diff --git a/src/MinimumFeedbackSet.cc b/src/MinimumFeedbackSet.cc index d91391c5870d1580c116e0fa130076908e7d6f20..b7a6551d6005faeb87b6bf0c0c527dcf0086bb04 100644 --- a/src/MinimumFeedbackSet.cc +++ b/src/MinimumFeedbackSet.cc @@ -21,6 +21,8 @@ #include "MinimumFeedbackSet.hh" +using namespace boost; + namespace MFS { void diff --git a/src/MinimumFeedbackSet.hh b/src/MinimumFeedbackSet.hh index 7db7d2f9f99e0fa0c82b7a640dbea882b8591c33..75722a8fd5c4758fc24838eb5e5fdb4996ba97d3 100644 --- a/src/MinimumFeedbackSet.hh +++ b/src/MinimumFeedbackSet.hh @@ -25,17 +25,16 @@ #include <boost/graph/adjacency_list.hpp> using namespace std; -using namespace boost; namespace MFS { - using VertexProperty_t = property<vertex_index_t, int, - property<vertex_index1_t, int, - property<vertex_degree_t, int, - property<vertex_in_degree_t, int, - property<vertex_out_degree_t, int >>>>>; - using AdjacencyList_t = adjacency_list<listS, listS, bidirectionalS, VertexProperty_t>; - using color_t = map<graph_traits<AdjacencyList_t>::vertex_descriptor, default_color_type>; + using VertexProperty_t = boost::property<boost::vertex_index_t, int, + boost::property<boost::vertex_index1_t, int, + boost::property<boost::vertex_degree_t, int, + boost::property<boost::vertex_in_degree_t, int, + boost::property<boost::vertex_out_degree_t, int >>>>>; + using AdjacencyList_t = boost::adjacency_list<boost::listS, boost::listS, boost::bidirectionalS, VertexProperty_t>; + using color_t = map<boost::graph_traits<AdjacencyList_t>::vertex_descriptor, boost::default_color_type>; using vector_vertex_descriptor_t = vector<AdjacencyList_t::vertex_descriptor>; //! Eliminate a vertex i diff --git a/src/ModelTree.cc b/src/ModelTree.cc index bb7c84fdf2f09b1286d833de138a650925c81c4c..7783af3b22859956476256b80a3a18520ce46670 100644 --- a/src/ModelTree.cc +++ b/src/ModelTree.cc @@ -30,7 +30,6 @@ #include <boost/graph/strong_components.hpp> #include <boost/graph/topological_sort.hpp> -using namespace boost; using namespace MFS; bool @@ -40,7 +39,7 @@ ModelTree::computeNormalization(const jacob_map_t &contemporaneous_jacobian, boo assert(n == symbol_table.endo_nbr()); - using BipartiteGraph = adjacency_list<vecS, vecS, undirectedS>; + using BipartiteGraph = boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS>; /* Vertices 0 to n-1 are for endogenous (using type specific ID) @@ -124,7 +123,7 @@ ModelTree::computeNormalization(const jacob_map_t &contemporaneous_jacobian, boo #endif // Check if all variables are normalized - vector<int>::const_iterator it = find(mate_map.begin(), mate_map.begin() + n, graph_traits<BipartiteGraph>::null_vertex()); + auto it = find(mate_map.begin(), mate_map.begin() + n, boost::graph_traits<BipartiteGraph>::null_vertex()); if (it != mate_map.begin() + n) { if (verbose) @@ -536,7 +535,7 @@ ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(const jacob AdjacencyList_t G2(n); // It is necessary to manually initialize vertex_index property since this graph uses listS and not vecS as underlying vertex container - property_map<AdjacencyList_t, vertex_index_t>::type v_index = get(vertex_index, G2); + auto v_index = get(boost::vertex_index, G2); for (int i = 0; i < n; i++) put(v_index, vertex(i, G2), i); @@ -571,7 +570,7 @@ ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(const jacob G2); vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2)); - iterator_property_map<int *, property_map<AdjacencyList_t, vertex_index_t>::type, int, int &> endo2block_map(&endo2block[0], get(vertex_index, G2)); + boost::iterator_property_map<int *, boost::property_map<AdjacencyList_t, boost::vertex_index_t>::type, int, int &> endo2block_map(&endo2block[0], get(boost::vertex_index, G2)); // Compute strongly connected components int num = strong_components(G2, endo2block_map); @@ -579,7 +578,7 @@ ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(const jacob blocks = vector<pair<int, int>>(num, { 0, 0 }); // Create directed acyclic graph associated to the strongly connected components - using DirectedGraph = adjacency_list<vecS, vecS, directedS>; + using DirectedGraph = boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS>; DirectedGraph dag(num); for (unsigned int i = 0; i < num_vertices(G2); i++) @@ -665,7 +664,7 @@ ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(const jacob set<int> feed_back_vertices; //Print(G); AdjacencyList_t G1 = Minimal_set_of_feedback_vertex(feed_back_vertices, G); - property_map<AdjacencyList_t, vertex_index_t>::type v_index = get(vertex_index, G); + auto v_index = get(boost::vertex_index, G); components_set[i].second.first = feed_back_vertices; blocks[i].second = feed_back_vertices.size(); vector<int> Reordered_Vertice;