/* * Copyright (C) 2007-2008 Dynare Team * * This file is part of Dynare. * * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Dynare. If not, see <http://www.gnu.org/licenses/>. */ #ifndef _BLOCKTRIANGULAR_HH #define _BLOCKTRIANGULAR_HH #include <string> #include "ExprNode.hh" #include "SymbolTable.hh" #include "ModelNormalization.hh" #include "ModelBlocks.hh" #include "ExprNode.hh" //! List of incidence matrix (one matrix per lead/lag) struct List_IM { List_IM* pNext; int lead_lag; bool* IM; }; //! create and manage the incidence matrix class IncidenceMatrix //: SymbolTable { //friend class BlockTriangular; public: const SymbolTable &symbol_table; IncidenceMatrix(const SymbolTable &symbol_table_arg); List_IM* Build_IM(int lead_lag, SymbolType type); List_IM* Get_IM(int lead_lag, SymbolType type) const; bool* bGet_IM(int lead_lag, SymbolType type) const; void fill_IM(int equation, int variable_endo, int lead_lag, SymbolType type); void unfill_IM(int equation, int variable_endo, int lead_lag, SymbolType type); void init_incidence_matrix(); void Free_IM() const; List_IM* Get_First(SymbolType type) const; void Print_IM(SymbolType type) const; void Print_SIM(bool* IM, SymbolType type) const; void swap_IM_c(bool *SIM, int pos1, int pos2, int pos3, simple* Index_Var_IM, simple* Index_Equ_IM, int n) const; private: List_IM *First_IM, *Last_IM, *First_IM_X, *Last_IM_X ; public: int Model_Max_Lead, Model_Max_Lag; int Model_Max_Lead_Endo, Model_Max_Lag_Endo, Model_Max_Lead_Exo, Model_Max_Lag_Exo; }; //! Matrix of doubles for representing jacobian typedef map<pair<int ,int >,double> jacob_map; //! Create the incidence matrix, computes prologue & epilogue, normalizes the model and computes the block decomposition class BlockTriangular { //friend class IncidenceMatrix; public: const SymbolTable &symbol_table; BlockTriangular(const SymbolTable &symbol_table_arg); //BlockTriangular(const IncidenceMatrix &incidence_matrix_arg); //const SymbolTable &symbol_table; Blocks blocks; Normalization normalization; IncidenceMatrix incidencematrix; void Normalize_and_BlockDecompose_Static_0_Model(const jacob_map &j_m); bool Normalize_and_BlockDecompose(bool* IM, Model_Block* ModelBlock, int n, int* prologue, int* epilogue, simple* Index_Var_IM, simple* Index_Equ_IM, bool Do_Normalization, bool mixing, bool* IM_0 , jacob_map j_m); void Prologue_Epilogue(bool* IM, int* prologue, int* epilogue, int n, simple* Index_Var_IM, simple* Index_Equ_IM, bool* IM0); void Allocate_Block(int size, int *count_Equ, int *count_Block, BlockType type, Model_Block * ModelBlock); void Free_Block(Model_Block* ModelBlock) const; simple *Index_Equ_IM; simple *Index_Var_IM; int prologue, epilogue; bool bt_verbose; //int endo_nbr, exo_nbr; Model_Block* ModelBlock; int periods; inline static std::string BlockType0(int type) { switch (type) { case 0: return ("SIMULTANEOUS TIME SEPARABLE "); break; case 1: return ("PROLOGUE "); break; case 2: return ("EPILOGUE "); break; case 3: return ("SIMULTANEOUS TIME UNSEPARABLE"); break; default: return ("UNKNOWN "); break; } }; inline static std::string BlockSim(int type) { switch (type) { case EVALUATE_FORWARD: case EVALUATE_FORWARD_R: return ("EVALUATE FORWARD "); break; case EVALUATE_BACKWARD: case EVALUATE_BACKWARD_R: return ("EVALUATE BACKWARD "); break; case SOLVE_FORWARD_SIMPLE: return ("SOLVE FORWARD SIMPLE "); break; case SOLVE_BACKWARD_SIMPLE: return ("SOLVE BACKWARD SIMPLE "); break; case SOLVE_TWO_BOUNDARIES_SIMPLE: return ("SOLVE TWO BOUNDARIES SIMPLE "); break; case SOLVE_FORWARD_COMPLETE: return ("SOLVE FORWARD COMPLETE "); break; case SOLVE_BACKWARD_COMPLETE: return ("SOLVE BACKWARD COMPLETE "); break; case SOLVE_TWO_BOUNDARIES_COMPLETE: return ("SOLVE TWO BOUNDARIES COMPLETE"); break; default: return ("UNKNOWN "); break; } }; }; #endif