ModelTree.cc 69.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2003-2016 Dynare Team
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

20
#include <cstdlib>
21
#include <cassert>
sebastien's avatar
sebastien committed
22
#include <cmath>
23
#include <iostream>
24
#include <fstream>
25
26

#include "ModelTree.hh"
27
28
29
30
31
32
33
34
35
#include "MinimumFeedbackSet.hh"
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/max_cardinality_matching.hpp>
#include <boost/graph/strong_components.hpp>
#include <boost/graph/topological_sort.hpp>

using namespace boost;
using namespace MFS;

sebastien's avatar
sebastien committed
36
bool
37
ModelTree::computeNormalization(const jacob_map_t &contemporaneous_jacobian, bool verbose)
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
{
  const int n = equation_number();

  assert(n == symbol_table.endo_nbr());

  typedef adjacency_list<vecS, vecS, undirectedS> BipartiteGraph;

  /*
    Vertices 0 to n-1 are for endogenous (using type specific ID)
    Vertices n to 2*n-1 are for equations (using equation no.)
  */
  BipartiteGraph g(2 * n);

  // Fill in the graph
  set<pair<int, int> > endo;

54
  for (jacob_map_t::const_iterator it = contemporaneous_jacobian.begin(); it != contemporaneous_jacobian.end(); it++)
sebastien's avatar
sebastien committed
55
    add_edge(it->first.first + n, it->first.second, g);
56
57
58
59
60
61
62
63
64
65
66
67

  // Compute maximum cardinality matching
  vector<int> mate_map(2*n);

#if 1
  bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]);
#else // Alternative way to compute normalization, by giving an initial matching using natural normalizations
  fill(mate_map.begin(), mate_map.end(), graph_traits<BipartiteGraph>::null_vertex());

  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

68
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
69
70
71
72
73
74
75
76
77
78
79
80
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      int j = natural_endo2eqs.find(i)->second;

      put(&mate_map[0], i, n+j);
      put(&mate_map[0], n+j, i);
    }

  edmonds_augmenting_path_finder<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type> augmentor(g, &mate_map[0], get(vertex_index, g));
  bool not_maximum_yet = true;
81
  while (not_maximum_yet)
82
83
84
85
86
87
88
89
90
91
92
    {
      not_maximum_yet = augmentor.augment_matching();
    }
  augmentor.get_current_matching(&mate_map[0]);

  bool check = maximum_cardinality_matching_verifier<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type>::verify_matching(g, &mate_map[0], get(vertex_index, g));
#endif

  assert(check);

#ifdef DEBUG
93
  for (int i = 0; i < n; i++)
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
         << " matched with equation " << (mate_map[i]-n+1) << endl;
#endif

  // Create the resulting map, by copying the n first elements of mate_map, and substracting n to them
  endo2eq.resize(equation_number());
  transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), bind2nd(minus<int>(), n));

#ifdef DEBUG
  multimap<int, int> natural_endo2eqs;
  computeNormalizedEquations(natural_endo2eqs);

  int n1 = 0, n2 = 0;

108
  for (int i = 0; i < symbol_table.endo_nbr(); i++)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    {
      if (natural_endo2eqs.count(i) == 0)
        continue;

      n1++;

      pair<multimap<int, int>::const_iterator, multimap<int, int>::const_iterator> x = natural_endo2eqs.equal_range(i);
      if (find_if(x.first, x.second, compose1(bind2nd(equal_to<int>(), endo2eq[i]), select2nd<multimap<int, int>::value_type>())) == x.second)
        cout << "Natural normalization of variable " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
             << " not used." << endl;
      else
        n2++;
    }

  cout << "Used " << n2 << " natural normalizations out of " << n1 << ", for a total of " << n << " equations." << endl;
#endif

  // Check if all variables are normalized
  vector<int>::const_iterator it = find(mate_map.begin(), mate_map.begin() + n, graph_traits<BipartiteGraph>::null_vertex());
  if (it != mate_map.begin() + n)
sebastien's avatar
sebastien committed
129
130
131
132
133
134
135
136
    {
      if (verbose)
        cerr << "ERROR: Could not normalize the model. Variable "
             << symbol_table.getName(symbol_table.getID(eEndogenous, it - mate_map.begin()))
             << " is not in the maximum cardinality matching." << endl;
      check = false;
    }
  return check;
137
138
139
}

void
140
ModelTree::computeNonSingularNormalization(jacob_map_t &contemporaneous_jacobian, double cutoff, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian)
141
{
sebastien's avatar
sebastien committed
142
143
  bool check = false;

144
145
  cout << "Normalizing the model..." << endl;

sebastien's avatar
sebastien committed
146
  int n = equation_number();
147

sebastien's avatar
sebastien committed
148
149
  // compute the maximum value of each row of the contemporaneous Jacobian matrix
  //jacob_map normalized_contemporaneous_jacobian;
150
  jacob_map_t normalized_contemporaneous_jacobian(contemporaneous_jacobian);
sebastien's avatar
sebastien committed
151
  vector<double> max_val(n, 0.0);
152
  for (jacob_map_t::const_iterator iter = contemporaneous_jacobian.begin(); iter != contemporaneous_jacobian.end(); iter++)
sebastien's avatar
sebastien committed
153
154
    if (fabs(iter->second) > max_val[iter->first.first])
      max_val[iter->first.first] = fabs(iter->second);
155

156
  for (jacob_map_t::iterator iter = normalized_contemporaneous_jacobian.begin(); iter != normalized_contemporaneous_jacobian.end(); iter++)
sebastien's avatar
sebastien committed
157
158
159
160
161
162
163
    iter->second /= max_val[iter->first.first];

  //We start with the highest value of the cutoff and try to normalize the model
  double current_cutoff = 0.99999999;

  int suppressed = 0;
  while (!check && current_cutoff > 1e-19)
164
    {
165
      jacob_map_t tmp_normalized_contemporaneous_jacobian;
sebastien's avatar
sebastien committed
166
      int suppress = 0;
167
      for (jacob_map_t::iterator iter = normalized_contemporaneous_jacobian.begin(); iter != normalized_contemporaneous_jacobian.end(); iter++)
sebastien's avatar
sebastien committed
168
169
170
171
172
173
174
175
176
        if (fabs(iter->second) > max(current_cutoff, cutoff))
          tmp_normalized_contemporaneous_jacobian[make_pair(iter->first.first, iter->first.second)] = iter->second;
        else
          suppress++;

      if (suppress != suppressed)
        check = computeNormalization(tmp_normalized_contemporaneous_jacobian, false);
      suppressed = suppress;
      if (!check)
177
        {
sebastien's avatar
sebastien committed
178
179
180
181
          current_cutoff /= 2;
          // In this last case try to normalize with the complete jacobian
          if (current_cutoff <= 1e-19)
            check = computeNormalization(normalized_contemporaneous_jacobian, false);
182
183
184
        }
    }

sebastien's avatar
sebastien committed
185
  if (!check)
186
    {
sebastien's avatar
sebastien committed
187
188
      cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
      //if no non-singular normalization can be found, try to find a normalization even with a potential singularity
189
      jacob_map_t tmp_normalized_contemporaneous_jacobian;
190
      set<pair<int, int> > endo;
sebastien's avatar
sebastien committed
191
      for (int i = 0; i < n; i++)
192
193
194
        {
          endo.clear();
          equations[i]->collectEndogenous(endo);
195
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
sebastien's avatar
sebastien committed
196
            tmp_normalized_contemporaneous_jacobian[make_pair(i, it->first)] = 1;
197
        }
sebastien's avatar
sebastien committed
198
199
      check = computeNormalization(tmp_normalized_contemporaneous_jacobian, true);
      if (check)
200
        {
sebastien's avatar
sebastien committed
201
          // Update the jacobian matrix
202
          for (jacob_map_t::const_iterator it = tmp_normalized_contemporaneous_jacobian.begin(); it != tmp_normalized_contemporaneous_jacobian.end(); it++)
sebastien's avatar
sebastien committed
203
204
205
206
207
208
209
            {
              if (static_jacobian.find(make_pair(it->first.first, it->first.second)) == static_jacobian.end())
                static_jacobian[make_pair(it->first.first, it->first.second)] = 0;
              if (dynamic_jacobian.find(make_pair(0, make_pair(it->first.first, it->first.second))) == dynamic_jacobian.end())
                dynamic_jacobian[make_pair(0, make_pair(it->first.first, it->first.second))] = 0;
              if (contemporaneous_jacobian.find(make_pair(it->first.first, it->first.second)) == contemporaneous_jacobian.end())
                contemporaneous_jacobian[make_pair(it->first.first, it->first.second)] = 0;
210
211
212
213
214
215
216
217
218
219
220
              try
                {
                  if (first_derivatives.find(make_pair(it->first.first, getDerivID(symbol_table.getID(eEndogenous, it->first.second), 0))) == first_derivatives.end())
                    first_derivatives[make_pair(it->first.first, getDerivID(symbol_table.getID(eEndogenous, it->first.second), 0))] = Zero;
                }
              catch(DataTree::UnknownDerivIDException &e)
                {
                  cerr << "The variable " << symbol_table.getName(symbol_table.getID(eEndogenous, it->first.second))
                       << " does not appear at the current period (i.e. with no lead and no lag); this case is not handled by the 'block' option of the 'model' block." << endl;
                  exit(EXIT_FAILURE);
                }
sebastien's avatar
sebastien committed
221
            }
222
223
        }
    }
sebastien's avatar
sebastien committed
224
225
226
227
228
229

  if (!check)
    {
      cerr << "No normalization could be computed. Aborting." << endl;
      exit(EXIT_FAILURE);
    }
230
231
}

232
233
234
235
236
237
238
239
240
241
242
void
ModelTree::computeXrefs()
{
  int i = 0;
  for (vector<BinaryOpNode *>::iterator it = equations.begin();
       it != equations.end(); it++)
    {
      ExprNode::EquationInfo ei;
      (*it)->computeXrefs(ei);
      xrefs[i++] = ei;
    }
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

  i = 0;
  for (map<int, ExprNode::EquationInfo>::const_iterator it = xrefs.begin();
       it != xrefs.end(); it++, i++)
    {
      computeRevXref(xref_param, it->second.param, i);
      computeRevXref(xref_endo, it->second.endo, i);
      computeRevXref(xref_exo, it->second.exo, i);
      computeRevXref(xref_exo_det, it->second.exo_det, i);
    }
}

void
ModelTree::computeRevXref(map<int, set<int> > &xrefset, const set<int> &eiref, int eqn)
{
  for (set<int>::const_iterator it1 = eiref.begin();
       it1 != eiref.end(); it1++)
    {
      set<int> eq;
      if (xrefset.find(symbol_table.getTypeSpecificID(*it1)) != xrefset.end())
        eq = xrefset[symbol_table.getTypeSpecificID(*it1)];
      eq.insert(eqn);
      xrefset[symbol_table.getTypeSpecificID(*it1)] = eq;
    }
267
268
269
270
271
}

void
ModelTree::writeXrefs(ostream &output) const
{
272
273
274
275
276
277
278
279
280
  output << "M_.xref1.param = cell(1, M_.eq_nbr);" << endl
         << "M_.xref1.endo = cell(1, M_.eq_nbr);" << endl
         << "M_.xref1.exo = cell(1, M_.eq_nbr);" << endl
         << "M_.xref1.exo_det = cell(1, M_.eq_nbr);" << endl
         << "M_.xref2.param = cell(1, M_.eq_nbr);" << endl
         << "M_.xref2.endo = cell(1, M_.eq_nbr);" << endl
         << "M_.xref2.exo = cell(1, M_.eq_nbr);" << endl
         << "M_.xref2.exo_det = cell(1, M_.eq_nbr);" << endl;
  int i = 1;
281
  for (map<int, ExprNode::EquationInfo>::const_iterator it = xrefs.begin();
282
       it != xrefs.end(); it++, i++)
283
    {
284
      output << "M_.xref1.param{" << i << "} = [ ";
285
286
287
288
289
      for (set<int>::const_iterator it1 = it->second.param.begin();
           it1 != it->second.param.end(); it1++)
        output << symbol_table.getTypeSpecificID(*it1) + 1 << " ";
      output << "];" << endl;

290
      output << "M_.xref1.endo{" << i << "} = [ ";
291
292
293
294
295
      for (set<int>::const_iterator it1 = it->second.endo.begin();
           it1 != it->second.endo.end(); it1++)
        output << symbol_table.getTypeSpecificID(*it1) + 1 << " ";
      output << "];" << endl;

296
      output << "M_.xref1.exo{" << i << "} = [ ";
297
298
299
300
301
      for (set<int>::const_iterator it1 = it->second.exo.begin();
           it1 != it->second.exo.end(); it1++)
        output << symbol_table.getTypeSpecificID(*it1) + 1 << " ";
      output << "];" << endl;

302
      output << "M_.xref1.exo_det{" << i << "} = [ ";
303
304
305
306
307
      for (set<int>::const_iterator it1 = it->second.exo_det.begin();
           it1 != it->second.exo_det.end(); it1++)
        output << symbol_table.getTypeSpecificID(*it1) + 1 << " ";
      output << "];" << endl;
    }
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

  writeRevXrefs(output, xref_param, "param");
  writeRevXrefs(output, xref_endo, "endo");
  writeRevXrefs(output, xref_exo, "exo");
  writeRevXrefs(output, xref_exo_det, "exo_det");
}

void
ModelTree::writeRevXrefs(ostream &output, const map<int, set<int> > &xrefmap, const string &type) const
{
  for (map<int, set<int> >::const_iterator it = xrefmap.begin();
       it != xrefmap.end(); it++)
    {
      output << "M_.xref2." << type << "{" << it->first + 1 << "} = [ ";
      for (set<int>::const_iterator it1 = it->second.begin();
           it1 != it->second.end(); it1++)
        output << *it1 + 1 << " ";
      output << "];" << endl;
    }
327
328
}

329
330
331
void
ModelTree::computeNormalizedEquations(multimap<int, int> &endo2eqs) const
{
332
  for (int i = 0; i < equation_number(); i++)
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    {
      VariableNode *lhs = dynamic_cast<VariableNode *>(equations[i]->get_arg1());
      if (lhs == NULL)
        continue;

      int symb_id = lhs->get_symb_id();
      if (symbol_table.getType(symb_id) != eEndogenous)
        continue;

      set<pair<int, int> > endo;
      equations[i]->get_arg2()->collectEndogenous(endo);
      if (endo.find(make_pair(symbol_table.getTypeSpecificID(symb_id), 0)) != endo.end())
        continue;

      endo2eqs.insert(make_pair(symbol_table.getTypeSpecificID(symb_id), i));
      cout << "Endogenous " << symbol_table.getName(symb_id) << " normalized in equation " << (i+1) << endl;
    }
}

void
353
ModelTree::evaluateAndReduceJacobian(const eval_context_t &eval_context, jacob_map_t &contemporaneous_jacobian, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian, double cutoff, bool verbose)
354
355
356
{
  int nb_elements_contemparenous_Jacobian = 0;
  set<pair<int, int> > jacobian_elements_to_delete;
357
  for (first_derivatives_t::const_iterator it = first_derivatives.begin();
358
359
360
361
362
       it != first_derivatives.end(); it++)
    {
      int deriv_id = it->first.second;
      if (getTypeByDerivID(deriv_id) == eEndogenous)
        {
363
          expr_t Id = it->second;
364
365
366
367
368
369
370
371
372
          int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          int var = symbol_table.getTypeSpecificID(symb);
          int lag = getLagByDerivID(deriv_id);
          double val = 0;
          try
            {
              val = Id->eval(eval_context);
            }
373
374
375
376
          catch (ExprNode::EvalExternalFunctionException &e)
            {
              val = 1;
            }
377
378
          catch (ExprNode::EvalException &e)
            {
379
              cerr << "ERROR: evaluation of Jacobian failed for equation " << eq+1 << " (line " << equations_lineno[eq] << ") and variable " << symbol_table.getName(symb) << "(" << lag << ") [" << symb << "] !" << endl;
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
              Id->writeOutput(cerr, oMatlabDynamicModelSparse, temporary_terms);
              cerr << endl;
              exit(EXIT_FAILURE);
            }
          if (fabs(val) < cutoff)
            {
              if (verbose)
                cout << "the coefficient related to variable " << var << " with lag " << lag << " in equation " << eq << " is equal to " << val << " and is set to 0 in the incidence matrix (size=" << symbol_table.endo_nbr() << ")" << endl;
              jacobian_elements_to_delete.insert(make_pair(eq, deriv_id));
            }
          else
            {
              if (lag == 0)
                {
                  nb_elements_contemparenous_Jacobian++;
395
                  contemporaneous_jacobian[make_pair(eq, var)] = val;
396
397
398
399
400
401
402
403
404
405
406
                }
              if (static_jacobian.find(make_pair(eq, var)) != static_jacobian.end())
                static_jacobian[make_pair(eq, var)] += val;
              else
                static_jacobian[make_pair(eq, var)] = val;
              dynamic_jacobian[make_pair(lag, make_pair(eq, var))] = Id;
            }
        }
    }

  // Get rid of the elements of the Jacobian matrix below the cutoff
407
  for (set<pair<int, int> >::const_iterator it = jacobian_elements_to_delete.begin(); it != jacobian_elements_to_delete.end(); it++)
408
409
    first_derivatives.erase(*it);

410
  if (jacobian_elements_to_delete.size() > 0)
411
412
413
414
415
416
417
    {
      cout << jacobian_elements_to_delete.size() << " elements among " << first_derivatives.size() << " in the incidence matrices are below the cutoff (" << cutoff << ") and are discarded" << endl
           << "The contemporaneous incidence matrix has " << nb_elements_contemparenous_Jacobian << " elements" << endl;
    }
}

void
418
ModelTree::computePrologueAndEpilogue(const jacob_map_t &static_jacobian_arg, vector<int> &equation_reordered, vector<int> &variable_reordered)
419
{
420
  vector<int> eq2endo(equation_number(), 0);
421
422
423
424
  equation_reordered.resize(equation_number());
  variable_reordered.resize(equation_number());
  bool *IM;
  int n = equation_number();
425
  IM = (bool *) calloc(n*n, sizeof(bool));
426
  int i = 0;
427
  for (vector<int>::const_iterator it = endo2eq.begin(); it != endo2eq.end(); it++, i++)
428
429
430
431
432
    {
      eq2endo[*it] = i;
      equation_reordered[i] = i;
      variable_reordered[*it] = i;
    }
433
  for (jacob_map_t::const_iterator it = static_jacobian_arg.begin(); it != static_jacobian_arg.end(); it++)
434
435
436
437
438
439
440
441
442
    IM[it->first.first * n + endo2eq[it->first.second]] = true;
  bool something_has_been_done = true;
  prologue = 0;
  int k = 0;
  // Find the prologue equations and place first the AR(1) shock equations first
  while (something_has_been_done)
    {
      int tmp_prologue = prologue;
      something_has_been_done = false;
443
      for (int i = prologue; i < n; i++)
444
445
        {
          int nze = 0;
446
447
          for (int j = tmp_prologue; j < n; j++)
            if (IM[i * n + j])
448
              {
449
                nze++;
450
451
                k = j;
              }
452
          if (nze == 1)
453
            {
454
              for (int j = 0; j < n; j++)
455
456
457
458
459
460
461
462
                {
                  bool tmp_bool = IM[tmp_prologue * n + j];
                  IM[tmp_prologue * n + j] = IM[i * n + j];
                  IM[i * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[tmp_prologue];
              equation_reordered[tmp_prologue] = equation_reordered[i];
              equation_reordered[i] = tmp;
463
              for (int j = 0; j < n; j++)
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
                {
                  bool tmp_bool = IM[j * n + tmp_prologue];
                  IM[j * n + tmp_prologue] = IM[j * n + k];
                  IM[j * n + k] = tmp_bool;
                }
              tmp = variable_reordered[tmp_prologue];
              variable_reordered[tmp_prologue] = variable_reordered[k];
              variable_reordered[k] = tmp;
              tmp_prologue++;
              something_has_been_done = true;
            }
        }
      prologue = tmp_prologue;
    }

  something_has_been_done = true;
  epilogue = 0;
  // Find the epilogue equations
  while (something_has_been_done)
    {
      int tmp_epilogue = epilogue;
      something_has_been_done = false;
486
      for (int i = prologue; i < n - (int) epilogue; i++)
487
488
        {
          int nze = 0;
489
490
          for (int j = prologue; j < n - tmp_epilogue; j++)
            if (IM[j * n + i])
491
              {
492
                nze++;
493
494
                k = j;
              }
495
          if (nze == 1)
496
            {
497
              for (int j = 0; j < n; j++)
498
499
500
501
502
503
504
505
                {
                  bool tmp_bool = IM[(n - 1 - tmp_epilogue) * n + j];
                  IM[(n - 1 - tmp_epilogue) * n + j] = IM[k * n + j];
                  IM[k * n + j] = tmp_bool;
                }
              int tmp = equation_reordered[n - 1 - tmp_epilogue];
              equation_reordered[n - 1 - tmp_epilogue] = equation_reordered[k];
              equation_reordered[k] = tmp;
506
              for (int j = 0; j < n; j++)
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
                {
                  bool tmp_bool = IM[j * n + n - 1 - tmp_epilogue];
                  IM[j * n + n - 1 - tmp_epilogue] = IM[j * n + i];
                  IM[j * n + i] = tmp_bool;
                }
              tmp = variable_reordered[n - 1 - tmp_epilogue];
              variable_reordered[n - 1 - tmp_epilogue] = variable_reordered[i];
              variable_reordered[i] = tmp;
              tmp_epilogue++;
              something_has_been_done = true;
            }
        }
      epilogue = tmp_epilogue;
    }
  free(IM);
}

524
equation_type_and_normalized_equation_t
525
ModelTree::equationTypeDetermination(const map<pair<int, pair<int, int> >, expr_t> &first_order_endo_derivatives, const vector<int> &Index_Var_IM, const vector<int> &Index_Equ_IM, int mfs) const
526
{
527
  expr_t lhs;
528
529
  BinaryOpNode *eq_node;
  EquationType Equation_Simulation_Type;
530
  equation_type_and_normalized_equation_t V_Equation_Simulation_Type(equations.size());
531
532
533
534
535
536
537
  for (unsigned int i = 0; i < equations.size(); i++)
    {
      int eq = Index_Equ_IM[i];
      int var = Index_Var_IM[i];
      eq_node = equations[eq];
      lhs = eq_node->get_arg1();
      Equation_Simulation_Type = E_SOLVE;
538
539
      map<pair<int, pair<int, int> >, expr_t>::const_iterator derivative = first_order_endo_derivatives.find(make_pair(eq, make_pair(var, 0)));
      pair<bool, expr_t> res;
540
      if (derivative != first_order_endo_derivatives.end())
541
542
543
544
545
        {
          set<pair<int, int> > result;
          derivative->second->collectEndogenous(result);
          set<pair<int, int> >::const_iterator d_endo_variable = result.find(make_pair(var, 0));
          //Determine whether the equation could be evaluated rather than to be solved
546
          if (lhs->isVariableNodeEqualTo(eEndogenous, Index_Var_IM[i], 0) && derivative->second->isNumConstNodeEqualTo(1))
547
548
549
550
551
            {
              Equation_Simulation_Type = E_EVALUATE;
            }
          else
            {
552
              vector<pair<int, pair<expr_t, expr_t> > > List_of_Op_RHS;
553
              res =  equations[eq]->normalizeEquation(var, List_of_Op_RHS);
554
              if (mfs == 2)
555
                {
556
                  if (d_endo_variable == result.end() && res.second)
557
558
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
559
              else if (mfs == 3)
560
                {
561
                  if (res.second) // The equation could be solved analytically
562
563
564
565
566
567
568
569
570
571
                    Equation_Simulation_Type = E_EVALUATE_S;
                }
            }
        }
      V_Equation_Simulation_Type[eq] = make_pair(Equation_Simulation_Type, dynamic_cast<BinaryOpNode *>(res.second));
    }
  return (V_Equation_Simulation_Type);
}

void
572
ModelTree::getVariableLeadLagByBlock(const dynamic_jacob_map_t &dynamic_jacobian, const vector<int> &components_set, int nb_blck_sim, lag_lead_vector_t &equation_lead_lag, lag_lead_vector_t &variable_lead_lag, const vector<int> &equation_reordered, const vector<int> &variable_reordered) const
573
574
{
  int nb_endo = symbol_table.endo_nbr();
575
576
  variable_lead_lag = lag_lead_vector_t(nb_endo, make_pair(0, 0));
  equation_lead_lag = lag_lead_vector_t(nb_endo, make_pair(0, 0));
577
578
579
  vector<int> variable_blck(nb_endo), equation_blck(nb_endo);
  for (int i = 0; i < nb_endo; i++)
    {
580
      if (i < (int) prologue)
581
582
583
584
        {
          variable_blck[variable_reordered[i]] = i;
          equation_blck[equation_reordered[i]] = i;
        }
585
      else if (i < (int) (components_set.size() + prologue))
586
587
588
589
590
591
592
593
594
595
        {
          variable_blck[variable_reordered[i]] = components_set[i-prologue] + prologue;
          equation_blck[equation_reordered[i]] = components_set[i-prologue] + prologue;
        }
      else
        {
          variable_blck[variable_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
          equation_blck[equation_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
        }
    }
596
  for (dynamic_jacob_map_t::const_iterator it = dynamic_jacobian.begin(); it != dynamic_jacobian.end(); it++)
597
598
    {
      int lag = it->first.first;
599
      int j_1 = it->first.second.first;
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
      int i_1 = it->first.second.second;
      if (variable_blck[i_1] == equation_blck[j_1])
        {
          if (lag > variable_lead_lag[i_1].second)
            variable_lead_lag[i_1] = make_pair(variable_lead_lag[i_1].first, lag);
          if (lag < -variable_lead_lag[i_1].first)
            variable_lead_lag[i_1] = make_pair(-lag, variable_lead_lag[i_1].second);
          if (lag > equation_lead_lag[j_1].second)
            equation_lead_lag[j_1] = make_pair(equation_lead_lag[j_1].first, lag);
          if (lag < -equation_lead_lag[j_1].first)
            equation_lead_lag[j_1] = make_pair(-lag, equation_lead_lag[j_1].second);
        }
    }
}

void
616
ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(const jacob_map_t &static_jacobian, const dynamic_jacob_map_t &dynamic_jacobian, vector<int> &equation_reordered, vector<int> &variable_reordered, vector<pair<int, int> > &blocks, const equation_type_and_normalized_equation_t &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs, vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered, lag_lead_vector_t &equation_lag_lead, lag_lead_vector_t &variable_lag_lead, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed) const
617
618
619
620
{
  int nb_var = variable_reordered.size();
  int n = nb_var - prologue - epilogue;

621
622
623
624
625
626
  AdjacencyList_t G2(n);

  // It is necessary to manually initialize vertex_index property since this graph uses listS and not vecS as underlying vertex container
  property_map<AdjacencyList_t, vertex_index_t>::type v_index = get(vertex_index, G2);
  for (int i = 0; i < n; i++)
    put(v_index, vertex(i, G2), i);
627
628
629

  vector<int> reverse_equation_reordered(nb_var), reverse_variable_reordered(nb_var);

630
  for (int i = 0; i < nb_var; i++)
631
632
633
634
635
    {
      reverse_equation_reordered[equation_reordered[i]] = i;
      reverse_variable_reordered[variable_reordered[i]] = i;
    }

636
  for (jacob_map_t::const_iterator it = static_jacobian.begin(); it != static_jacobian.end(); it++)
637
638
    if (reverse_equation_reordered[it->first.first] >= (int) prologue && reverse_equation_reordered[it->first.first] < (int) (nb_var - epilogue)
        && reverse_variable_reordered[it->first.second] >= (int) prologue && reverse_variable_reordered[it->first.second] < (int) (nb_var - epilogue)
639
        && it->first.first != endo2eq[it->first.second])
640
641
642
      add_edge(vertex(reverse_equation_reordered[endo2eq[it->first.second]]-prologue, G2),
               vertex(reverse_equation_reordered[it->first.first]-prologue, G2),
               G2);
643
644

  vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2));
645
  iterator_property_map<int *, property_map<AdjacencyList_t, vertex_index_t>::type, int, int &> endo2block_map(&endo2block[0], get(vertex_index, G2));
646
647

  // Compute strongly connected components
648
  int num = strong_components(G2, endo2block_map);
649
650
651
652
653
654
655

  blocks = vector<pair<int, int> >(num, make_pair(0, 0));

  // Create directed acyclic graph associated to the strongly connected components
  typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;
  DirectedGraph dag(num);

656
  for (unsigned int i = 0; i < num_vertices(G2); i++)
657
    {
658
659
      AdjacencyList_t::out_edge_iterator it_out, out_end;
      AdjacencyList_t::vertex_descriptor vi = vertex(i, G2);
660
661
      for (tie(it_out, out_end) = out_edges(vi, G2); it_out != out_end; ++it_out)
        {
662
663
          int t_b = endo2block_map[target(*it_out, G2)];
          int s_b = endo2block_map[source(*it_out, G2)];
664
665
666
667
668
669
670
671
672
673
674
          if (s_b != t_b)
            add_edge(s_b, t_b, dag);
        }
    }

  // Compute topological sort of DAG (ordered list of unordered SCC)
  deque<int> ordered2unordered;
  topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order

  // Construct mapping from unordered SCC to ordered SCC
  vector<int> unordered2ordered(num);
675
  for (int i = 0; i < num; i++)
676
677
678
679
680
681
682
683
684
685
686
687
688
689
    unordered2ordered[ordered2unordered[i]] = i;

  //This vector contains for each block:
  //   - first set = equations belonging to the block,
  //   - second set = the feeback variables,
  //   - third vector = the reordered non-feedback variables.
  vector<pair<set<int>, pair<set<int>, vector<int> > > > components_set(num);
  for (unsigned int i = 0; i < endo2block.size(); i++)
    {
      endo2block[i] = unordered2ordered[endo2block[i]];
      blocks[endo2block[i]].first++;
      components_set[endo2block[i]].first.insert(i);
    }

690
  getVariableLeadLagByBlock(dynamic_jacobian, endo2block, num, equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);
691
692
693
694

  vector<int> tmp_equation_reordered(equation_reordered), tmp_variable_reordered(variable_reordered);
  int order = prologue;
  //Add a loop on vertices which could not be normalized or vertices related to lead variables => force those vertices to belong to the feedback set
695
  if (select_feedback_variable)
696
697
698
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE
699
700
701
702
703
            || variable_lag_lead[variable_reordered[i+prologue]].second > 0
            || variable_lag_lead[variable_reordered[i+prologue]].first > 0
            || equation_lag_lead[equation_reordered[i+prologue]].second > 0
            || equation_lag_lead[equation_reordered[i+prologue]].first > 0
            || mfs == 0)
704
          add_edge(vertex(i, G2), vertex(i, G2), G2);
705
706
707
708
709
    }
  else
    {
      for (int i = 0; i < n; i++)
        if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE || mfs == 0)
710
          add_edge(vertex(i, G2), vertex(i, G2), G2);
711
    }
712
713
714
715
716
717
  //Determines the dynamic structure of each equation
  n_static = vector<unsigned int>(prologue+num+epilogue, 0);
  n_forward = vector<unsigned int>(prologue+num+epilogue, 0);
  n_backward = vector<unsigned int>(prologue+num+epilogue, 0);
  n_mixed = vector<unsigned int>(prologue+num+epilogue, 0);

718
  for (int i = 0; i < (int) prologue; i++)
719
720
721
722
723
724
725
726
727
728
    {
      if      (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
        n_mixed[i]++;
      else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
        n_forward[i]++;
      else if (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
        n_backward[i]++;
      else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
        n_static[i]++;
    }
729
730
731
732
733
734
  //For each block, the minimum set of feedback variable is computed
  // and the non-feedback variables are reordered to get
  // a sub-recursive block without feedback variables

  for (int i = 0; i < num; i++)
    {
735
      AdjacencyList_t G = extract_subgraph(G2, components_set[i].first);
736
737
      set<int> feed_back_vertices;
      //Print(G);
738
739
      AdjacencyList_t G1 = Minimal_set_of_feedback_vertex(feed_back_vertices, G);
      property_map<AdjacencyList_t, vertex_index_t>::type v_index = get(vertex_index, G);
740
741
742
743
744
745
      components_set[i].second.first = feed_back_vertices;
      blocks[i].second = feed_back_vertices.size();
      vector<int> Reordered_Vertice;
      Reorder_the_recursive_variables(G, feed_back_vertices, Reordered_Vertice);

      //First we have the recursive equations conditional on feedback variables
746
      for (int j = 0; j < 4; j++)
747
        {
748
749
750
          for (vector<int>::iterator its = Reordered_Vertice.begin(); its != Reordered_Vertice.end(); its++)
            {
              bool something_done = false;
751
              if      (j == 2 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second != 0)
752
753
754
755
                {
                  n_mixed[prologue+i]++;
                  something_done = true;
                }
756
              else if (j == 3 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second != 0)
757
758
759
760
                {
                  n_forward[prologue+i]++;
                  something_done = true;
                }
761
              else if (j == 1 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second == 0)
762
763
764
765
                {
                  n_backward[prologue+i]++;
                  something_done = true;
                }
766
              else if (j == 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second == 0)
767
768
769
770
771
772
773
774
775
776
777
                {
                  n_static[prologue+i]++;
                  something_done = true;
                }
              if (something_done)
                {
                  equation_reordered[order] = tmp_equation_reordered[*its+prologue];
                  variable_reordered[order] = tmp_variable_reordered[*its+prologue];
                  order++;
                }
            }
778
779
780
        }
      components_set[i].second.second = Reordered_Vertice;
      //Second we have the equations related to the feedback variables
781
      for (int j = 0; j < 4; j++)
782
        {
783
784
785
          for (set<int>::iterator its = feed_back_vertices.begin(); its != feed_back_vertices.end(); its++)
            {
              bool something_done = false;
786
              if      (j == 2 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second != 0)
787
788
789
790
                {
                  n_mixed[prologue+i]++;
                  something_done = true;
                }
791
              else if (j == 3 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second != 0)
792
793
794
795
                {
                  n_forward[prologue+i]++;
                  something_done = true;
                }
796
              else if (j == 1 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second == 0)
797
798
799
800
                {
                  n_backward[prologue+i]++;
                  something_done = true;
                }
801
              else if (j == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second == 0)
802
803
804
805
806
807
808
809
810
811
812
                {
                  n_static[prologue+i]++;
                  something_done = true;
                }
              if (something_done)
                {
                  equation_reordered[order] = tmp_equation_reordered[v_index[vertex(*its, G)]+prologue];
                  variable_reordered[order] = tmp_variable_reordered[v_index[vertex(*its, G)]+prologue];
                  order++;
                }
            }
813
814
        }
    }
815

816
  for (int i = 0; i < (int) epilogue; i++)
817
    {
818
      if      (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second != 0)
819
        n_mixed[prologue+num+i]++;
820
      else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second != 0)
821
        n_forward[prologue+num+i]++;
822
      else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second == 0)
823
        n_backward[prologue+num+i]++;
824
      else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second == 0)
825
826
827
        n_static[prologue+num+i]++;
    }

828
829
  inv_equation_reordered = vector<int>(nb_var);
  inv_variable_reordered = vector<int>(nb_var);
830
  for (int i = 0; i < nb_var; i++)
831
832
833
834
835
836
    {
      inv_variable_reordered[variable_reordered[i]] = i;
      inv_equation_reordered[equation_reordered[i]] = i;
    }
}

837
void
838
ModelTree::printBlockDecomposition(const vector<pair<int, int> > &blocks) const
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
{
  int largest_block = 0;
  int Nb_SimulBlocks = 0;
  int Nb_feedback_variable = 0;
  unsigned int Nb_TotalBlocks = getNbBlocks();
  for (unsigned int block = 0; block < Nb_TotalBlocks; block++)
    {
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
        {
          Nb_SimulBlocks++;
          int size = getBlockSize(block);
          if (size > largest_block)
            {
              largest_block = size;
854
              Nb_feedback_variable = getBlockMfs(block);
855
856
857
858
859
860
861
862
863
864
865
            }
        }
    }

  int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
  cout << Nb_TotalBlocks << " block(s) found:" << endl
       << "  " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks << " simultaneous block(s)." << endl
       << "  the largest simultaneous block has " << largest_block << " equation(s)" << endl
       << "                                 and " << Nb_feedback_variable << " feedback variable(s)." << endl;
}

866
block_type_firstequation_size_mfs_t
867
ModelTree::reduceBlocksAndTypeDetermination(const dynamic_jacob_map_t &dynamic_jacobian, vector<pair<int, int> > &blocks, const equation_type_and_normalized_equation_t &Equation_Type, const vector<int> &variable_reordered, const vector<int> &equation_reordered, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed, vector<pair< pair<int, int>, pair<int, int> > > &block_col_type)
868
869
870
871
872
{
  int i = 0;
  int count_equ = 0, blck_count_simult = 0;
  int Blck_Size, MFS_Size;
  int Lead, Lag;
873
  block_type_firstequation_size_mfs_t block_type_size_mfs;
874
875
  BlockSimulationType Simulation_Type, prev_Type = UNKNOWN;
  int eq = 0;
876
877
878
879
  unsigned int l_n_static = 0;
  unsigned int l_n_forward = 0;
  unsigned int l_n_backward = 0;
  unsigned int l_n_mixed = 0;
880
  for (i = 0; i < (int) (prologue+blocks.size()+epilogue); i++)
881
882
    {
      int first_count_equ = count_equ;
883
      if (i < (int) prologue)
884
885
886
887
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }
888
      else if (i < (int) (prologue+blocks.size()))
889
890
891
892
893
        {
          Blck_Size = blocks[blck_count_simult].first;
          MFS_Size = blocks[blck_count_simult].second;
          blck_count_simult++;
        }
894
      else if (i < (int) (prologue+blocks.size()+epilogue))
895
896
897
898
899
900
901
        {
          Blck_Size = 1;
          MFS_Size = 1;
        }

      Lag = Lead = 0;
      set<pair<int, int> > endo;
902
      for (count_equ  = first_count_equ; count_equ  < Blck_Size+first_count_equ; count_equ++)
903
904
905
906
907
908
909
        {
          endo.clear();
          equations[equation_reordered[count_equ]]->collectEndogenous(endo);
          for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
            {
              int curr_variable = it->first;
              int curr_lag = it->second;
910
911
              vector<int>::const_iterator it1 = find(variable_reordered.begin()+first_count_equ, variable_reordered.begin()+(first_count_equ+Blck_Size), curr_variable);
              if (it1 != variable_reordered.begin()+(first_count_equ+Blck_Size))
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
                if (dynamic_jacobian.find(make_pair(curr_lag, make_pair(equation_reordered[count_equ], curr_variable))) != dynamic_jacobian.end())
                  {
                    if (curr_lag > Lead)
                      Lead = curr_lag;
                    else if (-curr_lag > Lag)
                      Lag = -curr_lag;
                  }
            }
        }
      if ((Lag > 0) && (Lead > 0))
        {
          if (Blck_Size == 1)
            Simulation_Type = SOLVE_TWO_BOUNDARIES_SIMPLE;
          else
            Simulation_Type = SOLVE_TWO_BOUNDARIES_COMPLETE;
        }
      else if (Blck_Size > 1)
        {
          if (Lead > 0)
            Simulation_Type = SOLVE_BACKWARD_COMPLETE;
          else
            Simulation_Type = SOLVE_FORWARD_COMPLETE;
        }
      else
        {
          if (Lead > 0)
            Simulation_Type = SOLVE_BACKWARD_SIMPLE;
          else
            Simulation_Type = SOLVE_FORWARD_SIMPLE;
        }
942
943
944
945
      l_n_static = n_static[i];
      l_n_forward = n_forward[i];
      l_n_backward = n_backward[i];
      l_n_mixed = n_mixed[i];
946
947
      if (Blck_Size == 1)
        {
948
          if (Equation_Type[equation_reordered[eq]].first == E_EVALUATE || Equation_Type[equation_reordered[eq]].first == E_EVALUATE_S)
949
950
951
952
953
954
955
956
            {
              if (Simulation_Type == SOLVE_BACKWARD_SIMPLE)
                Simulation_Type = EVALUATE_BACKWARD;
              else if (Simulation_Type == SOLVE_FORWARD_SIMPLE)
                Simulation_Type = EVALUATE_FORWARD;
            }
          if (i > 0)
            {
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
              bool is_lead = false, is_lag = false;
              int c_Size = (block_type_size_mfs[block_type_size_mfs.size()-1]).second.first;
              int first_equation = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.second;
              if (c_Size > 0 && ((prev_Type ==  EVALUATE_FORWARD && Simulation_Type == EVALUATE_FORWARD && !is_lead)
                  || (prev_Type ==  EVALUATE_BACKWARD && Simulation_Type == EVALUATE_BACKWARD && !is_lag)))
                {
                  for (int j = first_equation; j < first_equation+c_Size; j++)
                    {
                      dynamic_jacob_map_t::const_iterator it = dynamic_jacobian.find(make_pair(-1, make_pair(equation_reordered[eq], variable_reordered[j])));
                      if (it != dynamic_jacobian.end())
                        is_lag = true;
                      it = dynamic_jacobian.find(make_pair(+1, make_pair(equation_reordered[eq], variable_reordered[j])));
                      if (it != dynamic_jacobian.end())
                        is_lead = true;
                    }
                }
              if ((prev_Type ==  EVALUATE_FORWARD && Simulation_Type == EVALUATE_FORWARD && !is_lead)
                  || (prev_Type ==  EVALUATE_BACKWARD && Simulation_Type == EVALUATE_BACKWARD && !is_lag))
975
976
977
                {
                  //merge the current block with the previous one
                  BlockSimulationType c_Type = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.first;
978
979
                  c_Size++;
                  block_type_size_mfs[block_type_size_mfs.size()-1] = make_pair(make_pair(c_Type, first_equation), make_pair(c_Size, c_Size));
980
                  if (block_lag_lead[block_type_size_mfs.size()-1].first > Lag)
981
                    Lag = block_lag_lead[block_type_size_mfs.size()-1].first;
982
                  if (block_lag_lead[block_type_size_mfs.size()-1].second > Lead)
983
984
                    Lead = block_lag_lead[block_type_size_mfs.size()-1].second;
                  block_lag_lead[block_type_size_mfs.size()-1] = make_pair(Lag, Lead);
985
                  pair< pair< unsigned int, unsigned int>, pair<unsigned int, unsigned int> > tmp = block_col_type[block_col_type.size()-1];
986
                  block_col_type[block_col_type.size()-1] = make_pair(make_pair(tmp.first.first+l_n_static, tmp.first.second+l_n_forward), make_pair(tmp.second.first+l_n_backward, tmp.second.second+l_n_mixed));
987
988
989
990
991
                }
              else
                {
                  block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
                  block_lag_lead.push_back(make_pair(Lag, Lead));
992
                  block_col_type.push_back(make_pair(make_pair(l_n_static, l_n_forward), make_pair(l_n_backward, l_n_mixed)));
993
994
995
996
997
998
                }
            }
          else
            {
              block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
              block_lag_lead.push_back(make_pair(Lag, Lead));
999
              block_col_type.push_back(make_pair(make_pair(l_n_static, l_n_forward), make_pair(l_n_backward, l_n_mixed)));
1000
            }