860
#ifdef CONDITION
ferhat's avatar
ferhat committed
861
862
                output << "  if (fabs(condition(" << i+1 << "))<fabs(u(" << i << "+Per_u_)))\n";
                output << "    condition(" << i+1 << ")=u(" << i+1 << "+Per_u_);\n";
sebastien's avatar
sebastien committed
863
#endif
ferhat's avatar
ferhat committed
864
              }
sebastien's avatar
sebastien committed
865
#ifdef CONDITION
ferhat's avatar
ferhat committed
866
867
868
869
870
871
872
873
874
875
876
877
878
879
            for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
              {
                k=m-ModelBlock->Block_List[j].Max_Lag;
                for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size;i++)
                  {
                    int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index[i];
                    int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index[i];
                    int u=ModelBlock->Block_List[j].IM_lead_lag[m].u[i];
                    int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ[i];
                    output << "  u(" << u+1 << "+Per_u_) = u(" << u+1 << "+Per_u_) / condition(" << eqr+1 << ");\n";
                  }
              }
            for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
              output << "  u(" << i+1 << "+Per_u_) = u(" << i+1 << "+Per_u_) / condition(" << i+1 << ");\n";
sebastien's avatar
sebastien committed
880
881
#endif

ferhat's avatar
ferhat committed
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
            output << "    else" << endl;
            for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
              {
                k=m-ModelBlock->Block_List[j].Max_Lag;
                for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size;i++)
                  {
                    int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index[i];
                    int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index[i];
                    int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ[i];
                    int varr=ModelBlock->Block_List[j].IM_lead_lag[m].Var[i];
                    output << "      g1(" << eqr+1 << ", " << varr+1+(m-ModelBlock->Block_List[j].Max_Lag+ModelBlock->Block_List[j].Max_Lag_Endo)*ModelBlock->Block_List[j].Size << ") = ";
                    writeDerivative(output, eq, symbol_table.getID(eEndogenous, var), k, oMatlabDynamicModelSparse, temporary_terms);
                    output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                    << "(" << k << ") " << var+1
                    << ", equation=" << eq+1 << endl;
                  }
              }
            jacobian_max_endo_col=(ModelBlock->Block_List[j].Max_Lead_Endo+ModelBlock->Block_List[j].Max_Lag_Endo+1)*ModelBlock->Block_List[j].Size;
            /*for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
              {
                k=m-ModelBlock->Block_List[j].Max_Lag;
                for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size_exo;i++)
                  {
                    int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_X_Index[i];
                    int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_X[i];
                    int varr=ModelBlock->Block_List[j].IM_lead_lag[m].Exogenous[i];
                    int var=ModelBlock->Block_List[j].IM_lead_lag[m].Exogenous_Index[i];
                    output << "      g1_x(" << eqr+1 << ", "
                           << jacobian_max_endo_col+(m-(ModelBlock->Block_List[j].Max_Lag-ModelBlock->Block_List[j].Max_Lag_Exo))*ModelBlock->Block_List[j].nb_exo+varr+1 << ") = ";
                    writeDerivative(output, eq, symbol_table.getID(eExogenous, var), k, oMatlabDynamicModelSparse, temporary_terms);
                    output << "; % variable (exogenous)=" << symbol_table.getName(var)
                           << "(" << k << ") " << var+1 << " " << varr+1
                           << ", equation=" << eq+1 << endl;
                  }
              }*/
            for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
              {
                k=m-ModelBlock->Block_List[j].Max_Lag;
                if (block_triangular.incidencematrix.Model_Max_Lag_Endo - ModelBlock->Block_List[j].Max_Lag +m >=0)
                  {
                    for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size_other_endo;i++)
                      {
                        int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index_other_endo[i];
                        int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index_other_endo[i];
                        int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_other_endo[i];
                        int varr=ModelBlock->Block_List[j].IM_lead_lag[m].Var_other_endo[i];
                        output << "      g1_o(" << eqr+1 << ", "
                        << varr+1+(m+max_endo_lag-ModelBlock->Block_List[j].Max_Lag)*symbol_table.endo_nbr() << ") = ";
                        writeDerivative(output, eq, symbol_table.getID(eEndogenous, var), k, oMatlabDynamicModelSparse, temporary_terms);
                        output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                        << "(" << k << ") " << var+1
                        << ", equation=" << eq+1 << endl;
                      }
                  }
              }
            output << "      varargout{1}=g1_x;\n";
            output << "      varargout{2}=g1_o;\n";
            output << "    end;\n";
            //output << "    ya = y;\n";
            output << "  end;\n";
            break;
          default:
            break;
          }
        prev_Simulation_Type=ModelBlock->Block_List[j].Simulation_Type;
        output.close();
      }
  }
sebastien's avatar
sebastien committed
950
951

void
sebastien's avatar
sebastien committed
952
DynamicModel::writeModelEquationsCodeOrdered(const string file_name, const Model_Block *ModelBlock, const string bin_basename, map_idx_type map_idx) const
sebastien's avatar
sebastien committed
953
  {
ferhat's avatar
ferhat committed
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
    struct Uff_l
      {
        int u, var, lag;
        Uff_l *pNext;
      };

    struct Uff
      {
        Uff_l *Ufl, *Ufl_First;
        int eqr;
      };

    int i,j,k,m, v, ModelBlock_Aggregated_Count, k0, k1;
    string tmp_s;
    ostringstream tmp_output;
    ofstream code_file;
    NodeID lhs=NULL, rhs=NULL;
    BinaryOpNode *eq_node;
    bool lhs_rhs_done;
    Uff Uf[symbol_table.endo_nbr()];
    map<NodeID, int> reference_count;
    map<int,int> ModelBlock_Aggregated_Size, ModelBlock_Aggregated_Number;
    int prev_Simulation_Type=-1;
    //SymbolicGaussElimination SGE;
    bool file_open=false;
    //temporary_terms_type::const_iterator it_temp=temporary_terms.begin();
    //----------------------------------------------------------------------
    string main_name=file_name;
    main_name+=".cod";
    code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate );
    if (!code_file.is_open())
      {
        cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
        exit(EXIT_FAILURE);
      }
    //Temporary variables declaration
    code_file.write(&FDIMT, sizeof(FDIMT));
    k=temporary_terms.size();
    code_file.write(reinterpret_cast<char *>(&k),sizeof(k));
    //search for successive and identical blocks
    i=k=k0=0;
    ModelBlock_Aggregated_Count=-1;
    for (j = 0;j < ModelBlock->Size;j++)
      {
        if (BlockTriangular::BlockSim(prev_Simulation_Type)==BlockTriangular::BlockSim(ModelBlock->Block_List[j].Simulation_Type)
            && (ModelBlock->Block_List[j].Simulation_Type==EVALUATE_BACKWARD
                ||ModelBlock->Block_List[j].Simulation_Type==EVALUATE_FORWARD
                /*||ModelBlock->Block_List[j].Simulation_Type==EVALUATE_BACKWARD_R
                ||ModelBlock->Block_List[j].Simulation_Type==EVALUATE_FORWARD_R */))
          {
          }
        else
          {
            k=k0=0;
            ModelBlock_Aggregated_Count++;
          }
        k0+=ModelBlock->Block_List[j].Size;
        ModelBlock_Aggregated_Number[ModelBlock_Aggregated_Count]=k0;
        ModelBlock_Aggregated_Size[ModelBlock_Aggregated_Count]=++k;
        prev_Simulation_Type=ModelBlock->Block_List[j].Simulation_Type;
      }
    ModelBlock_Aggregated_Count++;
    //For each block
    j=0;
    for (k0 = 0;k0 < ModelBlock_Aggregated_Count;k0++)
      {
        k1=j;
        if (k0>0)
          code_file.write(&FENDBLOCK, sizeof(FENDBLOCK));
        code_file.write(&FBEGINBLOCK, sizeof(FBEGINBLOCK));
        v=ModelBlock_Aggregated_Number[k0];
        code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
        v=ModelBlock->Block_List[j].Simulation_Type;
        code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
        for (k=0; k<ModelBlock_Aggregated_Size[k0]; k++)
          {
            for (i=0; i < ModelBlock->Block_List[j].Size;i++)
              {
                code_file.write(reinterpret_cast<char *>(&ModelBlock->Block_List[j].Variable[i]),sizeof(ModelBlock->Block_List[j].Variable[i]));
                code_file.write(reinterpret_cast<char *>(&ModelBlock->Block_List[j].Equation[i]),sizeof(ModelBlock->Block_List[j].Equation[i]));
                code_file.write(reinterpret_cast<char *>(&ModelBlock->Block_List[j].Own_Derivative[i]),sizeof(ModelBlock->Block_List[j].Own_Derivative[i]));
              }
            j++;
          }
        j=k1;
        if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_SIMPLE || ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_COMPLETE ||
            ModelBlock->Block_List[j].Simulation_Type==SOLVE_BACKWARD_COMPLETE || ModelBlock->Block_List[j].Simulation_Type==SOLVE_FORWARD_COMPLETE)
          {
            code_file.write(reinterpret_cast<char *>(&ModelBlock->Block_List[j].is_linear),sizeof(ModelBlock->Block_List[j].is_linear));
            v=block_triangular.ModelBlock->Block_List[j].IM_lead_lag[block_triangular.ModelBlock->Block_List[j].Max_Lag + block_triangular.ModelBlock->Block_List[j].Max_Lead].u_finish + 1;
            code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
            v=symbol_table.endo_nbr();
            code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
            v=block_triangular.ModelBlock->Block_List[j].Max_Lag;
            code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
            v=block_triangular.ModelBlock->Block_List[j].Max_Lead;
            code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
            //if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_COMPLETE || ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_SIMPLE)
            //{
            int u_count_int=0;
            Write_Inf_To_Bin_File(file_name, bin_basename, j, u_count_int,file_open,
                                  ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_COMPLETE || ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_SIMPLE);
            v=u_count_int;
            code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
            file_open=true;
            //}
          }
        for (k1 = 0; k1 < ModelBlock_Aggregated_Size[k0]; k1++)
          {
            //For a block composed of a single equation determines whether we have to evaluate or to solve the equation
            if (ModelBlock->Block_List[j].Size==1)
              {
                lhs_rhs_done=true;
                eq_node = equations[ModelBlock->Block_List[j].Equation[0]];
                lhs = eq_node->get_arg1();
                rhs = eq_node->get_arg2();
              }
            else
              lhs_rhs_done=false;
            // The equations
            for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
              {
                //ModelBlock->Block_List[j].Variable_Sorted[i] = variable_table.getID(eEndogenous, ModelBlock->Block_List[j].Variable[i], 0);
                //The Temporary terms
                temporary_terms_type tt2;
sebastien's avatar
sebastien committed
1079
#ifdef DEBUGC
ferhat's avatar
ferhat committed
1080
                k=0;
sebastien's avatar
sebastien committed
1081
#endif
ferhat's avatar
ferhat committed
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
                for (temporary_terms_type::const_iterator it = ModelBlock->Block_List[j].Temporary_Terms_in_Equation[i]->begin();
                     it != ModelBlock->Block_List[j].Temporary_Terms_in_Equation[i]->end(); it++)
                  {
                    (*it)->compile(code_file, false, tt2, map_idx);
                    code_file.write(&FSTPT, sizeof(FSTPT));
                    map_idx_type::const_iterator ii=map_idx.find((*it)->idx);
                    v=(int)ii->second;
                    code_file.write(reinterpret_cast<char *>(&v), sizeof(v));
                    // Insert current node into tt2
                    tt2.insert(*it);
sebastien's avatar
sebastien committed
1092
#ifdef DEBUGC
ferhat's avatar
ferhat committed
1093
1094
1095
1096
                    cout << "FSTPT " << v << "\n";
                    code_file.write(&FOK, sizeof(FOK));
                    code_file.write(reinterpret_cast<char *>(&k), sizeof(k));
                    ki++;
sebastien's avatar
sebastien committed
1097
1098
#endif

ferhat's avatar
ferhat committed
1099
                  }
sebastien's avatar
sebastien committed
1100
#ifdef DEBUGC
ferhat's avatar
ferhat committed
1101
1102
1103
1104
1105
1106
                for (temporary_terms_type::const_iterator it = ModelBlock->Block_List[j].Temporary_terms->begin();
                     it != ModelBlock->Block_List[j].Temporary_terms->end(); it++)
                  {
                    map_idx_type::const_iterator ii=map_idx.find((*it)->idx);
                    cout << "map_idx[" << (*it)->idx <<"]=" << ii->second << "\n";
                  }
sebastien's avatar
sebastien committed
1107
#endif
ferhat's avatar
ferhat committed
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
                if (!lhs_rhs_done)
                  {
                    eq_node = equations[ModelBlock->Block_List[j].Equation[i]];
                    lhs = eq_node->get_arg1();
                    rhs = eq_node->get_arg2();
                  }
                switch (ModelBlock->Block_List[j].Simulation_Type)
                  {
                  case EVALUATE_BACKWARD:
                  case EVALUATE_FORWARD:
                    if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE)
                      {
                        rhs->compile(code_file, false, temporary_terms, map_idx);
                        lhs->compile(code_file, true, temporary_terms, map_idx);
                      }
                    else if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE_S)
                      {
                        eq_node = (BinaryOpNode*)ModelBlock->Block_List[j].Equation_Normalized[i];
                        //cout << "EVALUATE_S var " << ModelBlock->Block_List[j].Variable[i] << "\n";
                        lhs = eq_node->get_arg1();
                        rhs = eq_node->get_arg2();
                        rhs->compile(code_file, false, temporary_terms, map_idx);
                        lhs->compile(code_file, true, temporary_terms, map_idx);
                      }
                    break;
                  /*case EVALUATE_BACKWARD_R:
                  case EVALUATE_FORWARD_R:
                    lhs->compile(code_file, false, temporary_terms, map_idx);
                    rhs->compile(code_file, true, temporary_terms, map_idx);
                    break;*/
                  case SOLVE_BACKWARD_COMPLETE:
                  case SOLVE_FORWARD_COMPLETE:
                    v=ModelBlock->Block_List[j].Equation[i];
                    Uf[v].eqr=i;
                    Uf[v].Ufl=NULL;
                    goto end;
                  case SOLVE_TWO_BOUNDARIES_COMPLETE:
                  case SOLVE_TWO_BOUNDARIES_SIMPLE:
                    v=ModelBlock->Block_List[j].Equation[i];
                    Uf[v].eqr=i;
                    Uf[v].Ufl=NULL;
                    goto end;
                  default:
end:
                    lhs->compile(code_file, false, temporary_terms, map_idx);
                    rhs->compile(code_file, false, temporary_terms, map_idx);
                    code_file.write(&FBINARY, sizeof(FBINARY));
                    int v=oMinus;
                    code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
                    code_file.write(&FSTPR, sizeof(FSTPR));
                    code_file.write(reinterpret_cast<char *>(&i), sizeof(i));
sebastien's avatar
sebastien committed
1159
#ifdef CONDITION
ferhat's avatar
ferhat committed
1160
1161
                    if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_COMPLETE)
                      output << "  condition[" << i << "]=0;\n";
sebastien's avatar
sebastien committed
1162
#endif
ferhat's avatar
ferhat committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
                  }
              }
            code_file.write(&FENDEQU, sizeof(FENDEQU));
            // The Jacobian if we have to solve the block
            if (ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_BACKWARD
                && ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_FORWARD
                /*&& ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_BACKWARD_R
                && ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_FORWARD_R*/)
              {
                switch (ModelBlock->Block_List[j].Simulation_Type)
                  {
                  case SOLVE_BACKWARD_SIMPLE:
                  case SOLVE_FORWARD_SIMPLE:
                    compileDerivative(code_file, ModelBlock->Block_List[j].Equation[0], ModelBlock->Block_List[j].Variable[0], 0, map_idx);
                    code_file.write(&FSTPG, sizeof(FSTPG));
                    v=0;
                    code_file.write(reinterpret_cast<char *>(&v), sizeof(v));
                    break;
                  case SOLVE_BACKWARD_COMPLETE:
                  case SOLVE_FORWARD_COMPLETE:
                    m=ModelBlock->Block_List[j].Max_Lag;
                    for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size;i++)
                      {
                        int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index[i];
                        int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index[i];
                        int u=ModelBlock->Block_List[j].IM_lead_lag[m].us[i];
                        int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ[i];
                        int v=ModelBlock->Block_List[j].Equation[eqr];
                        if (!Uf[v].Ufl)
                          {
                            Uf[v].Ufl=(Uff_l*)malloc(sizeof(Uff_l));
                            Uf[v].Ufl_First=Uf[v].Ufl;
                          }
                        else
                          {
                            Uf[v].Ufl->pNext=(Uff_l*)malloc(sizeof(Uff_l));
                            Uf[v].Ufl=Uf[v].Ufl->pNext;
                          }
                        Uf[v].Ufl->pNext=NULL;
                        Uf[v].Ufl->u=u;
                        Uf[v].Ufl->var=var;
                        compileDerivative(code_file, eq, var, 0, map_idx);
                        code_file.write(&FSTPU, sizeof(FSTPU));
                        code_file.write(reinterpret_cast<char *>(&u), sizeof(u));
                      }
                    for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
                      {
                        code_file.write(&FLDR, sizeof(FLDR));
                        code_file.write(reinterpret_cast<char *>(&i), sizeof(i));
                        code_file.write(&FLDZ, sizeof(FLDZ));
                        int v=ModelBlock->Block_List[j].Equation[i];
                        for (Uf[v].Ufl=Uf[v].Ufl_First;Uf[v].Ufl;Uf[v].Ufl=Uf[v].Ufl->pNext)
                          {
                            code_file.write(&FLDU, sizeof(FLDU));
                            code_file.write(reinterpret_cast<char *>(&Uf[v].Ufl->u), sizeof(Uf[v].Ufl->u));
                            code_file.write(&FLDV, sizeof(FLDV));
                            char vc=eEndogenous;
                            code_file.write(reinterpret_cast<char *>(&vc), sizeof(vc));
                            code_file.write(reinterpret_cast<char *>(&Uf[v].Ufl->var), sizeof(Uf[v].Ufl->var));
                            int v1=0;
                            code_file.write(reinterpret_cast<char *>(&v1), sizeof(v1));
                            code_file.write(&FBINARY, sizeof(FBINARY));
                            v1=oTimes;
                            code_file.write(reinterpret_cast<char *>(&v1), sizeof(v1));
                            code_file.write(&FCUML, sizeof(FCUML));
                          }
                        Uf[v].Ufl=Uf[v].Ufl_First;
                        while (Uf[v].Ufl)
                          {
                            Uf[v].Ufl_First=Uf[v].Ufl->pNext;
                            free(Uf[v].Ufl);
                            Uf[v].Ufl=Uf[v].Ufl_First;
                          }
                        code_file.write(&FBINARY, sizeof(FBINARY));
                        v=oMinus;
                        code_file.write(reinterpret_cast<char *>(&v), sizeof(v));
                        code_file.write(&FSTPU, sizeof(FSTPU));
                        code_file.write(reinterpret_cast<char *>(&i), sizeof(i));
                      }
                    break;
                  case SOLVE_TWO_BOUNDARIES_COMPLETE:
                  case SOLVE_TWO_BOUNDARIES_SIMPLE:
                    for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
                      {
                        k=m-ModelBlock->Block_List[j].Max_Lag;
                        for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size;i++)
                          {
                            int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index[i];
                            int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index[i];
                            int u=ModelBlock->Block_List[j].IM_lead_lag[m].u[i];
                            int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ[i];
                            int v=ModelBlock->Block_List[j].Equation[eqr];
                            if (!Uf[v].Ufl)
                              {
                                Uf[v].Ufl=(Uff_l*)malloc(sizeof(Uff_l));
                                Uf[v].Ufl_First=Uf[v].Ufl;
                              }
                            else
                              {
                                Uf[v].Ufl->pNext=(Uff_l*)malloc(sizeof(Uff_l));
                                Uf[v].Ufl=Uf[v].Ufl->pNext;
                              }
                            Uf[v].Ufl->pNext=NULL;
                            Uf[v].Ufl->u=u;
                            Uf[v].Ufl->var=var;
                            Uf[v].Ufl->lag=k;
                            compileDerivative(code_file, eq, var, k, map_idx);
                            code_file.write(&FSTPU, sizeof(FSTPU));
                            code_file.write(reinterpret_cast<char *>(&u), sizeof(u));
sebastien's avatar
sebastien committed
1272
#ifdef CONDITION
ferhat's avatar
ferhat committed
1273
1274
                            output << "  if (fabs(condition[" << eqr << "])<fabs(u[" << u << "+Per_u_]))\n";
                            output << "    condition[" << eqr << "]=u[" << u << "+Per_u_];\n";
sebastien's avatar
sebastien committed
1275
#endif
ferhat's avatar
ferhat committed
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
                          }
                      }
                    for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
                      {
                        code_file.write(&FLDR, sizeof(FLDR));
                        code_file.write(reinterpret_cast<char *>(&i), sizeof(i));
                        code_file.write(&FLDZ, sizeof(FLDZ));
                        int v=ModelBlock->Block_List[j].Equation[i];
                        for (Uf[v].Ufl=Uf[v].Ufl_First;Uf[v].Ufl;Uf[v].Ufl=Uf[v].Ufl->pNext)
                          {
                            code_file.write(&FLDU, sizeof(FLDU));
                            code_file.write(reinterpret_cast<char *>(&Uf[v].Ufl->u), sizeof(Uf[v].Ufl->u));
                            code_file.write(&FLDV, sizeof(FLDV));
                            char vc=eEndogenous;
                            code_file.write(reinterpret_cast<char *>(&vc), sizeof(vc));
                            int v1=Uf[v].Ufl->var;
                            code_file.write(reinterpret_cast<char *>(&v1), sizeof(v1));
                            v1=Uf[v].Ufl->lag;
                            code_file.write(reinterpret_cast<char *>(&v1), sizeof(v1));
                            code_file.write(&FBINARY, sizeof(FBINARY));
                            v1=oTimes;
                            code_file.write(reinterpret_cast<char *>(&v1), sizeof(v1));
                            code_file.write(&FCUML, sizeof(FCUML));
                          }
                        Uf[v].Ufl=Uf[v].Ufl_First;
                        while (Uf[v].Ufl)
                          {
                            Uf[v].Ufl_First=Uf[v].Ufl->pNext;
                            free(Uf[v].Ufl);
                            Uf[v].Ufl=Uf[v].Ufl_First;
                          }
                        code_file.write(&FBINARY, sizeof(FBINARY));
                        v=oMinus;
                        code_file.write(reinterpret_cast<char *>(&v), sizeof(v));
                        code_file.write(&FSTPU, sizeof(FSTPU));
                        code_file.write(reinterpret_cast<char *>(&i), sizeof(i));
sebastien's avatar
sebastien committed
1312
#ifdef CONDITION
ferhat's avatar
ferhat committed
1313
1314
                        output << "  if (fabs(condition[" << i << "])<fabs(u[" << i << "+Per_u_]))\n";
                        output << "    condition[" << i << "]=u[" << i << "+Per_u_];\n";
sebastien's avatar
sebastien committed
1315
#endif
ferhat's avatar
ferhat committed
1316
                      }
sebastien's avatar
sebastien committed
1317
#ifdef CONDITION
ferhat's avatar
ferhat committed
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
                    for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
                      {
                        k=m-ModelBlock->Block_List[j].Max_Lag;
                        for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size;i++)
                          {
                            int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index[i];
                            int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index[i];
                            int u=ModelBlock->Block_List[j].IM_lead_lag[m].u[i];
                            int eqr=ModelBlock->Block_List[j].IM_lead_lag[m].Equ[i];
                            output << "  u[" << u << "+Per_u_] /= condition[" << eqr << "];\n";
                          }
                      }
                    for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
                      output << "  u[" << i << "+Per_u_] /= condition[" << i << "];\n";
sebastien's avatar
sebastien committed
1332
#endif
ferhat's avatar
ferhat committed
1333
1334
1335
1336
                    break;
                  default:
                    break;
                  }
sebastien's avatar
sebastien committed
1337

ferhat's avatar
ferhat committed
1338
1339
1340
1341
1342
1343
1344
1345
1346
                prev_Simulation_Type=ModelBlock->Block_List[j].Simulation_Type;
              }
            j++;
          }
      }
    code_file.write(&FENDBLOCK, sizeof(FENDBLOCK));
    code_file.write(&FEND, sizeof(FEND));
    code_file.close();
  }
sebastien's avatar
sebastien committed
1347
1348
1349

void
DynamicModel::writeDynamicMFile(const string &dynamic_basename) const
ferhat's avatar
ferhat committed
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
  {
    string filename = dynamic_basename + ".m";

    ofstream mDynamicModelFile;
    mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
    if (!mDynamicModelFile.is_open())
      {
        cerr << "Error: Can't open file " << filename << " for writing" << endl;
        exit(EXIT_FAILURE);
      }
    mDynamicModelFile << "function [residual, g1, g2, g3] = " << dynamic_basename << "(y, x, params, it_)" << endl
    << "%" << endl
    << "% Status : Computes dynamic model for Dynare" << endl
    << "%" << endl
    << "% Warning : this file is generated automatically by Dynare" << endl
    << "%           from model file (.mod)" << endl << endl;

    writeDynamicModel(mDynamicModelFile);

    mDynamicModelFile.close();
  }
sebastien's avatar
sebastien committed
1371
1372
1373

void
DynamicModel::writeDynamicCFile(const string &dynamic_basename) const
ferhat's avatar
ferhat committed
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
  {
    string filename = dynamic_basename + ".c";
    ofstream mDynamicModelFile;

    mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
    if (!mDynamicModelFile.is_open())
      {
        cerr << "Error: Can't open file " << filename << " for writing" << endl;
        exit(EXIT_FAILURE);
      }
    mDynamicModelFile << "/*" << endl
    << " * " << filename << " : Computes dynamic model for Dynare" << endl
    << " *" << endl
    << " * Warning : this file is generated automatically by Dynare" << endl
    << " *           from model file (.mod)" << endl
    << endl
    << " */" << endl
    << "#include <math.h>" << endl
    << "#include \"mex.h\"" << endl;

    // Writing the function body
    writeDynamicModel(mDynamicModelFile);

    // Writing the gateway routine
    mDynamicModelFile << "/* The gateway routine */" << endl
    << "void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])" << endl
    << "{" << endl
    << "  double *y, *x, *params;" << endl
sebastien's avatar
sebastien committed
1402
    << "  double *residual, *g1, *v2;" << endl
ferhat's avatar
ferhat committed
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
    << "  int nb_row_x, it_;" << endl
    << endl
    << "  /* Create a pointer to the input matrix y. */" << endl
    << "  y = mxGetPr(prhs[0]);" << endl
    << endl
    << "  /* Create a pointer to the input matrix x. */" << endl
    << "  x = mxGetPr(prhs[1]);" << endl
    << endl
    << "  /* Create a pointer to the input matrix params. */" << endl
    << "  params = mxGetPr(prhs[2]);" << endl
    << endl
    << "  /* Fetch time index */" << endl
    << "  it_ = (int) mxGetScalar(prhs[3]) - 1;" << endl
    << endl
    << "  /* Gets number of rows of matrix x. */" << endl
    << "  nb_row_x = mxGetM(prhs[1]);" << endl
    << endl
    << "  residual = NULL;" << endl
    << "  if (nlhs >= 1)" << endl
    << "  {" << endl
    << "     /* Set the output pointer to the output matrix residual. */" << endl
    << "     plhs[0] = mxCreateDoubleMatrix(" << equations.size() << ",1, mxREAL);" << endl
    << "     /* Create a C pointer to a copy of the output matrix residual. */" << endl
    << "     residual = mxGetPr(plhs[0]);" << endl
    << "  }" << endl
    << endl
    << "  g1 = NULL;" << endl
    << "  if (nlhs >= 2)" << endl
    << "  {" << endl
    << "     /* Set the output pointer to the output matrix g1. */" << endl

    << "     plhs[1] = mxCreateDoubleMatrix(" << equations.size() << ", " << dynJacobianColsNbr << ", mxREAL);" << endl
    << "     /* Create a C pointer to a copy of the output matrix g1. */" << endl
    << "     g1 = mxGetPr(plhs[1]);" << endl
    << "  }" << endl
    << endl
sebastien's avatar
sebastien committed
1439
    << "  v2 = NULL;" << endl
ferhat's avatar
ferhat committed
1440
1441
    << " if (nlhs >= 3)" << endl
    << "  {" << endl
sebastien's avatar
sebastien committed
1442
1443
    << "     /* Set the output pointer to the output matrix v2. */" << endl
    << "     plhs[2] = mxCreateDoubleMatrix(" << NNZDerivatives[1] << ", " << 3
ferhat's avatar
ferhat committed
1444
1445
    << ", mxREAL);" << endl
    << "     /* Create a C pointer to a copy of the output matrix g1. */" << endl
sebastien's avatar
sebastien committed
1446
    << "     v2 = mxGetPr(plhs[2]);" << endl
ferhat's avatar
ferhat committed
1447
1448
1449
    << "  }" << endl
    << endl
    << "  /* Call the C subroutines. */" << endl
sebastien's avatar
sebastien committed
1450
    << "  Dynamic(y, x, nb_row_x, params, it_, residual, g1, v2);" << endl
ferhat's avatar
ferhat committed
1451
1452
1453
    << "}" << endl;
    mDynamicModelFile.close();
  }
sebastien's avatar
sebastien committed
1454
1455
1456

string
DynamicModel::reform(const string name1) const
ferhat's avatar
ferhat committed
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
  {
    string name=name1;
    int pos = name.find("\\", 0);
    while (pos >= 0)
      {
        if (name.substr(pos + 1, 1) != "\\")
          {
            name = name.insert(pos, "\\");
            pos++;
          }
        pos++;
        pos = name.find("\\", pos);
      }
    return (name);
  }
sebastien's avatar
sebastien committed
1472
1473
1474
1475

void
DynamicModel::Write_Inf_To_Bin_File(const string &dynamic_basename, const string &bin_basename, const int &num,
                                    int &u_count_int, bool &file_open, bool is_two_boundaries) const
ferhat's avatar
ferhat committed
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
  {
    int j;
    std::ofstream SaveCode;
    if (file_open)
      SaveCode.open((bin_basename + ".bin").c_str(), ios::out | ios::in | ios::binary | ios ::ate );
    else
      SaveCode.open((bin_basename + ".bin").c_str(), ios::out | ios::binary);
    if (!SaveCode.is_open())
      {
        cout << "Error : Can't open file \"" << bin_basename << ".bin\" for writing\n";
        exit(EXIT_FAILURE);
      }
    u_count_int=0;
    for (int m=0;m<=block_triangular.ModelBlock->Block_List[num].Max_Lead+block_triangular.ModelBlock->Block_List[num].Max_Lag;m++)
      {
        int k1=m-block_triangular.ModelBlock->Block_List[num].Max_Lag;
        for (j=0;j<block_triangular.ModelBlock->Block_List[num].IM_lead_lag[m].size;j++)
          {
            int varr=block_triangular.ModelBlock->Block_List[num].IM_lead_lag[m].Var[j]+k1*block_triangular.ModelBlock->Block_List[num].Size;
            int u=block_triangular.ModelBlock->Block_List[num].IM_lead_lag[m].u[j];
            int eqr1=block_triangular.ModelBlock->Block_List[num].IM_lead_lag[m].Equ[j];
            SaveCode.write(reinterpret_cast<char *>(&eqr1), sizeof(eqr1));
            SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
            SaveCode.write(reinterpret_cast<char *>(&k1), sizeof(k1));
            SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
            u_count_int++;
          }
      }
    if (is_two_boundaries)
      {
        for (j=0;j<block_triangular.ModelBlock->Block_List[num].Size;j++)
          {
            int eqr1=j;
            int varr=block_triangular.ModelBlock->Block_List[num].Size*(block_triangular.periods
                     +block_triangular.incidencematrix.Model_Max_Lead_Endo);
            int k1=0;
            SaveCode.write(reinterpret_cast<char *>(&eqr1), sizeof(eqr1));
            SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
            SaveCode.write(reinterpret_cast<char *>(&k1), sizeof(k1));
            SaveCode.write(reinterpret_cast<char *>(&eqr1), sizeof(eqr1));
            u_count_int++;
          }
      }
    //cout << "u_count_int=" << u_count_int << "\n";
    for (j=0;j<block_triangular.ModelBlock->Block_List[num].Size;j++)
      {
        int varr=block_triangular.ModelBlock->Block_List[num].Variable[j];
        SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
      }
    for (j=0;j<block_triangular.ModelBlock->Block_List[num].Size;j++)
      {
        int eqr1=block_triangular.ModelBlock->Block_List[num].Equation[j];
        SaveCode.write(reinterpret_cast<char *>(&eqr1), sizeof(eqr1));
      }
    SaveCode.close();
  }
sebastien's avatar
sebastien committed
1532
1533
1534

void
DynamicModel::writeSparseDynamicMFile(const string &dynamic_basename, const string &basename, const int mode) const
ferhat's avatar
ferhat committed
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
  {
    string sp;
    ofstream mDynamicModelFile;
    ostringstream tmp, tmp1, tmp_eq;
    int prev_Simulation_Type, tmp_i;
    //SymbolicGaussElimination SGE;
    bool OK;
    chdir(basename.c_str());
    string filename = dynamic_basename + ".m";
    mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
    if (!mDynamicModelFile.is_open())
      {
        cerr << "Error: Can't open file " << filename << " for writing" << endl;
        exit(EXIT_FAILURE);
      }
    mDynamicModelFile << "%\n";
    mDynamicModelFile << "% " << filename << " : Computes dynamic model for Dynare\n";
    mDynamicModelFile << "%\n";
    mDynamicModelFile << "% Warning : this file is generated automatically by Dynare\n";
    mDynamicModelFile << "%           from model file (.mod)\n\n";
    mDynamicModelFile << "%/\n";

    int i, k, Nb_SGE=0;
    bool skip_head, open_par=false;

    mDynamicModelFile << "function [varargout] = " << dynamic_basename << "(varargin)\n";
    mDynamicModelFile << "  global oo_ options_ M_ ;\n";
    mDynamicModelFile << "  g2=[];g3=[];\n";
    //Temporary variables declaration
    OK=true;
    ostringstream tmp_output;
    for (temporary_terms_type::const_iterator it = temporary_terms.begin();
         it != temporary_terms.end(); it++)
      {
        if (OK)
          OK=false;
        else
          tmp_output << " ";
        (*it)->writeOutput(tmp_output, oMatlabStaticModelSparse, temporary_terms);
      }
    if (tmp_output.str().length()>0)
      mDynamicModelFile << "  global " << tmp_output.str() << " M_ ;\n";

    mDynamicModelFile << "  T_init=zeros(1,options_.periods+M_.maximum_lag+M_.maximum_lead);\n";
    tmp_output.str("");
    for (temporary_terms_type::const_iterator it = temporary_terms.begin();
         it != temporary_terms.end(); it++)
      {
        tmp_output << "  ";
        (*it)->writeOutput(tmp_output, oMatlabDynamicModel, temporary_terms);
        tmp_output << "=T_init;\n";
      }
    if (tmp_output.str().length()>0)
      mDynamicModelFile << tmp_output.str();

    mDynamicModelFile << "  y_kmin=M_.maximum_lag;\n";
    mDynamicModelFile << "  y_kmax=M_.maximum_lead;\n";
    mDynamicModelFile << "  y_size=M_.endo_nbr;\n";
    mDynamicModelFile << "  if(length(varargin)>0)\n";
    mDynamicModelFile << "    %it is a simple evaluation of the dynamic model for time _it\n";
    mDynamicModelFile << "    params=varargin{3};\n";
    mDynamicModelFile << "    it_=varargin{4};\n";
    /*i = symbol_table.endo_nbr*(variable_table.max_endo_lag+variable_table.max_endo_lead+1)+
      symbol_table.exo_nbr*(variable_table.max_exo_lag+variable_table.max_exo_lead+1);
      mDynamicModelFile << "    g1=spalloc(" << symbol_table.endo_nbr << ", " << i << ", " << i*symbol_table.endo_nbr << ");\n";*/
    mDynamicModelFile << "    Per_u_=0;\n";
    mDynamicModelFile << "    Per_y_=it_*y_size;\n";
    mDynamicModelFile << "    y=varargin{1};\n";
    mDynamicModelFile << "    ys=y(it_,:);\n";
    mDynamicModelFile << "    x=varargin{2};\n";
    prev_Simulation_Type=-1;
    tmp.str("");
    tmp_eq.str("");
    for (int count_call=1, i = 0;i < block_triangular.ModelBlock->Size;i++, count_call++)
      {
        k=block_triangular.ModelBlock->Block_List[i].Simulation_Type;
        if ((BlockTriangular::BlockSim(prev_Simulation_Type)!=BlockTriangular::BlockSim(k))  &&
            ((prev_Simulation_Type==EVALUATE_FORWARD || prev_Simulation_Type==EVALUATE_BACKWARD /*|| prev_Simulation_Type==EVALUATE_FORWARD_R || prev_Simulation_Type==EVALUATE_BACKWARD_R*/)
             || (k==EVALUATE_FORWARD || k==EVALUATE_BACKWARD /*|| k==EVALUATE_FORWARD_R || k==EVALUATE_BACKWARD_R*/)))
          {
            mDynamicModelFile << "    y_index_eq=[" << tmp_eq.str() << "];\n";
            tmp_eq.str("");
            mDynamicModelFile << "    y_index=[" << tmp.str() << "];\n";
            tmp.str("");
            mDynamicModelFile << tmp1.str();
            tmp1.str("");
          }
        for (int ik=0;ik<block_triangular.ModelBlock->Block_List[i].Size;ik++)
          {
            tmp << " " << block_triangular.ModelBlock->Block_List[i].Variable[ik]+1;
            tmp_eq << " " << block_triangular.ModelBlock->Block_List[i].Equation[ik]+1;
          }
        if (k==EVALUATE_FORWARD || k==EVALUATE_BACKWARD /*|| k==EVALUATE_FORWARD_R || k==EVALUATE_BACKWARD_R*/)
          {
            if (i==block_triangular.ModelBlock->Size-1)
1630
              {
ferhat's avatar
ferhat committed
1631
1632
1633
1634
1635
1636
                mDynamicModelFile << "    y_index_eq=[" << tmp_eq.str() << "];\n";
                tmp_eq.str("");
                mDynamicModelFile << "    y_index=[" << tmp.str() << "];\n";
                tmp.str("");
                mDynamicModelFile << tmp1.str();
                tmp1.str("");
1637
              }
ferhat's avatar
ferhat committed
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
          }
        if (BlockTriangular::BlockSim(prev_Simulation_Type)==BlockTriangular::BlockSim(k) &&
            (k==EVALUATE_FORWARD || k==EVALUATE_BACKWARD /*|| k==EVALUATE_FORWARD_R || k==EVALUATE_BACKWARD_R*/))
          skip_head=true;
        else
          skip_head=false;
        switch (k)
          {
          case EVALUATE_FORWARD:
          case EVALUATE_BACKWARD:
          /*case EVALUATE_FORWARD_R:
          case EVALUATE_BACKWARD_R:*/
            if (!skip_head)
              {
                tmp1 << "    [y, dr(" << count_call << ").g1, dr(" << count_call << ").g2, dr(" << count_call << ").g3, dr(" << count_call << ").g1_x, dr(" << count_call << ").g1_o]=" << dynamic_basename << "_" << i + 1 << "(y, x, params, 1, it_-1, 1);\n";
                tmp1 << "    residual(y_index_eq)=ys(y_index)-y(it_, y_index);\n";
              }
            break;
          case SOLVE_FORWARD_SIMPLE:
          case SOLVE_BACKWARD_SIMPLE:
            mDynamicModelFile << "    y_index_eq = " << block_triangular.ModelBlock->Block_List[i].Equation[0]+1 << ";\n";
            mDynamicModelFile << "    [r, dr(" << count_call << ").g1, dr(" << count_call << ").g2, dr(" << count_call << ").g3, dr(" << count_call << ").g1_x, dr(" << count_call << ").g1_o]=" << dynamic_basename << "_" << i + 1 << "(y, x, params, it_, 1);\n";
            mDynamicModelFile << "    residual(y_index_eq)=r;\n";
            tmp_eq.str("");
            tmp.str("");
            break;
          case SOLVE_FORWARD_COMPLETE:
          case SOLVE_BACKWARD_COMPLETE:
            mDynamicModelFile << "    y_index_eq = [" << tmp_eq.str() << "];\n";
            mDynamicModelFile << "    [r, dr(" << count_call << ").g1, dr(" << count_call << ").g2, dr(" << count_call << ").g3, dr(" << count_call << ").g1_x, dr(" << count_call << ").g1_o]=" << dynamic_basename << "_" << i + 1 << "(y, x, params, it_, 1);\n";
            mDynamicModelFile << "    residual(y_index_eq)=r;\n";
            break;
          case SOLVE_TWO_BOUNDARIES_COMPLETE:
          case SOLVE_TWO_BOUNDARIES_SIMPLE:
            int j;
            mDynamicModelFile << "    y_index_eq = [" << tmp_eq.str() << "];\n";
            tmp_i=block_triangular.ModelBlock->Block_List[i].Max_Lag_Endo+block_triangular.ModelBlock->Block_List[i].Max_Lead_Endo+1;
            mDynamicModelFile << "    y_index = [";
            for (j=0;j<tmp_i;j++)
              for (int ik=0;ik<block_triangular.ModelBlock->Block_List[i].Size;ik++)
sebastien's avatar
sebastien committed
1678
                {
ferhat's avatar
ferhat committed
1679
                  mDynamicModelFile << " " << block_triangular.ModelBlock->Block_List[i].Variable[ik]+1+j*symbol_table.endo_nbr();
sebastien's avatar
sebastien committed
1680
                }
ferhat's avatar
ferhat committed
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
            int tmp_ix=block_triangular.ModelBlock->Block_List[i].Max_Lag_Exo+block_triangular.ModelBlock->Block_List[i].Max_Lead_Exo+1;
            for (j=0;j<tmp_ix;j++)
              for (int ik=0;ik<block_triangular.ModelBlock->Block_List[i].nb_exo;ik++)
                mDynamicModelFile << " " << block_triangular.ModelBlock->Block_List[i].Exogenous[ik]+1+j*symbol_table.exo_nbr()+symbol_table.endo_nbr()*tmp_i;
            mDynamicModelFile << " ];\n";
            tmp.str("");
            tmp_eq.str("");
            //mDynamicModelFile << "    ga = [];\n";
            j = block_triangular.ModelBlock->Block_List[i].Size*(block_triangular.ModelBlock->Block_List[i].Max_Lag_Endo+block_triangular.ModelBlock->Block_List[i].Max_Lead_Endo+1)
                + block_triangular.ModelBlock->Block_List[i].nb_exo*(block_triangular.ModelBlock->Block_List[i].Max_Lag_Exo+block_triangular.ModelBlock->Block_List[i].Max_Lead_Exo+1);
            /*mDynamicModelFile << "    ga=spalloc(" << block_triangular.ModelBlock->Block_List[i].Size << ", " << j << ", " <<
              block_triangular.ModelBlock->Block_List[i].Size*j << ");\n";*/
            tmp_i=block_triangular.ModelBlock->Block_List[i].Max_Lag_Endo+block_triangular.ModelBlock->Block_List[i].Max_Lead_Endo+1;
            mDynamicModelFile << "    [r, dr(" << count_call << ").g1, dr(" << count_call << ").g2, dr(" << count_call << ").g3, b, dr(" << count_call << ").g1_x, dr(" << count_call << ").g1_o]=" << dynamic_basename << "_" <<  i + 1 << "(y, x, params, it_-" << max_lag << ", 1, " << max_lag << ", " << block_t