ModelTree.cc 55 KB
Newer Older
1
/*
sebastien's avatar
sebastien committed
2
 * Copyright (C) 2003-2010 Dynare Team
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
#include <cstdlib>
21
#include <cassert>
sebastien's avatar
sebastien committed
22
#include <cmath>
23
#include <iostream>
24
#include <fstream>
25
26

#include "ModelTree.hh"
27
28
29
30
31
32
33
34
35
#include "MinimumFeedbackSet.hh"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/strong_components.hpp>
#include <boost/graph/topological_sort.hpp>

using namespace boost;
using namespace MFS;

sebastien's avatar
sebastien committed
36
bool
37
ModelTree::computeNormalization(const jacob_map_t &contemporaneous_jacobian, bool verbose)
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
{
  const int n = equation_number();

  assert(n == symbol_table.endo_nbr());

  typedef adjacency_list<vecS, vecS, undirectedS> BipartiteGraph;

  /*
    Vertices 0 to n-1 are for endogenous (using type specific ID)
    Vertices n to 2*n-1 are for equations (using equation no.)
  */
  BipartiteGraph g(2 * n);

  // Fill in the graph
  set<pair<int, int> > endo;

54
  for (jacob_map_t::const_iterator it = contemporaneous_jacobian.begin(); it != contemporaneous_jacobian.end(); it++)
sebastien's avatar
sebastien committed
55
    add_edge(it->first.first + n, it->first.second, g);
56
57
58
59
60
61
62
63
64
65
66
67

  // Compute maximum cardinality matching
  vector<int> mate_map(2*n);

#if 1
  bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]);
#else // Alternative way to compute normalization, by giving an initial matching using natural normalizations
  fill(mate_map.begin(), mate_map.end(), graph_traits<BipartiteGraph>::null_vertex());

  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

68
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
69
70
71
72
73
74
75
76
77
78
79
80
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      int j = natural_endo2eqs.find(i)->second;

      put(&mate_map[0], i, n+j);
      put(&mate_map[0], n+j, i);
    }

  edmonds_augmenting_path_finder<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type> augmentor(g, &mate_map[0], get(vertex_index, g));
  bool not_maximum_yet = true;
81
  while (not_maximum_yet)
82
83
84
85
86
87
88
89
90
91
92
    {
      not_maximum_yet = augmentor.augment_matching();
    }
  augmentor.get_current_matching(&mate_map[0]);

  bool check = maximum_cardinality_matching_verifier<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type>::verify_matching(g, &mate_map[0], get(vertex_index, g));
#endif

  assert(check);

#ifdef DEBUG
93
  for (int i = 0; i < n; i++)
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
         << " matched with equation " << (mate_map[i]-n+1) << endl;
#endif

  // Create the resulting map, by copying the n first elements of mate_map, and substracting n to them
  endo2eq.resize(equation_number());
  transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), bind2nd(minus<int>(), n));

#ifdef DEBUG
  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

  int n1 = 0, n2 = 0;

108
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      n1++;

      pair<multimap<int, int>::const_iterator, multimap<int, int>::const_iterator> x = natural_endo2eqs.equal_range(i);
      if (find_if(x.first, x.second, compose1(bind2nd(equal_to<int>(), endo2eq[i]), select2nd<multimap<int, int>::value_type>())) == x.second)
        cout << "Natural normalization of variable " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
             << " not used." << endl;
      else
        n2++;
    }

  cout << "Used " << n2 << " natural normalizations out of " << n1 << ", for a total of " << n << " equations." << endl;
#endif

  // Check if all variables are normalized
  vector<int>::const_iterator it = find(mate_map.begin(), mate_map.begin() + n, graph_traits<BipartiteGraph>::null_vertex());
  if (it != mate_map.begin() + n)
sebastien's avatar
sebastien committed
129
130
131
132
133
134
135
136
    {
      if (verbose)
        cerr << "ERROR: Could not normalize the model. Variable "
             << symbol_table.getName(symbol_table.getID(eEndogenous, it - mate_map.begin()))
             << " is not in the maximum cardinality matching." << endl;
      check = false;
    }
  return check;
137
138
139
}

void
140
ModelTree::computeNonSingularNormalization(jacob_map_t &contemporaneous_jacobian, double cutoff, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian)
141
{
sebastien's avatar
sebastien committed
142
143
  bool check = false;

144
145
  cout << "Normalizing the model..." << endl;

sebastien's avatar
sebastien committed
146
  int n = equation_number();
147

sebastien's avatar
sebastien committed
148
149
  // compute the maximum value of each row of the contemporaneous Jacobian matrix
  //jacob_map normalized_contemporaneous_jacobian;
150
  jacob_map_t normalized_contemporaneous_jacobian(contemporaneous_jacobian);
sebastien's avatar
sebastien committed
151
  vector<double> max_val(n, 0.0);
152
  for (jacob_map_t::const_iterator iter = contemporaneous_jacobian.begin(); iter != contemporaneous_jacobian.end(); iter++)
sebastien's avatar
sebastien committed
153
154
    if (fabs(iter->second) > max_val[iter->first.first])
      max_val[iter->first.first] = fabs(iter->second);
155

156
  for (jacob_map_t::iterator iter = normalized_contemporaneous_jacobian.begin(); iter != normalized_contemporaneous_jacobian.end(); iter++)
sebastien's avatar
sebastien committed
157
158
159
160
161
162
163
    iter->second /= max_val[iter->first.first];

  //We start with the highest value of the cutoff and try to normalize the model
  double current_cutoff = 0.99999999;

  int suppressed = 0;
  while (!check && current_cutoff > 1e-19)
164
    {
165
      jacob_map_t tmp_normalized_contemporaneous_jacobian;
sebastien's avatar
sebastien committed
166
      int suppress = 0;
167
      for (jacob_map_t::iterator iter = normalized_contemporaneous_jacobian.begin(); iter != normalized_contemporaneous_jacobian.end(); iter++)
sebastien's avatar
sebastien committed
168
169
170
171
172
173
174
175
176
        if (fabs(iter->second) > max(current_cutoff, cutoff))
          tmp_normalized_contemporaneous_jacobian[make_pair(iter->first.first, iter->first.second)] = iter->second;
        else
          suppress++;

      if (suppress != suppressed)
        check = computeNormalization(tmp_normalized_contemporaneous_jacobian, false);
      suppressed = suppress;
      if (!check)
177
        {
sebastien's avatar
sebastien committed
178
179
180
181
          current_cutoff /= 2;
          // In this last case try to normalize with the complete jacobian
          if (current_cutoff <= 1e-19)
            check = computeNormalization(normalized_contemporaneous_jacobian, false);
182
183
184
        }
    }

sebastien's avatar
sebastien committed
185
  if (!check)
186
    {
sebastien's avatar
sebastien committed
187
188
      cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
      //if no non-singular normalization can be found, try to find a normalization even with a potential singularity
189
      jacob_map_t tmp_normalized_contemporaneous_jacobian;
190
      set<pair<int, int> > endo;
sebastien's avatar
sebastien committed
191
      for (int i = 0; i < n; i++)
192
193
194
        {
          endo.clear();
          equations[i]->collectEndogenous(endo);
195
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
sebastien's avatar
sebastien committed
196
            tmp_normalized_contemporaneous_jacobian[make_pair(i, it->first)] = 1;
197
        }
sebastien's avatar
sebastien committed
198
199
      check = computeNormalization(tmp_normalized_contemporaneous_jacobian, true);
      if (check)
200
        {
sebastien's avatar
sebastien committed
201
          // Update the jacobian matrix
202
          for (jacob_map_t::const_iterator it = tmp_normalized_contemporaneous_jacobian.begin(); it != tmp_normalized_contemporaneous_jacobian.end(); it++)
sebastien's avatar
sebastien committed
203
204
205
206
207
208
209
            {
              if (static_jacobian.find(make_pair(it->first.first, it->first.second)) == static_jacobian.end())
                static_jacobian[make_pair(it->first.first, it->first.second)] = 0;
              if (dynamic_jacobian.find(make_pair(0, make_pair(it->first.first, it->first.second))) == dynamic_jacobian.end())
                dynamic_jacobian[make_pair(0, make_pair(it->first.first, it->first.second))] = 0;
              if (contemporaneous_jacobian.find(make_pair(it->first.first, it->first.second)) == contemporaneous_jacobian.end())
                contemporaneous_jacobian[make_pair(it->first.first, it->first.second)] = 0;
210
211
              if (first_derivatives.find(make_pair(it->first.first, getDerivID(symbol_table.getID(eEndogenous, it->first.second), 0))) == first_derivatives.end())
                first_derivatives[make_pair(it->first.first, getDerivID(symbol_table.getID(eEndogenous, it->first.second), 0))] = Zero;
sebastien's avatar
sebastien committed
212
            }
213
214
        }
    }
sebastien's avatar
sebastien committed
215
216
217
218
219
220

  if (!check)
    {
      cerr << "No normalization could be computed. Aborting." << endl;
      exit(EXIT_FAILURE);
    }
221
222
223
224
225
}

void
ModelTree::computeNormalizedEquations(multimap<int, int> &endo2eqs) const
{
226
  for (int i = 0; i < equation_number(); i++)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    {
      VariableNode *lhs = dynamic_cast<VariableNode *>(equations[i]->get_arg1());
      if (lhs == NULL)
        continue;

      int symb_id = lhs->get_symb_id();
      if (symbol_table.getType(symb_id) != eEndogenous)
        continue;

      set<pair<int, int> > endo;
      equations[i]->get_arg2()->collectEndogenous(endo);
      if (endo.find(make_pair(symbol_table.getTypeSpecificID(symb_id), 0)) != endo.end())
        continue;

      endo2eqs.insert(make_pair(symbol_table.getTypeSpecificID(symb_id), i));
      cout << "Endogenous " << symbol_table.getName(symb_id) << " normalized in equation " << (i+1) << endl;
    }
}

void
247
ModelTree::evaluateAndReduceJacobian(const eval_context_t &eval_context, jacob_map_t &contemporaneous_jacobian, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian, double cutoff, bool verbose)
248
249
250
{
  int nb_elements_contemparenous_Jacobian = 0;
  set<pair<int, int> > jacobian_elements_to_delete;
251
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
252
253
254
255
256
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
257
          expr_t Id = it->second;
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
          int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          int var = symbol_table.getTypeSpecificID(symb);
          int lag = getLagByDerivID(deriv_id);
          double val = 0;
          try
            {
              val = Id->eval(eval_context);
            }
          catch (ExprNode::EvalException &e)
            {
              cerr << "ERROR: evaluation of Jacobian failed for equation " << eq+1 << " and variable " << symbol_table.getName(symb) << "(" << lag << ") [" << symb << "] !" << endl;
              Id->writeOutput(cerr, oMatlabDynamicModelSparse, temporary_terms);
              cerr << endl;
              exit(EXIT_FAILURE);
            }

          if (fabs(val) < cutoff)
            {
              if (verbose)
                cout << "the coefficient related to variable " << var << " with lag " << lag << " in equation " << eq << " is equal to " << val << " and is set to 0 in the incidence matrix (size=" << symbol_table.endo_nbr() << ")" << endl;
              jacobian_elements_to_delete.insert(make_pair(eq, deriv_id));
            }
          else
            {
              if (lag == 0)
                {
                  nb_elements_contemparenous_Jacobian++;
286
                  contemporaneous_jacobian[make_pair(eq, var)] = val;
287
288
289
290
291
292
293
294
295
296
297
                }
              if (static_jacobian.find(make_pair(eq, var)) != static_jacobian.end())
                static_jacobian[make_pair(eq, var)] += val;
              else
                static_jacobian[make_pair(eq, var)] = val;
              dynamic_jacobian[make_pair(lag, make_pair(eq, var))] = Id;
            }
        }
    }

  // Get rid of the elements of the Jacobian matrix below the cutoff
298
  for (set<pair<int, int> >::const_iterator it = jacobian_elements_to_delete.begin(); it != jacobian_elements_to_delete.end(); it++)
299
300
    first_derivatives.erase(*it);

301
  if (jacobian_elements_to_delete.size() > 0)
302
303
304
305
306
307
308
    {
      cout << jacobian_elements_to_delete.size() << " elements among " << first_derivatives.size() << " in the incidence matrices are below the cutoff (" << cutoff << ") and are discarded" << endl
           << "The contemporaneous incidence matrix has " << nb_elements_contemparenous_Jacobian << " elements" << endl;
    }
}

void
309
ModelTree::computePrologueAndEpilogue(const jacob_map_t &static_jacobian_arg, vector<int> &equation_reordered, vector<int> &variable_reordered)
310
{
311
  vector<int> eq2endo(equation_number(), 0);
312
313
314
315
  equation_reordered.resize(equation_number());
  variable_reordered.resize(equation_number());
  bool *IM;
  int n = equation_number();
316
  IM = (bool *) calloc(n*n, sizeof(bool));
317
  int i = 0;
318
  for (vector<int>::const_iterator it = endo2eq.begin(); it != endo2eq.end(); it++, i++)
319
320
321
322
323
    {
      eq2endo[*it] = i;
      equation_reordered[i] = i;
      variable_reordered[*it] = i;
    }
324
  for (jacob_map_t::const_iterator it = static_jacobian_arg.begin(); it != static_jacobian_arg.end(); it++)
325
326
327
328
329
330
331
332
333
    IM[it->first.first * n + endo2eq[it->first.second]] = true;
  bool something_has_been_done = true;
  prologue = 0;
  int k = 0;
  // Find the prologue equations and place first the AR(1) shock equations first
  while (something_has_been_done)
    {
      int tmp_prologue = prologue;
      something_has_been_done = false;
334
      for (int i = prologue; i < n; i++)
335
336
        {
          int nze = 0;
337
338
          for (int j = tmp_prologue; j < n; j++)
            if (IM[i * n + j])
339
              {
340
                nze++;
341
342
                k = j;
              }
343
          if (nze == 1)
344
            {
345
              for (int j = 0; j < n; j++)
346
347
348
349
350
351
352
353
                {
                  bool tmp_bool = IM[tmp_prologue * n + j];
                  IM[tmp_prologue * n + j] = IM[i * n + j];
                  IM[i * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[tmp_prologue];
              equation_reordered[tmp_prologue] = equation_reordered[i];
              equation_reordered[i] = tmp;
354
              for (int j = 0; j < n; j++)
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
                {
                  bool tmp_bool = IM[j * n + tmp_prologue];
                  IM[j * n + tmp_prologue] = IM[j * n + k];
                  IM[j * n + k] = tmp_bool;
                }
              tmp = variable_reordered[tmp_prologue];
              variable_reordered[tmp_prologue] = variable_reordered[k];
              variable_reordered[k] = tmp;
              tmp_prologue++;
              something_has_been_done = true;
            }
        }
      prologue = tmp_prologue;
    }

  something_has_been_done = true;
  epilogue = 0;
  // Find the epilogue equations
  while (something_has_been_done)
    {
      int tmp_epilogue = epilogue;
      something_has_been_done = false;
377
      for (int i = prologue; i < n - (int) epilogue; i++)
378
379
        {
          int nze = 0;
380
381
          for (int j = prologue; j < n - tmp_epilogue; j++)
            if (IM[j * n + i])
382
              {
383
                nze++;
384
385
                k = j;
              }
386
          if (nze == 1)
387
            {
388
              for (int j = 0; j < n; j++)
389
390
391
392
393
394
395
396
                {
                  bool tmp_bool = IM[(n - 1 - tmp_epilogue) * n + j];
                  IM[(n - 1 - tmp_epilogue) * n + j] = IM[k * n + j];
                  IM[k * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[n - 1 - tmp_epilogue];
              equation_reordered[n - 1 - tmp_epilogue] = equation_reordered[k];
              equation_reordered[k] = tmp;
397
              for (int j = 0; j < n; j++)
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
                {
                  bool tmp_bool = IM[j * n + n - 1 - tmp_epilogue];
                  IM[j * n + n - 1 - tmp_epilogue] = IM[j * n + i];
                  IM[j * n + i] = tmp_bool;
                }
              tmp = variable_reordered[n - 1 - tmp_epilogue];
              variable_reordered[n - 1 - tmp_epilogue] = variable_reordered[i];
              variable_reordered[i] = tmp;
              tmp_epilogue++;
              something_has_been_done = true;
            }
        }
      epilogue = tmp_epilogue;
    }
  free(IM);
}

415
equation_type_and_normalized_equation_t
416
ModelTree::equationTypeDetermination(const map<pair<int, pair<int, int> >, expr_t> &first_order_endo_derivatives, const vector<int> &Index_Var_IM, const vector<int> &Index_Equ_IM, int mfs) const
417
{
418
  expr_t lhs, rhs;
419
420
  BinaryOpNode *eq_node;
  EquationType Equation_Simulation_Type;
421
  equation_type_and_normalized_equation_t V_Equation_Simulation_Type(equations.size());
422
423
424
425
426
427
428
429
  for (unsigned int i = 0; i < equations.size(); i++)
    {
      int eq = Index_Equ_IM[i];
      int var = Index_Var_IM[i];
      eq_node = equations[eq];
      lhs = eq_node->get_arg1();
      rhs = eq_node->get_arg2();
      Equation_Simulation_Type = E_SOLVE;
430
431
      map<pair<int, pair<int, int> >, expr_t>::const_iterator derivative = first_order_endo_derivatives.find(make_pair(eq, make_pair(var, 0)));
      pair<bool, expr_t> res;
432
      if (derivative != first_order_endo_derivatives.end())
433
434
435
436
437
        {
          set<pair<int, int> > result;
          derivative->second->collectEndogenous(result);
          set<pair<int, int> >::const_iterator d_endo_variable = result.find(make_pair(var, 0));
          //Determine whether the equation could be evaluated rather than to be solved
438
          if (lhs->isVariableNodeEqualTo(eEndogenous, Index_Var_IM[i], 0) && derivative->second->isNumConstNodeEqualTo(1))
439
440
441
442
443
            {
              Equation_Simulation_Type = E_EVALUATE;
            }
          else
            {
444
              vector<pair<int, pair<expr_t, expr_t> > > List_of_Op_RHS;
445
              res =  equations[eq]->normalizeEquation(var, List_of_Op_RHS);
446
              if (mfs == 2)
447
                {
448
                  if (d_endo_variable == result.end() && res.second)
449
450
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
451
              else if (mfs == 3)
452
                {
453
                  if (res.second) // The equation could be solved analytically
454
455
456
457
458
459
460
461
462
463
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
            }
        }
      V_Equation_Simulation_Type[eq] = make_pair(Equation_Simulation_Type, dynamic_cast<BinaryOpNode *>(res.second));
    }
  return (V_Equation_Simulation_Type);
}

void
464
ModelTree::getVariableLeadLagByBlock(const dynamic_jacob_map_t &dynamic_jacobian, const vector<int> &components_set, int nb_blck_sim, lag_lead_vector_t &equation_lead_lag, lag_lead_vector_t &variable_lead_lag, const vector<int> &equation_reordered, const vector<int> &variable_reordered) const
465
466
{
  int nb_endo = symbol_table.endo_nbr();
467
468
  variable_lead_lag = lag_lead_vector_t(nb_endo, make_pair(0, 0));
  equation_lead_lag = lag_lead_vector_t(nb_endo, make_pair(0, 0));
469
470
471
472
473
474
475
476
  vector<int> variable_blck(nb_endo), equation_blck(nb_endo);
  for (int i = 0; i < nb_endo; i++)
    {
      if (i < prologue)
        {
          variable_blck[variable_reordered[i]] = i;
          equation_blck[equation_reordered[i]] = i;
        }
477
      else if (i < (int) components_set.size() + prologue)
478
479
480
481
482
483
484
485
486
487
        {
          variable_blck[variable_reordered[i]] = components_set[i-prologue] + prologue;
          equation_blck[equation_reordered[i]] = components_set[i-prologue] + prologue;
        }
      else
        {
          variable_blck[variable_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
          equation_blck[equation_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
        }
    }
488
  for (dynamic_jacob_map_t::const_iterator it = dynamic_jacobian.begin(); it != dynamic_jacobian.end(); it++)
489
490
    {
      int lag = it->first.first;
491
      int j_1 = it->first.second.first;
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
      int i_1 = it->first.second.second;
      if (variable_blck[i_1] == equation_blck[j_1])
        {
          if (lag > variable_lead_lag[i_1].second)
            variable_lead_lag[i_1] = make_pair(variable_lead_lag[i_1].first, lag);
          if (lag < -variable_lead_lag[i_1].first)
            variable_lead_lag[i_1] = make_pair(-lag, variable_lead_lag[i_1].second);
          if (lag > equation_lead_lag[j_1].second)
            equation_lead_lag[j_1] = make_pair(equation_lead_lag[j_1].first, lag);
          if (lag < -equation_lead_lag[j_1].first)
            equation_lead_lag[j_1] = make_pair(-lag, equation_lead_lag[j_1].second);
        }
    }
}

void
508
ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(const jacob_map_t &static_jacobian, const dynamic_jacob_map_t &dynamic_jacobian, vector<int> &equation_reordered, vector<int> &variable_reordered, vector<pair<int, int> > &blocks, const equation_type_and_normalized_equation_t &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs, vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered, lag_lead_vector_t &equation_lag_lead, lag_lead_vector_t &variable_lag_lead, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed) const
509
510
511
512
513
514
515
516
517
{
  int nb_var = variable_reordered.size();
  int n = nb_var - prologue - epilogue;
  typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;

  GraphvizDigraph G2(n);

  vector<int> reverse_equation_reordered(nb_var), reverse_variable_reordered(nb_var);

518
  for (int i = 0; i < nb_var; i++)
519
520
521
522
523
    {
      reverse_equation_reordered[equation_reordered[i]] = i;
      reverse_variable_reordered[variable_reordered[i]] = i;
    }

524
  for (jacob_map_t::const_iterator it = static_jacobian.begin(); it != static_jacobian.end(); it++)
525
526
527
528
    if (reverse_equation_reordered[it->first.first] >= prologue && reverse_equation_reordered[it->first.first] < nb_var - epilogue
        && reverse_variable_reordered[it->first.second] >= prologue && reverse_variable_reordered[it->first.second] < nb_var - epilogue
        && it->first.first != endo2eq[it->first.second])
      add_edge(reverse_equation_reordered[it->first.first]-prologue, reverse_equation_reordered[endo2eq[it->first.second]]-prologue, G2);
529
530
531
532
533
534
535
536
537
538
539
540

  vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2));

  // Compute strongly connected components
  int num = strong_components(G2, &endo2block[0]);

  blocks = vector<pair<int, int> >(num, make_pair(0, 0));

  // Create directed acyclic graph associated to the strongly connected components
  typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;
  DirectedGraph dag(num);

541
  for (unsigned int i = 0; i < num_vertices(G2); i++)
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
    {
      GraphvizDigraph::out_edge_iterator it_out, out_end;
      GraphvizDigraph::vertex_descriptor vi = vertex(i, G2);
      for (tie(it_out, out_end) = out_edges(vi, G2); it_out != out_end; ++it_out)
        {
          int t_b = endo2block[target(*it_out, G2)];
          int s_b = endo2block[source(*it_out, G2)];
          if (s_b != t_b)
            add_edge(s_b, t_b, dag);
        }
    }

  // Compute topological sort of DAG (ordered list of unordered SCC)
  deque<int> ordered2unordered;
  topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order

  // Construct mapping from unordered SCC to ordered SCC
  vector<int> unordered2ordered(num);
560
  for (int i = 0; i < num; i++)
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    unordered2ordered[ordered2unordered[i]] = i;

  //This vector contains for each block:
  //   - first set = equations belonging to the block,
  //   - second set = the feeback variables,
  //   - third vector = the reordered non-feedback variables.
  vector<pair<set<int>, pair<set<int>, vector<int> > > > components_set(num);
  for (unsigned int i = 0; i < endo2block.size(); i++)
    {
      endo2block[i] = unordered2ordered[endo2block[i]];
      blocks[endo2block[i]].first++;
      components_set[endo2block[i]].first.insert(i);
    }

575
  getVariableLeadLagByBlock(dynamic_jacobian, endo2block, num, equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);
576
577
578
579

  vector<int> tmp_equation_reordered(equation_reordered), tmp_variable_reordered(variable_reordered);
  int order = prologue;
  //Add a loop on vertices which could not be normalized or vertices related to lead variables => force those vertices to belong to the feedback set
580
  if (select_feedback_variable)
581
582
583
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE
584
585
586
587
588
            || variable_lag_lead[variable_reordered[i+prologue]].second > 0
            || variable_lag_lead[variable_reordered[i+prologue]].first > 0
            || equation_lag_lead[equation_reordered[i+prologue]].second > 0
            || equation_lag_lead[equation_reordered[i+prologue]].first > 0
            || mfs == 0)
589
590
591
592
593
594
595
596
          add_edge(i, i, G2);
    }
  else
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE || mfs == 0)
          add_edge(i, i, G2);
    }
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
  //Determines the dynamic structure of each equation
  n_static = vector<unsigned int>(prologue+num+epilogue, 0);
  n_forward = vector<unsigned int>(prologue+num+epilogue, 0);
  n_backward = vector<unsigned int>(prologue+num+epilogue, 0);
  n_mixed = vector<unsigned int>(prologue+num+epilogue, 0);

  for (int i = 0; i < prologue; i++)
    {
      if      (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
        n_mixed[i]++;
      else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
        n_forward[i]++;
      else if (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
        n_backward[i]++;
      else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
        n_static[i]++;
    }
614
615
616
617
618
619
  //For each block, the minimum set of feedback variable is computed
  // and the non-feedback variables are reordered to get
  // a sub-recursive block without feedback variables

  for (int i = 0; i < num; i++)
    {
620
      AdjacencyList_t G = GraphvizDigraph_2_AdjacencyList(G2, components_set[i].first);
621
622
      set<int> feed_back_vertices;
      //Print(G);
623
624
      AdjacencyList_t G1 = Minimal_set_of_feedback_vertex(feed_back_vertices, G);
      property_map<AdjacencyList_t, vertex_index_t>::type v_index = get(vertex_index, G);
625
626
627
628
629
630
      components_set[i].second.first = feed_back_vertices;
      blocks[i].second = feed_back_vertices.size();
      vector<int> Reordered_Vertice;
      Reorder_the_recursive_variables(G, feed_back_vertices, Reordered_Vertice);

      //First we have the recursive equations conditional on feedback variables
631
      for (int j = 0; j < 4; j++)
632
        {
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
          for (vector<int>::iterator its = Reordered_Vertice.begin(); its != Reordered_Vertice.end(); its++)
            {
              bool something_done = false;
              if      (j == 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second != 0)
                {
                  n_mixed[prologue+i]++;
                  something_done = true;
                }
              else if (j == 1 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second != 0)
                {
                  n_forward[prologue+i]++;
                  something_done = true;
                }
              else if (j == 2 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second == 0)
                {
                  n_backward[prologue+i]++;
                  something_done = true;
                }
              else if (j == 3 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second == 0)
                {
                  n_static[prologue+i]++;
                  something_done = true;
                }
              if (something_done)
                {
                  equation_reordered[order] = tmp_equation_reordered[*its+prologue];
                  variable_reordered[order] = tmp_variable_reordered[*its+prologue];
                  order++;
                }
            }
663
664
665
        }
      components_set[i].second.second = Reordered_Vertice;
      //Second we have the equations related to the feedback variables
666
      for (int j = 0; j < 4; j++)
667
        {
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
          for (set<int>::iterator its = feed_back_vertices.begin(); its != feed_back_vertices.end(); its++)
            {
              bool something_done = false;
              if      (j == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second != 0)
                {
                  n_mixed[prologue+i]++;
                  something_done = true;
                }
              else if (j == 1 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second != 0)
                {
                  n_forward[prologue+i]++;
                  something_done = true;
                }
              else if (j == 2 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second == 0)
                {
                  n_backward[prologue+i]++;
                  something_done = true;
                }
              else if (j == 3 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second == 0)
                {
                  n_static[prologue+i]++;
                  something_done = true;
                }
              if (something_done)
                {
                  equation_reordered[order] = tmp_equation_reordered[v_index[vertex(*its, G)]+prologue];
                  variable_reordered[order] = tmp_variable_reordered[v_index[vertex(*its, G)]+prologue];
                  order++;
                }
            }
698
699
        }
    }
700
701
702
703
704
705
706
707
708
709
710
711
712

  for (int i = 0; i < epilogue; i++)
    {
      if      (variable_lag_lead[tmp_variable_reordered[prologue+num+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+num+i]].second != 0)
        n_mixed[prologue+num+i]++;
      else if (variable_lag_lead[tmp_variable_reordered[prologue+num+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+num+i]].second != 0)
        n_forward[prologue+num+i]++;
      else if (variable_lag_lead[tmp_variable_reordered[prologue+num+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+num+i]].second == 0)
        n_backward[prologue+num+i]++;
      else if (variable_lag_lead[tmp_variable_reordered[prologue+num+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+num+i]].second == 0)
        n_static[prologue+num+i]++;
    }

713
714
  inv_equation_reordered = vector<int>(nb_var);
  inv_variable_reordered = vector<int>(nb_var);
715
  for (int i = 0; i < nb_var; i++)
716
717
718
719
720
721
    {
      inv_variable_reordered[variable_reordered[i]] = i;
      inv_equation_reordered[equation_reordered[i]] = i;
    }
}

722
void
723
ModelTree::printBlockDecomposition(const vector<pair<int, int> > &blocks) const
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
{
  int largest_block = 0;
  int Nb_SimulBlocks = 0;
  int Nb_feedback_variable = 0;
  unsigned int Nb_TotalBlocks = getNbBlocks();
  for (unsigned int block = 0; block < Nb_TotalBlocks; block++)
    {
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
        {
          Nb_SimulBlocks++;
          int size = getBlockSize(block);
          if (size > largest_block)
            {
              largest_block = size;
              Nb_feedback_variable = blocks[Nb_SimulBlocks-1].second;
            }
        }
    }

  int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
  cout << Nb_TotalBlocks << " block(s) found:" << endl
       << "  " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks << " simultaneous block(s)." << endl
       << "  the largest simultaneous block has " << largest_block << " equation(s)" << endl
       << "                                 and " << Nb_feedback_variable << " feedback variable(s)." << endl;
}

751
block_type_firstequation_size_mfs_t
752
ModelTree::reduceBlocksAndTypeDetermination(const dynamic_jacob_map_t &dynamic_jacobian, vector<pair<int, int> > &blocks, const equation_type_and_normalized_equation_t &Equation_Type, const vector<int> &variable_reordered, const vector<int> &equation_reordered, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed, vector<pair< pair<int, int>, pair<int,int> > > &block_col_type)
753
754
755
756
757
{
  int i = 0;
  int count_equ = 0, blck_count_simult = 0;
  int Blck_Size, MFS_Size;
  int Lead, Lag;
758
  block_type_firstequation_size_mfs_t block_type_size_mfs;
759
760
  BlockSimulationType Simulation_Type, prev_Type = UNKNOWN;
  int eq = 0;
761
762
763
764
  unsigned int l_n_static = 0;
  unsigned int l_n_forward = 0;
  unsigned int l_n_backward = 0;
  unsigned int l_n_mixed = 0;
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
  for (i = 0; i < prologue+(int) blocks.size()+epilogue; i++)
    {
      int first_count_equ = count_equ;
      if (i < prologue)
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }
      else if (i < prologue+(int) blocks.size())
        {
          Blck_Size = blocks[blck_count_simult].first;
          MFS_Size = blocks[blck_count_simult].second;
          blck_count_simult++;
        }
      else if (i < prologue+(int) blocks.size()+epilogue)
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }

      Lag = Lead = 0;
      set<pair<int, int> > endo;
787
      for (count_equ  = first_count_equ; count_equ  < Blck_Size+first_count_equ; count_equ++)
788
789
790
791
792
793
794
795
        {
          endo.clear();
          equations[equation_reordered[count_equ]]->collectEndogenous(endo);
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
            {
              int curr_variable = it->first;
              int curr_lag = it->second;
              vector<int>::const_iterator it = find(variable_reordered.begin()+first_count_equ, variable_reordered.begin()+(first_count_equ+Blck_Size), curr_variable);
796
              if (it != variable_reordered.begin()+(first_count_equ+Blck_Size))
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
                if (dynamic_jacobian.find(make_pair(curr_lag, make_pair(equation_reordered[count_equ], curr_variable))) != dynamic_jacobian.end())
                  {
                    if (curr_lag > Lead)
                      Lead = curr_lag;
                    else if (-curr_lag > Lag)
                      Lag = -curr_lag;
                  }
            }
        }
      if ((Lag > 0) && (Lead > 0))
        {
          if (Blck_Size == 1)
            Simulation_Type = SOLVE_TWO_BOUNDARIES_SIMPLE;
          else
            Simulation_Type = SOLVE_TWO_BOUNDARIES_COMPLETE;
        }
      else if (Blck_Size > 1)
        {
          if (Lead > 0)
            Simulation_Type = SOLVE_BACKWARD_COMPLETE;
          else
            Simulation_Type = SOLVE_FORWARD_COMPLETE;
        }
      else
        {
          if (Lead > 0)
            Simulation_Type = SOLVE_BACKWARD_SIMPLE;
          else
            Simulation_Type = SOLVE_FORWARD_SIMPLE;
        }
827
828
829
830
      l_n_static = n_static[i];
      l_n_forward = n_forward[i];
      l_n_backward = n_backward[i];
      l_n_mixed = n_mixed[i];
831
832
      if (Blck_Size == 1)
        {
833
          if (Equation_Type[equation_reordered[eq]].first == E_EVALUATE || Equation_Type[equation_reordered[eq]].first == E_EVALUATE_S)
834
835
836
837
838
839
840
841
            {
              if (Simulation_Type == SOLVE_BACKWARD_SIMPLE)
                Simulation_Type = EVALUATE_BACKWARD;
              else if (Simulation_Type == SOLVE_FORWARD_SIMPLE)
                Simulation_Type = EVALUATE_FORWARD;
            }
          if (i > 0)
            {
842
843
              if ((prev_Type ==  EVALUATE_FORWARD && Simulation_Type == EVALUATE_FORWARD)
                  || (prev_Type ==  EVALUATE_BACKWARD && Simulation_Type == EVALUATE_BACKWARD))
844
845
846
847
848
                {
                  //merge the current block with the previous one
                  BlockSimulationType c_Type = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.first;
                  int c_Size = (block_type_size_mfs[block_type_size_mfs.size()-1]).second.first;
                  int first_equation = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.second;
849
850
                  c_Size++;
                  block_type_size_mfs[block_type_size_mfs.size()-1] = make_pair(make_pair(c_Type, first_equation), make_pair(c_Size, c_Size));
851
                  if (block_lag_lead[block_type_size_mfs.size()-1].first > Lag)
852
                    Lag = block_lag_lead[block_type_size_mfs.size()-1].first;
853
                  if (block_lag_lead[block_type_size_mfs.size()-1].second > Lead)
854
855
                    Lead = block_lag_lead[block_type_size_mfs.size()-1].second;
                  block_lag_lead[block_type_size_mfs.size()-1] = make_pair(Lag, Lead);
856
857
                  pair< pair< unsigned int, unsigned int>, pair<unsigned int, unsigned int> > tmp = block_col_type[block_col_type.size()-1];
                  block_col_type[block_col_type.size()-1] = make_pair( make_pair(tmp.first.first+l_n_static, tmp.first.second+l_n_forward), make_pair(tmp.second.first+l_n_backward, tmp.second.second+l_n_mixed) );
858
859
860
861
862
                }
              else
                {
                  block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
                  block_lag_lead.push_back(make_pair(Lag, Lead));
863
                  block_col_type.push_back(make_pair( make_pair(l_n_static, l_n_forward), make_pair(l_n_backward, l_n_mixed) ));
864
865
866
867
868
869
                }
            }
          else
            {
              block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
              block_lag_lead.push_back(make_pair(Lag, Lead));
870
              block_col_type.push_back(make_pair( make_pair(l_n_static, l_n_forward), make_pair(l_n_backward, l_n_mixed) ));
871
872
873
874
875
876
            }
        }
      else
        {
          block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
          block_lag_lead.push_back(make_pair(Lag, Lead));
877
          block_col_type.push_back(make_pair( make_pair(l_n_static, l_n_forward), make_pair(l_n_backward, l_n_mixed) ));
878
879
880
881
882
883
884
885
        }
      prev_Type = Simulation_Type;
      eq += Blck_Size;
    }
  return (block_type_size_mfs);
}

vector<bool>
886
ModelTree::BlockLinear(const blocks_derivatives_t &blocks_derivatives, const vector<int> &variable_reordered) const
887
888
889
{
  unsigned int nb_blocks = getNbBlocks();
  vector<bool> blocks_linear(nb_blocks, true);
890
  for (unsigned int block = 0; block < nb_blocks; block++)
891
892
893
    {
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      int block_size = getBlockSize(block);
894
      block_derivatives_equation_variable_laglead_nodeid_t derivatives_block = blocks_derivatives[block];
895
      int first_variable_position = getBlockFirstEquation(block);
896
      if (simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
897
        {
898
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
899
900
901
902
            {
              int lag = it->second.first;
              if (lag == 0)
                {
903
                  expr_t Id = it->second.second;
904
905
906
907
                  set<pair<int, int> > endogenous;
                  Id->collectEndogenous(endogenous);
                  if (endogenous.size() > 0)
                    {
908
                      for (int l = 0; l < block_size; l++)
909
910
911
912
913
914
915
916
917
918
919
                        {
                          if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], 0)) != endogenous.end())
                            {
                              blocks_linear[block] = false;
                              goto the_end;
                            }
                        }
                    }
                }
            }
        }
920
      else if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
921
        {
922
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
923
924
            {
              int lag = it->second.first;
925
              expr_t Id = it->second.second; //
926
927
928
929
              set<pair<int, int> > endogenous;
              Id->collectEndogenous(endogenous);
              if (endogenous.size() > 0)
                {
930
                  for (int l = 0; l < block_size; l++)
931
932
933
934
935
936
937
938
939
940
                    {
                      if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], lag)) != endogenous.end())
                        {
                          blocks_linear[block] = false;
                          goto the_end;
                        }
                    }
                }
            }
        }
941
942
    the_end:
      ;
943
    }
944
  return (blocks_linear);
945
946
}

947
ModelTree::ModelTree(SymbolTable &symbol_table_arg,
948
949
950
                     NumericalConstants &num_constants_arg,
                     ExternalFunctionsTable &external_functions_table_arg) :
  DataTree(symbol_table_arg, num_constants_arg, external_functions_table_arg)
951
{
952
  for (int i = 0; i < 3; i++)
953
    NNZDerivatives[i] = 0;
954
955
956
957
}

int
ModelTree::equation_number() const
958
{
959
  return (equations.size());
960
}
961
962
963
964

void
ModelTree::writeDerivative(ostream &output, int eq, int symb_id, int lag,
                           ExprNodeOutputType output_type,
965
                           const temporary_terms_t &temporary_terms) const
966
{
967
  first_derivatives_t::const_iterator it = first_derivatives.find(make_pair(eq, getDerivID(symb_id, lag)));
968
969
970
971
972
  if (it != first_derivatives.end())
    (it->second)->writeOutput(output, output_type, temporary_terms);
  else
    output << 0;
}
973
974

void
975
ModelTree::computeJacobian(const set<int> &vars)
976
{
977
978
  for (set<int>::const_iterator it = vars.begin();
       it != vars.end(); it++)
979
    for (int eq = 0; eq < (int) equations.size(); eq++)
980
      {
981
        expr_t d1 = equations[eq]->getDerivative(*it);
982
983
        if (d1 == Zero)
          continue;
984
        first_derivatives[make_pair(eq, *it)] = d1;
985
        ++NNZDerivatives[0];
986
      }
987
}
988

989
990
991
void
ModelTree::computeHessian(const set<int> &vars)
{
992
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
993
       it != first_derivatives.end(); it++)
994
    {
995
996
      int eq = it->first.first;
      int var1 = it->first.second;
997
      expr_t d1 = it->second;
998
999

      // Store only second derivatives with var2 <= var1
1000
      for (set<int>::const_iterator it2 = vars.begin();