/*
 * Copyright (C) 2003-2017 Dynare Team
 *
 * This file is part of Dynare.
 *
 * Dynare is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Dynare is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <cstdlib>
#include <cassert>
#include <iostream>
#include <sstream>

using namespace std;

#include "ComputingTasks.hh"
#include "Statement.hh"

#include <boost/algorithm/string/trim.hpp>
#include <boost/algorithm/string/split.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/tokenizer.hpp>

SteadyStatement::SteadyStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
SteadyStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.steady_present = true;
}

void
SteadyStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  output << "steady;" << endl;
}

CheckStatement::CheckStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
CheckStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  output << "oo_.dr.eigval = check(M_,options_,oo_);" << endl;
}

void
CheckStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.check_present = true;
}

ModelInfoStatement::ModelInfoStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
ModelInfoStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  //mod_file_struct.model_info_present = true;
}

void
ModelInfoStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  output << "model_info();" << endl;
}

SimulStatement::SimulStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
SimulStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.perfect_foresight_solver_present = true;
}

void
SimulStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  output << "perfect_foresight_setup;" << endl
         << "perfect_foresight_solver;" << endl;
}

PerfectForesightSetupStatement::PerfectForesightSetupStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
PerfectForesightSetupStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  output << "perfect_foresight_setup;" << endl;
}

PerfectForesightSolverStatement::PerfectForesightSolverStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
PerfectForesightSolverStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.perfect_foresight_solver_present = true;
  // Fill in option_occbin of mod_file_struct
  if (options_list.num_options.find("occbin") != options_list.num_options.end())
    mod_file_struct.occbin_option = true;
}

void
PerfectForesightSolverStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  output << "perfect_foresight_solver;" << endl;
}

PriorPosteriorFunctionStatement::PriorPosteriorFunctionStatement(const bool prior_func_arg,
                                                                 const OptionsList &options_list_arg) :
  prior_func(prior_func_arg),
  options_list(options_list_arg)
{
}

void
PriorPosteriorFunctionStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  OptionsList::string_options_t::const_iterator it2 = options_list.string_options.find("function");
  if (it2 == options_list.string_options.end() || it2->second.empty())
      {
          cerr << "ERROR: both the prior_function and posterior_function commands require the 'function' argument"
               << endl;
          exit(EXIT_FAILURE);
      }
}

void
PriorPosteriorFunctionStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  string type = "posterior";
  if (prior_func)
      type = "prior";

  output << "oo_ = execute_prior_posterior_function("
         << "'" << options_list.string_options.find("function")->second << "', "
         << "M_, options_, oo_, estim_params_, bayestopt_, dataset_, dataset_info, "
         << "'" << type << "');" << endl;
}

StochSimulStatement::StochSimulStatement(const SymbolList &symbol_list_arg,
                                         const OptionsList &options_list_arg) :
  symbol_list(symbol_list_arg),
  options_list(options_list_arg)
{
}

void
StochSimulStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.stoch_simul_present = true;

  // Fill in option_order of mod_file_struct
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
  if (it != options_list.num_options.end())
    mod_file_struct.order_option = max(mod_file_struct.order_option, atoi(it->second.c_str()));

  // Fill in mod_file_struct.partial_information
  it = options_list.num_options.find("partial_information");
  if (it != options_list.num_options.end() && it->second == "1")
    mod_file_struct.partial_information = true;

  // Option k_order_solver (implicit when order >= 3)
  it = options_list.num_options.find("k_order_solver");
  if ((it != options_list.num_options.end() && it->second == "1")
      || mod_file_struct.order_option >= 3)
    mod_file_struct.k_order_solver = true;

  it = options_list.num_options.find("hp_filter");
  OptionsList::num_options_t::const_iterator it1 = options_list.num_options.find("bandpass.indicator");
  OptionsList::num_options_t::const_iterator it2 = options_list.num_options.find("one_sided_hp_filter");
  if ((it != options_list.num_options.end() && it1 != options_list.num_options.end()) ||
      (it != options_list.num_options.end() && it2 != options_list.num_options.end()) ||
      (it1 != options_list.num_options.end() && it2 != options_list.num_options.end()))
      {
          cerr << "ERROR: stoch_simul: can only use one of hp, one-sided hp, and bandpass filters"
               << endl;
          exit(EXIT_FAILURE);
      }
}

void
StochSimulStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  // Ensure that order 3 implies k_order (#844)
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
  OptionsList::num_options_t::const_iterator it1 = options_list.num_options.find("k_order_solver");
  if ((it1 != options_list.num_options.end() && it1->second == "1")
      || (it != options_list.num_options.end() && atoi(it->second.c_str()) >= 3))
    output << "options_.k_order_solver = 1;" << endl;

  options_list.writeOutput(output);
  symbol_list.writeOutput("var_list_", output);
  output << "info = stoch_simul(var_list_);" << endl;
}

ForecastStatement::ForecastStatement(const SymbolList &symbol_list_arg,
                                     const OptionsList &options_list_arg) :
  symbol_list(symbol_list_arg),
  options_list(options_list_arg)
{
}

void
ForecastStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  symbol_list.writeOutput("var_list_", output);
  output << "[oo_.forecast,info] = dyn_forecast(var_list_,M_,options_,oo_,'simul');" << endl;
}

RamseyModelStatement::RamseyModelStatement(const SymbolList &symbol_list_arg,
                                             const OptionsList &options_list_arg) :
  symbol_list(symbol_list_arg),
  options_list(options_list_arg)
{
}

void
RamseyModelStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.ramsey_model_present = true;

  /* Fill in option_order of mod_file_struct
     Since ramsey model needs one further order of derivation (for example, for 1st order
     approximation, it needs 2nd derivatives), we add 1 to the order declared by user */
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
  if (it != options_list.num_options.end())
    {
      int order = atoi(it->second.c_str());
      if (order > 2)
        {
          cerr << "ERROR: ramsey_model: order > 2 is not  implemented" << endl;
          exit(EXIT_FAILURE);
        }
      mod_file_struct.order_option = max(mod_file_struct.order_option, order + 1);
    }

  // Fill in mod_file_struct.partial_information
  it = options_list.num_options.find("partial_information");
  if (it != options_list.num_options.end() && it->second == "1")
    mod_file_struct.partial_information = true;

  // Option k_order_solver (implicit when order >= 3)
  it = options_list.num_options.find("k_order_solver");
  if ((it != options_list.num_options.end() && it->second == "1")
      || mod_file_struct.order_option >= 3)
    mod_file_struct.k_order_solver = true;
}

void
RamseyModelStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  // options_.ramsey_policy indicates that a Ramsey model is present in the *.mod file
  // this affects the computation of the steady state that uses a special algorithm
  // It should probably rather be a M_ field, but we leave it in options_ for historical reason

  // Ensure that order 3 implies k_order (#844)
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
  OptionsList::num_options_t::const_iterator it1 = options_list.num_options.find("k_order_solver");
  if ((it1 != options_list.num_options.end() && it1->second == "1")
      || (it != options_list.num_options.end() && atoi(it->second.c_str()) >= 3))
    output << "options_.k_order_solver = 1;" << endl;

  output << "options_.ramsey_policy = 1;" << endl;
  options_list.writeOutput(output);
}

RamseyConstraintsStatement::RamseyConstraintsStatement(const constraints_t &constraints_arg) :
  constraints(constraints_arg)
{
}

void
RamseyConstraintsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  if ((mod_file_struct.ramsey_model_present != true) || (  mod_file_struct.ramsey_policy_present != true))
    cerr << "ramsey_constraints: can only be used with ramsey_model or ramsey_policy" << endl;
}

void
RamseyConstraintsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "M_.ramsey_model_constraints = {" << endl;
  for (RamseyConstraintsStatement::constraints_t::const_iterator it = constraints.begin(); it != constraints.end(); ++it)
    {
      if (it != constraints.begin())
	output << ", ";
      output << "{" << it->endo + 1 << ", '";
      switch(it->code)
	{
	case oLess:
	  output << '<';
	  break;
	case oGreater:
	  output << '>';
	  break;
	case oLessEqual:
	  output << "<=";
	  break;
	case oGreaterEqual:
	  output << ">=";
	  break;
	default:
	  cerr << "Ramsey constraints: this shouldn't happen." << endl;
	  exit(EXIT_FAILURE);
	}
      output << "', '";
      it->expression->writeOutput(output);
      output << "'}" << endl;
    }
  output << "};" << endl;
}

// Statement *
// RamseyConstraintsStatement::cloneAndReindexSymbIds(DataTree &dynamic_datatree, SymbolTable &orig_symbol_table)
// {
//   vector<string> errors;
//   SymbolList new_symbol_list, new_options_symbol_list;
//   OptionsList new_options_list = options_list;
//   SymbolTable *new_symbol_table =  dynamic_datatree.getSymbolTable();
//   vector<string> symbols = symbol_list.get_symbols();

//   for (vector<string>::const_iterator it = symbols.begin(); it != symbols.end(); it++)
//     try
//       {
//         new_symbol_table->getID(*it);
//         new_symbol_list.addSymbol(*it);
//       }
//     catch (SymbolTable::UnknownSymbolIDException &e)
//       {
//         errors.push_back(orig_symbol_table.getName(e.id));
//       }
//     catch (SymbolTable::UnknownSymbolNameException &e)
//       {
//         errors.push_back(e.name);
//       }

//   OptionsList::symbol_list_options_t::const_iterator it = options_list.symbol_list_options.find("instruments");
//   if (it != options_list.symbol_list_options.end())
//     {
//       symbols = it->second.get_symbols();
//       for (vector<string>::const_iterator it1 = symbols.begin(); it1 != symbols.end(); it1++)
//         try
//           {
//             new_symbol_table->getID(*it1);
//             new_options_symbol_list.addSymbol(*it1);
//           }
//         catch (SymbolTable::UnknownSymbolIDException &e)
//           {
//             errors.push_back(orig_symbol_table.getName(e.id));
//           }
//         catch (SymbolTable::UnknownSymbolNameException &e)
//           {
//             errors.push_back(e.name);
//           }
//       new_options_list.symbol_list_options["instruments"] = new_options_symbol_list;
//     }

//   if (!errors.empty())
//     {
//       cerr << endl
//            << "ERROR: The following vars were used in the ramsey_policy statement(s) but  were not declared." << endl
//            << "       This likely means that you declared them as varexo and that they're not in the model" << endl;
//       for (vector<string>::const_iterator it = errors.begin(); it != errors.end(); it++)
//         cerr << *it << endl;
//       exit(EXIT_FAILURE);
//     }
//   return new RamseyPolicyStatement(new_symbol_list, options_list);
// }

RamseyPolicyStatement::RamseyPolicyStatement(const SymbolTable &symbol_table_arg,
                                             const vector<string> &ramsey_policy_list_arg,
                                             const OptionsList &options_list_arg) :
  symbol_table(symbol_table_arg),
  ramsey_policy_list(ramsey_policy_list_arg),
  options_list(options_list_arg)
{
}

void
RamseyPolicyStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  // ramsey_model_present indicates that the model is augmented with the FOC of the planner problem
  mod_file_struct.ramsey_model_present = true;
  // ramsey_policy_present indicates that ramsey_policy instruction for computation of first order approximation 
  // of  a stochastic Ramsey problem if present in the *.mod file
  mod_file_struct.ramsey_policy_present = true;

  /* Fill in option_order of mod_file_struct
     Since ramsey policy needs one further order of derivation (for example, for 1st order
     approximation, it needs 2nd derivatives), we add 1 to the order declared by user */
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
  if (it != options_list.num_options.end())
    {
      int order = atoi(it->second.c_str());
      if (order > 2)
        {
          cerr << "ERROR: ramsey_policy: order > 2 is not  implemented" << endl;
          exit(EXIT_FAILURE);
        }
      mod_file_struct.order_option = max(mod_file_struct.order_option, order + 1);
    }

  // Fill in mod_file_struct.partial_information
  it = options_list.num_options.find("partial_information");
  if (it != options_list.num_options.end() && it->second == "1")
    mod_file_struct.partial_information = true;

  // Option k_order_solver (implicit when order >= 3)
  it = options_list.num_options.find("k_order_solver");
  if ((it != options_list.num_options.end() && it->second == "1")
      || mod_file_struct.order_option >= 3)
    mod_file_struct.k_order_solver = true;
}

void
RamseyPolicyStatement::checkRamseyPolicyList()
{
  for (vector<string>::const_iterator it = ramsey_policy_list.begin();
       it != ramsey_policy_list.end(); it++)
    {
      if (!symbol_table.exists(*it))
        {
          cerr << "ERROR: ramsey_policy: " << *it << " was not declared." << endl;
          exit(EXIT_FAILURE);
        }
      if (symbol_table.getType(*it) != eEndogenous)
        {
          cerr << "ERROR: ramsey_policy: " << *it << " is not endogenous." << endl;
          exit(EXIT_FAILURE);
        }
    }
}

void
RamseyPolicyStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  // Ensure that order 3 implies k_order (#844)
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
  OptionsList::num_options_t::const_iterator it1 = options_list.num_options.find("k_order_solver");
  if ((it1 != options_list.num_options.end() && it1->second == "1")
      || (it != options_list.num_options.end() && atoi(it->second.c_str()) >= 3))
    output << "options_.k_order_solver = 1;" << endl;

  options_list.writeOutput(output);
  output << "var_list_ = char(";
  for (vector<string>::const_iterator it = ramsey_policy_list.begin();
       it != ramsey_policy_list.end(); ++it)
    {
      if (it != ramsey_policy_list.begin())
        output << ",";
      output << "'" << *it << "'";
    }
  output << ");" << endl
         << "ramsey_policy(var_list_);" << endl;
}

DiscretionaryPolicyStatement::DiscretionaryPolicyStatement(const SymbolList &symbol_list_arg,
							   const OptionsList &options_list_arg) :
  symbol_list(symbol_list_arg),
  options_list(options_list_arg)
{
}

void
DiscretionaryPolicyStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.discretionary_policy_present = true;

  if (options_list.symbol_list_options.find("instruments") == options_list.symbol_list_options.end())
    {
      cerr << "ERROR: discretionary_policy: the instruments option is required." << endl;
      exit(EXIT_FAILURE);
    }

  /* Fill in option_order of mod_file_struct
     Since discretionary policy needs one further order of derivation (for example, for 1st order
     approximation, it needs 2nd derivatives), we add 1 to the order declared by user */
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
  if (it != options_list.num_options.end())
    {
      int order = atoi(it->second.c_str());
      if (order > 1)
        {
          cerr << "ERROR: discretionary_policy: order > 1 is not yet implemented" << endl;
          exit(EXIT_FAILURE);
        }
      mod_file_struct.order_option = max(mod_file_struct.order_option, order + 1);
    }

  // Fill in mod_file_struct.partial_information
  it = options_list.num_options.find("partial_information");
  if (it != options_list.num_options.end() && it->second == "1")
    mod_file_struct.partial_information = true;

  // Option k_order_solver (implicit when order >= 3)
  it = options_list.num_options.find("k_order_solver");
  if ((it != options_list.num_options.end() && it->second == "1")
      || mod_file_struct.order_option >= 3)
    mod_file_struct.k_order_solver = true;
}

void
DiscretionaryPolicyStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  // Ensure that order 3 implies k_order (#844)
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
  OptionsList::num_options_t::const_iterator it1 = options_list.num_options.find("k_order_solver");
  if ((it1 != options_list.num_options.end() && it1->second == "1")
      || (it != options_list.num_options.end() && atoi(it->second.c_str()) >= 3))
    output << "options_.k_order_solver = 1;" << endl;

  options_list.writeOutput(output);
  symbol_list.writeOutput("var_list_", output);
  output << "discretionary_policy(var_list_);" << endl;
}

EstimationStatement::EstimationStatement(const SymbolList &symbol_list_arg,
                                         const OptionsList &options_list_arg) :
  symbol_list(symbol_list_arg),
  options_list(options_list_arg)
{
}

void
EstimationStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.estimation_present = true;

  // Fill in option_order of mod_file_struct
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
  if (it != options_list.num_options.end())
    {
      int order = atoi(it->second.c_str());
          
      if (order > 2)
        {
          cerr << "ERROR: order > 2 is not supported in estimation" << endl;
          exit(EXIT_FAILURE);
        }
      
      mod_file_struct.order_option = max(mod_file_struct.order_option, order);
    }
  
  // Fill in mod_file_struct.partial_information
  it = options_list.num_options.find("partial_information");
  if (it != options_list.num_options.end() && it->second == "1")
    mod_file_struct.partial_information = true;

  // Fill in mod_file_struct.estimation_analytic_derivation
  it = options_list.num_options.find("analytic_derivation");
  if (it != options_list.num_options.end() && it->second == "1")
    mod_file_struct.estimation_analytic_derivation = true;

  it = options_list.num_options.find("dsge_var");
  if (it != options_list.num_options.end())
      // Fill in mod_file_struct.dsge_var_calibrated
      mod_file_struct.dsge_var_calibrated = it->second;

  // Fill in mod_file_struct.dsge_var_estimated
  OptionsList::string_options_t::const_iterator it_str = options_list.string_options.find("dsge_var");
  if (it_str != options_list.string_options.end())
    mod_file_struct.dsge_var_estimated = true;

  // Fill in mod_file_struct.bayesian_irf_present
  it = options_list.num_options.find("bayesian_irf");
  if (it != options_list.num_options.end() && it->second == "1")
    mod_file_struct.bayesian_irf_present = true;

  it = options_list.num_options.find("dsge_varlag");
  if (it != options_list.num_options.end())
    if (mod_file_struct.dsge_var_calibrated.empty()
        && !mod_file_struct.dsge_var_estimated)
      {
        cerr << "ERROR: The estimation statement requires a dsge_var option to be passed "
             << "if the dsge_varlag option is passed." << endl;
        exit(EXIT_FAILURE);
      }

  if (!mod_file_struct.dsge_var_calibrated.empty()
      && mod_file_struct.dsge_var_estimated)
    {
      cerr << "ERROR: An estimation statement cannot take more than one dsge_var option." << endl;
      exit(EXIT_FAILURE);
    }

  if (options_list.string_options.find("datafile") == options_list.string_options.end() &&
      !mod_file_struct.estimation_data_statement_present)
    {
      cerr << "ERROR: The estimation statement requires a data file to be supplied via the datafile option." << endl;
      exit(EXIT_FAILURE);
    }

  if (options_list.string_options.find("mode_file") != options_list.string_options.end() &&
      mod_file_struct.estim_params_use_calib)
    {
      cerr << "ERROR: The mode_file option of the estimation statement is incompatible with the use_calibration option of the estimated_params_init block." << endl;
      exit(EXIT_FAILURE);
    }
}

void
EstimationStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);

  // Special treatment for order option and particle filter
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
  if (it == options_list.num_options.end())
    output << "options_.order = 1;" << endl;
  else if (atoi(it->second.c_str()) == 2)
    output << "options_.particle.status = 1;" << endl;

  // Do not check for the steady state in diffuse filter mode (#400)
  it = options_list.num_options.find("diffuse_filter");
  if (it != options_list.num_options.end() && it->second == "1")
    output << "options_.steadystate.nocheck = 1;" << endl;

  symbol_list.writeOutput("var_list_", output);
  output << "oo_recursive_=dynare_estimation(var_list_);" << endl;
}

DynareSensitivityStatement::DynareSensitivityStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
DynareSensitivityStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("identification");
  if (it != options_list.num_options.end()
      && it->second == "1")
    mod_file_struct.identification_present = true;
}

void
DynareSensitivityStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output, "options_gsa");

  /* Ensure that nograph, nodisplay and graph_format are also set in top-level
     options_.
     \todo factorize this code between identification and dynare_sensitivity,
     and provide a generic mechanism for this situation (maybe using regexps) */
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("nodisplay");
  if (it != options_list.num_options.end())
    output << "options_.nodisplay = " << it->second << ";" << endl;
  it = options_list.num_options.find("nograph");
  if (it != options_list.num_options.end())
    output << "options_.nograph = " << it->second << ";" << endl;
  OptionsList::string_options_t::const_iterator it2 = options_list.string_options.find("graph_format");
  if (it2 != options_list.string_options.end())
    output << "options_.graph_format = '" << it2->second << "';" << endl;
  
  output << "dynare_sensitivity(options_gsa);" << endl;
}

RplotStatement::RplotStatement(const SymbolList &symbol_list_arg) :
  symbol_list(symbol_list_arg)
{
}

void
RplotStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  symbol_list.writeOutput("var_list_", output);
  output << "rplot(var_list_);" << endl;
}

UnitRootVarsStatement::UnitRootVarsStatement(void)
{
}

void
UnitRootVarsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "options_.diffuse_filter = 1;" << endl
	 << "options_.steadystate.nocheck = 1;" << endl;
}

PeriodsStatement::PeriodsStatement(int periods_arg) : periods(periods_arg)
{
}

void
PeriodsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "options_.periods = " << periods << ";" << endl;
}

DsampleStatement::DsampleStatement(int val1_arg) : val1(val1_arg), val2(-1)
{
}

DsampleStatement::DsampleStatement(int val1_arg, int val2_arg) : val1(val1_arg), val2(val2_arg)
{
}

void
DsampleStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  if (val2 < 0)
    output << "dsample(" << val1 << ");" << endl;
  else
    output << "dsample(" << val1 << ", " << val2 << ");" << endl;
}

EstimatedParamsStatement::EstimatedParamsStatement(const vector<EstimationParams> &estim_params_list_arg,
                                                   const SymbolTable &symbol_table_arg) :
  estim_params_list(estim_params_list_arg),
  symbol_table(symbol_table_arg)
{
}

void
EstimatedParamsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  for (vector<EstimationParams>::const_iterator it = estim_params_list.begin();
       it != estim_params_list.end(); it++)
    {
      if (it->name == "dsge_prior_weight")
        mod_file_struct.dsge_prior_weight_in_estimated_params = true;

      // Handle case of degenerate beta prior
      if (it->prior == eBeta)
        try
          {
            if (it->mean->eval(eval_context_t()) == 0.5
                && it->std->eval(eval_context_t()) == 0.5)
              {
                cerr << "ERROR: The prior density is not defined for the beta distribution when the mean = standard deviation = 0.5." << endl;
                exit(EXIT_FAILURE);
              }
          }
        catch (ExprNode::EvalException &e)
          {
            // We don't have enough information to compute the numerical value, skip the test
          }
    }

  // Check that no parameter/endogenous is declared twice in the block
  set<string> already_declared;
  set<pair<string, string> > already_declared_corr;
  for (vector<EstimationParams>::const_iterator it = estim_params_list.begin();
       it != estim_params_list.end(); it++)
    {
      if (it->type == 3) // Correlation
        {
          // Use lexical ordering for the pair of symbols
          pair<string, string> x = it->name < it->name2 ? make_pair(it->name, it->name2) : make_pair(it->name2, it->name);

          if (already_declared_corr.find(x) == already_declared_corr.end())
            already_declared_corr.insert(x);
          else
            {
              cerr << "ERROR: in `estimated_params' block, the correlation between " << it->name << " and " << it->name2 << " is declared twice." << endl;
              exit(EXIT_FAILURE);
            }
        }
      else
        {
          if (already_declared.find(it->name) == already_declared.end())
            already_declared.insert(it->name);
          else
            {
              cerr << "ERROR: in `estimated_params' block, the symbol " << it->name << " is declared twice." << endl;
              exit(EXIT_FAILURE);
            }
        }
    }

  // Fill in mod_file_struct.estimated_parameters (related to #469)
  for (vector<EstimationParams>::const_iterator it = estim_params_list.begin();
       it != estim_params_list.end(); it++)
    if (it->type == 2 && it->name != "dsge_prior_weight")
      mod_file_struct.estimated_parameters.insert(symbol_table.getID(it->name));
}

void
EstimatedParamsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "global estim_params_" << endl
         << "estim_params_.var_exo = [];" << endl
         << "estim_params_.var_endo = [];" << endl
         << "estim_params_.corrx = [];" << endl
         << "estim_params_.corrn = [];" << endl
         << "estim_params_.param_vals = [];" << endl;

  for (vector<EstimationParams>::const_iterator it = estim_params_list.begin(); it != estim_params_list.end(); it++)
    {
      int symb_id = symbol_table.getTypeSpecificID(it->name) + 1;
      SymbolType symb_type = symbol_table.getType(it->name);

      switch (it->type)
        {
        case 1:
          if (symb_type == eExogenous)
            output << "estim_params_.var_exo = [estim_params_.var_exo; ";
          else if (symb_type == eEndogenous)
            output << "estim_params_.var_endo = [estim_params_.var_endo; ";
          output << symb_id;
          break;
        case 2:
          output << "estim_params_.param_vals = [estim_params_.param_vals; "
                 << symb_id;
          break;
        case 3:
          if (symb_type == eExogenous)
            output << "estim_params_.corrx = [estim_params_.corrx; ";
          else if (symb_type == eEndogenous)
            output << "estim_params_.corrn = [estim_params_.corrn; ";
          output << symb_id << " " << symbol_table.getTypeSpecificID(it->name2)+1;
          break;
        }
      output << ", ";
      it->init_val->writeOutput(output);
      output << ", ";
      it->low_bound->writeOutput(output);
      output << ", ";
      it->up_bound->writeOutput(output);
      output << ", "
             << it->prior << ", ";
      it->mean->writeOutput(output);
      output << ", ";
      it->std->writeOutput(output);
      output << ", ";
      it->p3->writeOutput(output);
      output << ", ";
      it->p4->writeOutput(output);
      output << ", ";
      it->jscale->writeOutput(output);
      output << " ];" << endl;
    }
}

EstimatedParamsInitStatement::EstimatedParamsInitStatement(const vector<EstimationParams> &estim_params_list_arg,
                                                           const SymbolTable &symbol_table_arg,
                                                           const bool use_calibration_arg) :
  estim_params_list(estim_params_list_arg),
  symbol_table(symbol_table_arg),
  use_calibration(use_calibration_arg)
{
}

void
EstimatedParamsInitStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  if (use_calibration)
    mod_file_struct.estim_params_use_calib = true;
}

void
EstimatedParamsInitStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  if (use_calibration)
    output << "options_.use_calibration_initialization = 1;" << endl;

  for (vector<EstimationParams>::const_iterator it = estim_params_list.begin(); it != estim_params_list.end(); it++)
    {
      int symb_id = symbol_table.getTypeSpecificID(it->name) + 1;
      SymbolType symb_type = symbol_table.getType(it->name);

      if (it->type < 3)
        {
          if (symb_type == eExogenous)
            {
              output << "tmp1 = find(estim_params_.var_exo(:,1)==" << symb_id << ");" << endl;
              output << "estim_params_.var_exo(tmp1,2) = ";
              it->init_val->writeOutput(output);
              output << ";" << endl;
            }
          else if (symb_type == eEndogenous)
            {
              output << "tmp1 = find(estim_params_.var_endo(:,1)==" << symb_id << ");" << endl;
              output << "estim_params_.var_endo(tmp1,2) = ";
              it->init_val->writeOutput(output);
              output << ";" << endl;
            }
          else if (symb_type == eParameter)
            {
              output << "tmp1 = find(estim_params_.param_vals(:,1)==" << symb_id << ");" << endl;
              output << "estim_params_.param_vals(tmp1,2) = ";
              it->init_val->writeOutput(output);
              output << ";" << endl;
            }
        }
      else
        {
          if (symb_type == eExogenous)
            {
              output << "tmp1 = find((estim_params_.corrx(:,1)==" << symb_id << " & estim_params_.corrx(:,2)==" << symbol_table.getTypeSpecificID(it->name2)+1 << ") | "
                     <<             "(estim_params_.corrx(:,2)==" << symb_id << " & estim_params_.corrx(:,1)==" << symbol_table.getTypeSpecificID(it->name2)+1 << "));" << endl;
              output << "estim_params_.corrx(tmp1,3) = ";
              it->init_val->writeOutput(output);
              output << ";" << endl;
            }
          else if (symb_type == eEndogenous)
            {
              output << "tmp1 = find((estim_params_.corrn(:,1)==" << symb_id << " & estim_params_.corrn(:,2)==" << symbol_table.getTypeSpecificID(it->name2)+1 << ") | "
                     <<             "(estim_params_.corrn(:,2)==" << symb_id << " & estim_params_.corrn(:,1)==" << symbol_table.getTypeSpecificID(it->name2)+1 << "));" << endl;
              output << "estim_params_.corrn(tmp1,3) = ";
              it->init_val->writeOutput(output);
              output << ";" << endl;
            }
        }
    }
}

EstimatedParamsBoundsStatement::EstimatedParamsBoundsStatement(const vector<EstimationParams> &estim_params_list_arg,
                                                               const SymbolTable &symbol_table_arg) :
  estim_params_list(estim_params_list_arg),
  symbol_table(symbol_table_arg)
{
}

void
EstimatedParamsBoundsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  for (vector<EstimationParams>::const_iterator it = estim_params_list.begin(); it != estim_params_list.end(); it++)
    {
      int symb_id = symbol_table.getTypeSpecificID(it->name) + 1;
      SymbolType symb_type = symbol_table.getType(it->name);

      if (it->type < 3)
        {
          if (symb_type == eExogenous)
            {
              output << "tmp1 = find(estim_params_.var_exo(:,1)==" << symb_id << ");" << endl;

              output << "estim_params_.var_exo(tmp1,3) = ";
              it->low_bound->writeOutput(output);
              output << ";" << endl;

              output << "estim_params_.var_exo(tmp1,4) = ";
              it->up_bound->writeOutput(output);
              output << ";" << endl;
            }
          else if (symb_type == eEndogenous)
            {
              output << "tmp1 = find(estim_params_.var_endo(:,1)==" << symb_id << ");" << endl;

              output << "estim_params_.var_endo(tmp1,3) = ";
              it->low_bound->writeOutput(output);
              output << ";" << endl;

              output << "estim_params_.var_endo(tmp1,4) = ";
              it->up_bound->writeOutput(output);
              output << ";" << endl;
            }
          else if (symb_type == eParameter)
            {
              output << "tmp1 = find(estim_params_.param_vals(:,1)==" << symb_id << ");" << endl;

              output << "estim_params_.param_vals(tmp1,3) = ";
              it->low_bound->writeOutput(output);
              output << ";" << endl;

              output << "estim_params_.param_vals(tmp1,4) = ";
              it->up_bound->writeOutput(output);
              output << ";" << endl;
            }
        }
      else
        {
          if (symb_type == eExogenous)
            {
              output << "tmp1 = find((estim_params_.corrx(:,1)==" << symb_id << " & estim_params_.corrx(:,2)==" << symbol_table.getTypeSpecificID(it->name2)+1 << ") | "
                     <<             "(estim_params_.corrx(:,2)==" << symb_id << " & estim_params_.corrx(:,1)==" << symbol_table.getTypeSpecificID(it->name2)+1 << "));" << endl;

              output << "estim_params_.corrx(tmp1,4) = ";
              it->low_bound->writeOutput(output);
              output << ";" << endl;

              output << "estim_params_.corrx(tmp1,5) = ";
              it->up_bound->writeOutput(output);
              output << ";" << endl;
            }
          else if (symb_type == eEndogenous)
            {
              output << "tmp1 = find((estim_params_.corrn(:,1)==" << symb_id << " & estim_params_.corrn(:,2)==" << symbol_table.getTypeSpecificID(it->name2)+1 << ") | "
                     <<             "(estim_params_.corrn(:,2)==" << symb_id << " & estim_params_.corrn(:,1)==" << symbol_table.getTypeSpecificID(it->name2)+1 << "));" << endl;

              output << "estim_params_.corrn(tmp1,4) = ";
              it->low_bound->writeOutput(output);
              output << ";" << endl;

              output << "estim_params_.corrn(tmp1,5) = ";
              it->up_bound->writeOutput(output);
              output << ";" << endl;
            }
        }
    }
}

ObservationTrendsStatement::ObservationTrendsStatement(const trend_elements_t &trend_elements_arg,
                                                       const SymbolTable &symbol_table_arg) :
  trend_elements(trend_elements_arg),
  symbol_table(symbol_table_arg)
{
}

void
ObservationTrendsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "options_.trend_coeff = {};" << endl;
  for (trend_elements_t::const_iterator it = trend_elements.begin(); it != trend_elements.end(); it++)
    {
      SymbolType type = symbol_table.getType(it->first);
      if (type == eEndogenous)
        {
          output << "tmp1 = strmatch('" << it->first << "',options_.varobs,'exact');" << endl;
          output << "options_.trend_coeffs{tmp1} = '";
          it->second->writeOutput(output);
          output << "';" << endl;
        }
      else
        cerr << "Warning : Non-variable symbol used in observation_trends: " << it->first << endl;
    }
}

OsrParamsStatement::OsrParamsStatement(const SymbolList &symbol_list_arg, const SymbolTable &symbol_table_arg) :
  symbol_list(symbol_list_arg),
  symbol_table(symbol_table_arg)
{
}

void
OsrParamsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  if (mod_file_struct.osr_params_present)
    cerr << "WARNING: You have more than one osr_params statement in the .mod file." << endl;
  mod_file_struct.osr_params_present = true;
}

void
OsrParamsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  symbol_list.writeOutput("M_.osr.param_names", output);
  output << "M_.osr.param_names = cellstr(M_.osr.param_names);" << endl
         << "M_.osr.param_indices = zeros(length(M_.osr.param_names), 1);" << endl;
  int i = 0;
  vector<string> symbols = symbol_list.get_symbols();
  for (vector<string>::const_iterator it = symbols.begin(); it != symbols.end(); it++)
    output << "M_.osr.param_indices(" << ++i <<") = " << symbol_table.getTypeSpecificID(*it) + 1 << ";" << endl;
}

OsrStatement::OsrStatement(const SymbolList &symbol_list_arg,
                           const OptionsList &options_list_arg) :
  symbol_list(symbol_list_arg),
  options_list(options_list_arg)
{
}

OsrParamsBoundsStatement::OsrParamsBoundsStatement(const vector<OsrParams> &osr_params_list_arg) :
  osr_params_list(osr_params_list_arg)
{
}

void
OsrParamsBoundsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  if (!mod_file_struct.osr_params_present)
    {
      cerr << "ERROR: you must have an osr_params statement before the osr_params_bounds block." << endl;
      exit(EXIT_FAILURE);
    }
}

void
OsrParamsBoundsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{

  output << "M_.osr.param_bounds = [-inf(length(M_.osr.param_names), 1), inf(length(M_.osr.param_names), 1)];" << endl;

  for (vector<OsrParams>::const_iterator it = osr_params_list.begin();
       it != osr_params_list.end(); it++)
    {
      output << "M_.osr.param_bounds(strcmp(M_.osr.param_names, '" << it->name << "'), :) = [";
      it->low_bound->writeOutput(output);
      output << ", ";
      it->up_bound->writeOutput(output);
      output << "];" << endl;
    }
}

void
OsrStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.osr_present = true;

  // Fill in option_order of mod_file_struct
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
  if (it != options_list.num_options.end())
    mod_file_struct.order_option = max(mod_file_struct.order_option, atoi(it->second.c_str()));

  // Fill in mod_file_struct.partial_information
  it = options_list.num_options.find("partial_information");
  if (it != options_list.num_options.end() && it->second == "1")
    mod_file_struct.partial_information = true;

  // Option k_order_solver (implicit when order >= 3)
  it = options_list.num_options.find("k_order_solver");
  if ((it != options_list.num_options.end() && it->second == "1")
      || mod_file_struct.order_option >= 3)
    mod_file_struct.k_order_solver = true;
}

void
OsrStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  // Ensure that order 3 implies k_order (#844)
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
  OptionsList::num_options_t::const_iterator it1 = options_list.num_options.find("k_order_solver");
  if ((it1 != options_list.num_options.end() && it1->second == "1")
      || (it != options_list.num_options.end() && atoi(it->second.c_str()) >= 3))
    output << "options_.k_order_solver = 1;" << endl;

  options_list.writeOutput(output);
  symbol_list.writeOutput("var_list_", output);
  output << "oo_.osr = osr(var_list_,M_.osr.param_names,M_.osr.variable_indices,M_.osr.variable_weights);" << endl;
}

OptimWeightsStatement::OptimWeightsStatement(const var_weights_t &var_weights_arg,
                                             const covar_weights_t &covar_weights_arg,
                                             const SymbolTable &symbol_table_arg) :
  var_weights(var_weights_arg),
  covar_weights(covar_weights_arg),
  symbol_table(symbol_table_arg)
{
}

void
OptimWeightsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.optim_weights_present = true;
}

void
OptimWeightsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "%" << endl
         << "% OPTIM_WEIGHTS" << endl
         << "%" << endl
         << "M_.osr.variable_weights = sparse(M_.endo_nbr,M_.endo_nbr);" << endl
         << "M_.osr.variable_indices = [];" << endl << endl;

  for (var_weights_t::const_iterator it = var_weights.begin();
       it != var_weights.end(); it++)
    {
      const string &name = it->first;
      const expr_t value = it->second;
      int id = symbol_table.getTypeSpecificID(name) + 1;
      output << "M_.osr.variable_weights(" << id << "," << id << ") = ";
      value->writeOutput(output);
      output << ";" << endl;
      output << "M_.osr.variable_indices = [M_.osr.variable_indices; " << id << "];" << endl;
    }

  for (covar_weights_t::const_iterator it = covar_weights.begin();
       it != covar_weights.end(); it++)
    {
      const string &name1 = it->first.first;
      const string &name2 = it->first.second;
      const expr_t value = it->second;
      int id1 = symbol_table.getTypeSpecificID(name1) + 1;
      int id2 = symbol_table.getTypeSpecificID(name2) + 1;
      output << "M_.osr.variable_weights(" << id1 << "," << id2 << ") = ";
      value->writeOutput(output);
      output << ";" << endl;
      output << "M_.osr.variable_indices = [M_.osr.variable_indices; " << id1 << "; " << id2 << "];" << endl;
    }
}

DynaSaveStatement::DynaSaveStatement(const SymbolList &symbol_list_arg,
                                     const string &filename_arg) :
  symbol_list(symbol_list_arg),
  filename(filename_arg)
{
}

void
DynaSaveStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  symbol_list.writeOutput("var_list_", output);
  output << "dynasave('" << filename
         << "',var_list_);" << endl;
}

DynaTypeStatement::DynaTypeStatement(const SymbolList &symbol_list_arg,
                                     const string &filename_arg) :
  symbol_list(symbol_list_arg),
  filename(filename_arg)
{
}

void
DynaTypeStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  symbol_list.writeOutput("var_list_", output);
  output << "dynatype('" << filename
         << "',var_list_);" << endl;
}

ModelComparisonStatement::ModelComparisonStatement(const filename_list_t &filename_list_arg,
                                                   const OptionsList &options_list_arg) :
  filename_list(filename_list_arg),
  options_list(options_list_arg)
{
}

void
ModelComparisonStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);

  output << "ModelNames_ = {};" << endl;
  output << "ModelPriors_ = [];" << endl;

  for (filename_list_t::const_iterator it = filename_list.begin();
       it != filename_list.end(); it++)
    {
      output << "ModelNames_ = { ModelNames_{:} '" << (*it).first << "'};" << endl;
      output << "ModelPriors_ = [ ModelPriors_ ; " << (*it).second << "];" << endl;
    }
  output << "oo_ = model_comparison(ModelNames_,ModelPriors_,oo_,options_,M_.fname);" << endl;
}

PlannerObjectiveStatement::PlannerObjectiveStatement(StaticModel *model_tree_arg) :
  model_tree(model_tree_arg)
{
}

PlannerObjectiveStatement::~PlannerObjectiveStatement()
{
  delete model_tree;
}

void
PlannerObjectiveStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  assert(model_tree->equation_number() == 1);
  if (model_tree->exoPresentInEqs())
    {
      cerr << "ERROR: You cannot include exogenous variables in the planner objective. Please "
           << "define an auxiliary endogenous variable like eps_aux=epsilon and use it instead "
           << "of the varexo." << endl;
      exit(EXIT_FAILURE);
    }
  mod_file_struct.planner_objective_present = true;
}

StaticModel *
PlannerObjectiveStatement::getPlannerObjective() const
{
  return model_tree;
}

void
PlannerObjectiveStatement::computingPass()
{
  model_tree->computingPass(eval_context_t(), false, true, true, none, false, false);
}

void
PlannerObjectiveStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  model_tree->writeStaticFile(basename + "_objective", false, false, false, false);
}

BVARDensityStatement::BVARDensityStatement(int maxnlags_arg, const OptionsList &options_list_arg) :
  maxnlags(maxnlags_arg),
  options_list(options_list_arg)
{
}

void
BVARDensityStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.bvar_present = true;
}

void
BVARDensityStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  output << "bvar_density(" << maxnlags << ");" << endl;
}

BVARForecastStatement::BVARForecastStatement(int nlags_arg, const OptionsList &options_list_arg) :
  nlags(nlags_arg),
  options_list(options_list_arg)
{
}

void
BVARForecastStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.bvar_present = true;
}

void
BVARForecastStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  output << "bvar_forecast(" << nlags << ");" << endl;
}

SBVARStatement::SBVARStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
SBVARStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.bvar_present = true;
}

void
SBVARStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  output << "sbvar(M_,options_);" << endl;
}

MSSBVAREstimationStatement::MSSBVAREstimationStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
MSSBVAREstimationStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.bvar_present = true;

  if (options_list.num_options.find("ms.create_init") == options_list.num_options.end())
    if (options_list.string_options.find("datafile") == options_list.string_options.end() ||
        options_list.num_options.find("ms.initial_year") == options_list.num_options.end())
      {
        cerr << "ERROR: If you do not pass no_create_init to ms_estimation, "
             << "you must pass the datafile and initial_year options." << endl;
        exit(EXIT_FAILURE);
      }
}

void
MSSBVAREstimationStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl
         << "options_.datafile = '';" << endl;
  options_list.writeOutput(output);
  output << "[options_, oo_] = ms_estimation(M_, options_, oo_);" << endl;
}

MSSBVARSimulationStatement::MSSBVARSimulationStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
MSSBVARSimulationStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.bvar_present = true;
}

void
MSSBVARSimulationStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl;
  options_list.writeOutput(output);

  // Redeclare drop option if necessary
  OptionsList::num_options_t::const_iterator mh_replic_it = options_list.num_options.find("ms.mh_replic");
  OptionsList::num_options_t::const_iterator thinning_factor_it = options_list.num_options.find("ms.thinning_factor");
  OptionsList::num_options_t::const_iterator drop_it = options_list.num_options.find("ms.drop");
  if (mh_replic_it != options_list.num_options.end() || thinning_factor_it != options_list.num_options.end())
    if (drop_it == options_list.num_options.end())
      output << "options_.ms.drop = 0.1*options_.ms.mh_replic*options_.ms.thinning_factor;" << endl;

  output << "[options_, oo_] = ms_simulation(M_, options_, oo_);" << endl;
}

MSSBVARComputeMDDStatement::MSSBVARComputeMDDStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
MSSBVARComputeMDDStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.bvar_present = true;
}

void
MSSBVARComputeMDDStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl;
  options_list.writeOutput(output);
  output << "[options_, oo_] = ms_compute_mdd(M_, options_, oo_);" << endl;
}

MSSBVARComputeProbabilitiesStatement::MSSBVARComputeProbabilitiesStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
MSSBVARComputeProbabilitiesStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.bvar_present = true;

  if (options_list.num_options.find("ms.real_time_smoothed_probabilities") != options_list.num_options.end())
    if (options_list.num_options.find("ms.filtered_probabilities") != options_list.num_options.end())
      {
        cerr << "ERROR: You may only pass one of real_time_smoothed "
             << "and filtered_probabilities to ms_compute_probabilities." << endl;
        exit(EXIT_FAILURE);
      }
}

void
MSSBVARComputeProbabilitiesStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl;
  options_list.writeOutput(output);
  output << "[options_, oo_] = ms_compute_probabilities(M_, options_, oo_);" << endl;
}

MSSBVARIrfStatement::MSSBVARIrfStatement(const SymbolList &symbol_list_arg,
					 const OptionsList &options_list_arg) :
  symbol_list(symbol_list_arg),
  options_list(options_list_arg)
{
}

void
MSSBVARIrfStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.bvar_present = true;

  bool regime_present = false;
  bool regimes_present = false;
  bool filtered_probabilities_present = false;

  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("ms.regimes");
  if (it != options_list.num_options.end())
    regimes_present = true;

  it = options_list.num_options.find("ms.regime");
  if (it != options_list.num_options.end())
    regime_present = true;

  it = options_list.num_options.find("ms.filtered_probabilities");
  if (it != options_list.num_options.end())
    filtered_probabilities_present = true;

  if ((filtered_probabilities_present && regime_present) ||
      (filtered_probabilities_present && regimes_present) ||
      (regimes_present && regime_present))
      {
        cerr << "ERROR: You may only pass one of regime, regimes and "
             << "filtered_probabilities to ms_irf" << endl;
        exit(EXIT_FAILURE);
      }
}

void
MSSBVARIrfStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl;
  symbol_list.writeOutput("var_list_", output);
  options_list.writeOutput(output);
  output << "[options_, oo_] = ms_irf(var_list_,M_, options_, oo_);" << endl;
}

MSSBVARForecastStatement::MSSBVARForecastStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
MSSBVARForecastStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.bvar_present = true;

  if (options_list.num_options.find("ms.regimes") != options_list.num_options.end())
    if (options_list.num_options.find("ms.regime") != options_list.num_options.end())
      {
        cerr << "ERROR: You may only pass one of regime and regimes to ms_forecast" << endl;
        exit(EXIT_FAILURE);
      }
}

void
MSSBVARForecastStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl;
  options_list.writeOutput(output);
  output << "[options_, oo_] = ms_forecast(M_, options_, oo_);" << endl;
}

MSSBVARVarianceDecompositionStatement::MSSBVARVarianceDecompositionStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
MSSBVARVarianceDecompositionStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.bvar_present = true;

  bool regime_present = false;
  bool regimes_present = false;
  bool filtered_probabilities_present = false;

  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("ms.regimes");
  if (it != options_list.num_options.end())
    regimes_present = true;

  it = options_list.num_options.find("ms.regime");
  if (it != options_list.num_options.end())
    regime_present = true;

  it = options_list.num_options.find("ms.filtered_probabilities");
  if (it != options_list.num_options.end())
    filtered_probabilities_present = true;

  if ((filtered_probabilities_present && regime_present) ||
      (filtered_probabilities_present && regimes_present) ||
      (regimes_present && regime_present))
      {
        cerr << "ERROR: You may only pass one of regime, regimes and "
             << "filtered_probabilities to ms_variance_decomposition" << endl;
        exit(EXIT_FAILURE);
      }
}

void
MSSBVARVarianceDecompositionStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl;
  options_list.writeOutput(output);
  output << "[options_, oo_] = ms_variance_decomposition(M_, options_, oo_);" << endl;
}

IdentificationStatement::IdentificationStatement(const OptionsList &options_list_arg)
{
  options_list = options_list_arg;
  if (options_list.num_options.find("max_dim_cova_group") != options_list.num_options.end())
    if (atoi(options_list.num_options["max_dim_cova_group"].c_str()) == 0)
      {
        cerr << "ERROR: The max_dim_cova_group option to identification only accepts integers > 0." << endl;
        exit(EXIT_FAILURE);
      }
}

void
IdentificationStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.identification_present = true;
}

void
IdentificationStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output, "options_ident");

  /* Ensure that nograph, nodisplay and graph_format are also set in top-level
     options_.
     \todo factorize this code between identification and dynare_sensitivity,
     and provide a generic mechanism for this situation (maybe using regexps) */
  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("nodisplay");
  if (it != options_list.num_options.end())
    output << "options_.nodisplay = " << it->second << ";" << endl;
  it = options_list.num_options.find("nograph");
  if (it != options_list.num_options.end())
    output << "options_.nograph = " << it->second << ";" << endl;
  OptionsList::string_options_t::const_iterator it2 = options_list.string_options.find("graph_format");
  if (it2 != options_list.string_options.end())
    output << "options_.graph_format = '" << it2->second << "';" << endl;

  output << "dynare_identification(options_ident);" << endl;
}

WriteLatexDynamicModelStatement::WriteLatexDynamicModelStatement(const DynamicModel &dynamic_model_arg) :
  dynamic_model(dynamic_model_arg)
{
}

void
WriteLatexDynamicModelStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  dynamic_model.writeLatexFile(basename);
}

WriteLatexStaticModelStatement::WriteLatexStaticModelStatement(const StaticModel &static_model_arg) :
  static_model(static_model_arg)
{
}

void
WriteLatexStaticModelStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  static_model.writeLatexFile(basename);
}

WriteLatexOriginalModelStatement::WriteLatexOriginalModelStatement(const DynamicModel &original_model_arg) :
  original_model(original_model_arg)
{
}

void
WriteLatexOriginalModelStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  original_model.writeLatexOriginalFile(basename);
}

ShockDecompositionStatement::ShockDecompositionStatement(const SymbolList &symbol_list_arg,
                                                         const OptionsList &options_list_arg) :
  symbol_list(symbol_list_arg),
  options_list(options_list_arg)
{
}

void
ShockDecompositionStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  symbol_list.writeOutput("var_list_", output);
  output << "[oo_,M_]= shock_decomposition(M_,oo_,options_,var_list_,bayestopt_,estim_params_);" << endl;
}

RealtimeShockDecompositionStatement::RealtimeShockDecompositionStatement(const SymbolList &symbol_list_arg,
                                                                         const OptionsList &options_list_arg) :
  symbol_list(symbol_list_arg),
  options_list(options_list_arg)
{
}

void
RealtimeShockDecompositionStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  symbol_list.writeOutput("var_list_", output);
  output << "oo_ = realtime_shock_decomposition(M_,oo_,options_,var_list_,bayestopt_,estim_params_);" << endl;
}

PlotShockDecompositionStatement::PlotShockDecompositionStatement(const SymbolList &symbol_list_arg,
                                                                 const OptionsList &options_list_arg) :
  symbol_list(symbol_list_arg),
  options_list(options_list_arg)
{
}

void
PlotShockDecompositionStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "options_ = set_default_plot_shock_decomposition_options(options_);" << endl;
  options_list.writeOutput(output);
  symbol_list.writeOutput("var_list_", output);
  output << "plot_shock_decomposition(M_, oo_, options_, var_list_);" << endl;
}

ConditionalForecastStatement::ConditionalForecastStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
ConditionalForecastStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output, "options_cond_fcst_");
  output << "imcforecast(constrained_paths_, constrained_vars_, options_cond_fcst_);" << endl;
}

PlotConditionalForecastStatement::PlotConditionalForecastStatement(int periods_arg, const SymbolList &symbol_list_arg) :
  periods(periods_arg),
  symbol_list(symbol_list_arg)
{
}

void
PlotConditionalForecastStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  symbol_list.writeOutput("var_list_", output);
  if (periods == -1)
    output << "plot_icforecast(var_list_,[],options_);" << endl;
  else
    output << "plot_icforecast(var_list_, " << periods << ",options_);" << endl;
}

SvarIdentificationStatement::SvarIdentificationStatement(const svar_identification_restrictions_t &restrictions_arg,
                                                         const bool &upper_cholesky_present_arg,
                                                         const bool &lower_cholesky_present_arg,
                                                         const bool &constants_exclusion_present_arg,
                                                         const SymbolTable &symbol_table_arg) :
  restrictions(restrictions_arg),
  upper_cholesky_present(upper_cholesky_present_arg),
  lower_cholesky_present(lower_cholesky_present_arg),
  constants_exclusion_present(constants_exclusion_present_arg),
  symbol_table(symbol_table_arg)
{
}

int
SvarIdentificationStatement::getMaxLag() const
{
  int max_lag = 0;
  for (svar_identification_restrictions_t::const_iterator it = restrictions.begin(); it != restrictions.end(); it++)
    if (it->lag > max_lag)
      max_lag = it->lag;

  return max_lag;
}

void
SvarIdentificationStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  // no equations OK with Svar Identification
  mod_file_struct.bvar_present = true;
  if (!mod_file_struct.svar_identification_present)
    mod_file_struct.svar_identification_present = true;
  else
    {
      cerr << "ERROR: You may only have one svar_identification block in your .mod file." << endl;
      exit(EXIT_FAILURE);
    }

  if (upper_cholesky_present && lower_cholesky_present)
    {
      cerr << "ERROR: Within the svar_identification statement, you may only have one of "
           << "upper_cholesky and lower_cholesky." << endl;
      exit(EXIT_FAILURE);
    }
}

void
SvarIdentificationStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  assert(!(upper_cholesky_present && lower_cholesky_present));
  output << "%" << endl
         << "% SVAR IDENTIFICATION" << endl
         << "%" << endl;

  if (upper_cholesky_present)
    output << "options_.ms.upper_cholesky=1;" << endl;

  if (lower_cholesky_present)
    output << "options_.ms.lower_cholesky=1;" << endl;

  if (constants_exclusion_present)
    output << "options_.ms.constants_exclusion=1;" << endl;

  if (!upper_cholesky_present && !lower_cholesky_present)
    {
      int n = symbol_table.endo_nbr();
      int m = 1; // this is the constant, not the shocks
      int r = getMaxLag();
      int k = r*n+m;

      if (k < 1)
        {
          cerr << "ERROR: lag = " << r
               << ", number of endogenous variables = " << n
               << ", number of exogenous variables = " << m
               << ". If this is not a logical error in the specification"
               << " of the .mod file, please report it to the Dynare Team." << endl;
          exit(EXIT_FAILURE);
        }
      if (n < 1)
        {
          cerr << "ERROR: Number of endogenous variables = " << n << "< 1. If this is not a logical "
               << "error in the specification of the .mod file, please report it to the Dynare Team." << endl;
          exit(EXIT_FAILURE);
        }
      output << "options_.ms.Qi = cell(" << n << ",1);" << endl;
      output << "options_.ms.Ri = cell(" << n << ",1);" << endl;

      for (svar_identification_restrictions_t::const_iterator it = restrictions.begin(); it != restrictions.end(); it++)
        {
          assert(it->lag >= 0);
	  if (it->lag == 0)
            output << "options_.ms.Qi{" << it->equation << "}(" << it->restriction_nbr << ", " << it->variable + 1 << ") = ";
	  else
	    {
	      int col = (it->lag-1)*n+it->variable+1;
	      if (col > k)
                {
                  cerr << "ERROR: lag =" << it->lag << ", num endog vars = " << n << "current endog var index = " << it->variable << ". Index "
                       << "out of bounds. If the above does not represent a logical error, please report this to the Dyanre Team." << endl;
                  exit(EXIT_FAILURE);
                }
	      output << "options_.ms.Ri{" << it->equation << "}(" << it->restriction_nbr << ", " << col << ") = ";
	    }
          it->value->writeOutput(output);
          output << ";" << endl;
        }
      output << "options_.ms.nlags = " << r << ";" << endl;
    }
}

MarkovSwitchingStatement::MarkovSwitchingStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
  OptionsList::num_options_t::const_iterator it_num = options_list.num_options.find("ms.restrictions");
  if (it_num != options_list.num_options.end())
    {
      using namespace boost;
      OptionsList::num_options_t::const_iterator it_num_regimes =
        options_list.num_options.find("ms.number_of_regimes");
      assert(it_num_regimes !=  options_list.num_options.end());
      int num_regimes = lexical_cast< int >(it_num_regimes->second);

      vector<string> tokenizedRestrictions;
      split(tokenizedRestrictions, it_num->second, is_any_of("["), token_compress_on);
      for (vector<string>::iterator it = tokenizedRestrictions.begin();
            it != tokenizedRestrictions.end(); it++ )
        if (it->size() > 0)
          {
            vector<string> restriction;
            split(restriction, *it, is_any_of("], "));
            for (vector<string>::iterator it1 = restriction.begin();
                 it1 != restriction.end(); )
              if (it1->empty())
                restriction.erase(it1);
              else
                it1++;

            if (restriction.size() != 3)
              {
                cerr << "ERROR: restrictions in the subsample statement must be specified in the form "
                     << "[current_period_regime, next_period_regime, transition_probability]" << endl;
                exit(EXIT_FAILURE);
              }

            try
              {
                int from_regime = lexical_cast< int >(restriction[0]);
                int to_regime = lexical_cast< int >(restriction[1]);
                if (from_regime > num_regimes || to_regime > num_regimes)
                  {
                    cerr << "ERROR: the regimes specified in the restrictions option must be "
                         << "<= the number of regimes specified in the number_of_regimes option" << endl;
                    exit(EXIT_FAILURE);
                  }

                if (restriction_map.find(make_pair(from_regime, to_regime)) !=
                    restriction_map.end())
                  {
                    cerr << "ERROR: two restrictions were given for: " << from_regime << ", "
                         << to_regime << endl;
                    exit(EXIT_FAILURE);
                  }

                double transition_probability = lexical_cast< double >(restriction[2]);
                if (transition_probability > 1.0)
                  {
                    cerr << "ERROR: the transition probability, " << transition_probability
                         << " must be less than 1" << endl;
                    exit(EXIT_FAILURE);
                  }
                restriction_map[make_pair(from_regime, to_regime)] = transition_probability;
              }
            catch (const bad_lexical_cast &)
              {
                cerr << "ERROR: The first two arguments for a restriction must be integers "
                     << "specifying the regime and the last must be a double specifying the "
                     << "transition probability. You wrote [" << *it << endl;
                exit(EXIT_FAILURE);
              }
          }
    }
}

void
MarkovSwitchingStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  OptionsList::num_options_t::const_iterator itChain = options_list.num_options.find("ms.chain");
  assert(itChain != options_list.num_options.end());
  int chainNumber = atoi(itChain->second.c_str());
  if (++mod_file_struct.last_markov_switching_chain != chainNumber)
    {
      cerr << "ERROR: The markov_switching chain option takes consecutive integers "
           << "beginning at 1." << endl;
      exit(EXIT_FAILURE);
    }

  OptionsList::num_options_t::const_iterator it_num = options_list.num_options.find("ms.restrictions");
  if (it_num != options_list.num_options.end())
    {
      using namespace boost;
      OptionsList::num_options_t::const_iterator it_num_regimes =
        options_list.num_options.find("ms.number_of_regimes");
      assert(it_num_regimes != options_list.num_options.end());
      int num_regimes = lexical_cast< int >(it_num_regimes->second);
      vector<double> col_trans_prob_sum (num_regimes, 0);
      vector<double> row_trans_prob_sum (num_regimes, 0);
      vector<bool> all_restrictions_in_row (num_regimes, true);
      vector<bool> all_restrictions_in_col (num_regimes, true);
      for (int row=0; row<num_regimes; row++)
        for (int col=0; col<num_regimes; col++)
          if (restriction_map.find(make_pair(row+1, col+1)) != restriction_map.end())
            {
              row_trans_prob_sum[row] += restriction_map[make_pair(row+1, col+1)];
              col_trans_prob_sum[col] += restriction_map[make_pair(row+1, col+1)];
            }
          else
            {
              all_restrictions_in_row[row] = false;
              all_restrictions_in_col[col] = false;
            }

      for (int i=0; i<num_regimes; i++)
        {
          if (all_restrictions_in_row[i])
          {
            if (row_trans_prob_sum[i] != 1.0)
              {
                cerr << "ERROR: When all transitions probabilities are specified for a certain "
                     << "regime, they must sum to 1" << endl;
                exit(EXIT_FAILURE);
              }
          }
        else
          if (row_trans_prob_sum[i] >= 1.0)
            {
              cerr << "ERROR: When transition probabilites are not specified for every regime, "
                   << "their sum must be < 1" << endl;
              exit(EXIT_FAILURE);
            }

        if (all_restrictions_in_col[i])
          {
            if (col_trans_prob_sum[i] != 1.0)
              {
                cerr << "ERROR: When all transitions probabilities are specified for a certain "
                     << "regime, they must sum to 1" << endl;
                exit(EXIT_FAILURE);
              }
          }
        else
          if (col_trans_prob_sum[i] >= 1.0)
            {
              cerr << "ERROR: When transition probabilites are not specified for every regime, "
                   << "their sum must be < 1" << endl;
              exit(EXIT_FAILURE);
            }
        }
    }

  if (options_list.symbol_list_options.find("ms.parameters") != options_list.symbol_list_options.end())
    mod_file_struct.ms_dsge_present = true;
}

void
MarkovSwitchingStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  bool isDurationAVec = true;
  string infStr("Inf");
  OptionsList::num_options_t::const_iterator itChain, itNOR, itDuration;
  map<pair<int, int>, double >::const_iterator itR;

  itChain = options_list.num_options.find("ms.chain");
  assert(itChain != options_list.num_options.end());

  itDuration = options_list.num_options.find("ms.duration");
  assert(itDuration != options_list.num_options.end());
  if (atof(itDuration->second.c_str()) || infStr.compare(itDuration->second) == 0)
    isDurationAVec = false;
  output << "options_.ms.duration = " << itDuration->second << ";" << endl;

  itNOR = options_list.num_options.find("ms.number_of_regimes");
  assert(itNOR != options_list.num_options.end());
  for (int i = 0; i < atoi(itNOR->second.c_str()); i++)
    {
      output << "options_.ms.ms_chain(" << itChain->second << ").regime("
             << i+1 << ").duration = options_.ms.duration";
      if (isDurationAVec)
        output << "(" << i+1 << ")";
      output << ";" << endl;
    }

  int restrictions_index = 0;
  for (itR=restriction_map.begin(); itR != restriction_map.end(); itR++)
    output << "options_.ms.ms_chain(" << itChain->second << ").restrictions("
           << ++restrictions_index << ") = {[" << itR->first.first << ", "
           << itR->first.second << ", " << itR->second << "]};" << endl;
}

void
MarkovSwitchingStatement::writeCOutput(ostream &output, const string &basename)
{
  output << endl;

  OptionsList::num_options_t::const_iterator it =
    options_list.num_options.find("ms.chain");
  assert(it !=  options_list.num_options.end());
  output << "chain = " << it->second << ";" << endl;

  it = options_list.num_options.find("ms.number_of_regimes");
  assert(it !=  options_list.num_options.end());
  output << "number_of_regimes = " << it->second << ";" << endl;

  it = options_list.num_options.find("ms.number_of_lags");
  if (it !=  options_list.num_options.end())
    output << "number_of_lags = " << it->second << ";" << endl
           << "number_of_lags_was_passed = true;" << endl;
  else
    output << "number_of_lags_was_passed = false;" << endl;

  it = options_list.num_options.find("ms.duration");
  assert(it != options_list.num_options.end());
  output << "duration.clear();" << endl;
  using namespace boost;
  vector<string> tokenizedDomain;
  split(tokenizedDomain, it->second, is_any_of("[ ]"), token_compress_on);
  for (vector<string>::iterator itvs = tokenizedDomain.begin();
       itvs != tokenizedDomain.end(); itvs++ )
    if (!itvs->empty())
      output << "duration.push_back(" << *itvs << ");" << endl;

  OptionsList::symbol_list_options_t::const_iterator itsl =
    options_list.symbol_list_options.find("ms.parameters");
  assert(itsl != options_list.symbol_list_options.end());
  vector<string> parameters = itsl->second.get_symbols();
  output << "parameters.clear();" << endl;
  for (vector<string>::iterator itp = parameters.begin();
       itp != parameters.end(); itp++ )
    output << "parameters.push_back(param_names[\"" << *itp << "\"]);" << endl;

  output << "restriction_map.clear();" << endl;
  for (map <pair<int, int >, double >::iterator itrm = restriction_map.begin();
       itrm != restriction_map.end(); itrm++)
    output << "restriction_map[make_pair(" << itrm->first.first << ","
           << itrm->first.second << ")] = " << itrm->second << ";" << endl;

  output << "msdsgeinfo->addMarkovSwitching(new MarkovSwitching(" << endl
         << "     chain, number_of_regimes, number_of_lags, number_of_lags_was_passed, parameters, duration, restriction_map));" << endl;
}

SvarStatement::SvarStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
SvarStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  OptionsList::num_options_t::const_iterator it0, it1, it2;
  it0 = options_list.string_options.find("ms.coefficients");
  it1 = options_list.string_options.find("ms.variances");
  it2 = options_list.string_options.find("ms.constants");
  assert((it0 != options_list.string_options.end()
          && it1 == options_list.string_options.end()
          && it2 == options_list.string_options.end()) ||
         (it0 == options_list.string_options.end()
          && it1 != options_list.string_options.end()
          && it2 == options_list.string_options.end()) ||
         (it0 == options_list.string_options.end()
          && it1 == options_list.string_options.end()
          && it2 != options_list.string_options.end()));
}

void
SvarStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  OptionsList::num_options_t::const_iterator it0, it1, it2;
  OptionsList::vec_int_options_t::const_iterator itv;

  it0 = options_list.num_options.find("ms.chain");
  assert(it0 != options_list.num_options.end());
  output << "options_.ms.ms_chain(" << it0->second << ")";

  it0 = options_list.string_options.find("ms.coefficients");
  it1 = options_list.string_options.find("ms.variances");
  it2 = options_list.string_options.find("ms.constants");

  if (it0 != options_list.string_options.end())
    output << "." << it0->second;
  else if (it1 != options_list.string_options.end())
    output << "." << it1->second;
  else
    output << "." << it2->second;

  itv = options_list.vector_int_options.find("ms.equations");
  output << ".equations = ";
  if (itv != options_list.vector_int_options.end())
    {
      assert(itv->second.size() >= 1);
      if (itv->second.size() > 1)
        {
          output << "[";
          for (vector<int>::const_iterator viit = itv->second.begin();
               viit != itv->second.end(); viit++)
            output << *viit << ";";
          output << "];" << endl;
        }
      else
        output << itv->second.front() << ";" << endl;
    }
  else
    output << "'ALL';" << endl;
}

SvarGlobalIdentificationCheckStatement::SvarGlobalIdentificationCheckStatement(void)
{
}

void
SvarGlobalIdentificationCheckStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "svar_global_identification_check(options_);" << std::endl;
}

SetTimeStatement::SetTimeStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
SetTimeStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
}

EstimationDataStatement::EstimationDataStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
EstimationDataStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.estimation_data_statement_present = true;

  OptionsList::num_options_t::const_iterator it = options_list.num_options.find("nobs");
  if (it != options_list.num_options.end())
    if (atoi(it->second.c_str()) <= 0)
      {
        cerr << "ERROR: The nobs option of the data statement only accepts positive integers." << endl;
        exit(EXIT_FAILURE);
      }

  if ((options_list.string_options.find("file") == options_list.string_options.end()) &&
      (options_list.string_options.find("series") == options_list.string_options.end()))
    {
      cerr << "ERROR: The file or series option must be passed to the data statement." << endl;
      exit(EXIT_FAILURE);
    }

  if ((options_list.string_options.find("file") != options_list.string_options.end()) &&
      (options_list.string_options.find("series") != options_list.string_options.end()))
    {
      cerr << "ERROR: The file and series options cannot be used simultaneously in the data statement." << endl;
      exit(EXIT_FAILURE);
    }
}

void
EstimationDataStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output, "options_.dataset");
}

SubsamplesStatement::SubsamplesStatement(const string &name1_arg,
                                         const string &name2_arg,
                                         const subsample_declaration_map_t subsample_declaration_map_arg,
                                         const SymbolTable &symbol_table_arg) :
  name1(name1_arg),
  name2(name2_arg),
  subsample_declaration_map(subsample_declaration_map_arg),
  symbol_table(symbol_table_arg)
{
}

void
SubsamplesStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
}

void
SubsamplesStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "subsamples_indx = get_new_or_existing_ei_index('subsamples_index', '"
         << name1 << "','" << name2 << "');" << endl
         << "estimation_info.subsamples_index(subsamples_indx) = {'" << name1;
  if (!name2.empty())
    output << ":" << name2;
  output << "'};" << endl
         << "estimation_info.subsamples(subsamples_indx).range = {};" << endl
         << "estimation_info.subsamples(subsamples_indx).range_index = {};" << endl;

  int map_indx = 1;
  for (subsample_declaration_map_t::const_iterator it = subsample_declaration_map.begin();
       it != subsample_declaration_map.end(); it++, map_indx++)
    output << "estimation_info.subsamples(subsamples_indx).range_index(" << map_indx << ") = {'"
           << it->first << "'};" << endl
           << "estimation_info.subsamples(subsamples_indx).range(" << map_indx << ").date1 = "
           << it->second.first << ";" << endl
           << "estimation_info.subsamples(subsamples_indx).range(" << map_indx << ").date2 = "
           << it->second.second << ";" << endl;

  // Initialize associated subsample substructures in estimation_info
  const SymbolType symb_type = symbol_table.getType(name1);
  string lhs_field;
  if (symb_type == eParameter)
    lhs_field = "parameter";
  else if (symb_type == eExogenous || symb_type == eExogenousDet)
    lhs_field = "structural_innovation";
  else
    lhs_field = "measurement_error";

  output << "eifind = get_new_or_existing_ei_index('" << lhs_field;

  if (!name2.empty())
    output << "_corr";
  output << "_prior_index', '"
         << name1 << "', '";
  if (!name2.empty())
    output << name2;
  output << "');" << endl;

  lhs_field = "estimation_info." + lhs_field;
  if (!name2.empty())
    lhs_field += "_corr";
  output << lhs_field << "_prior_index(eifind) = {'" << name1;
  if (!name2.empty())
    output << ":" << name2;
  output << "'};" << endl;

  output << lhs_field << "(eifind).subsample_prior = estimation_info.empty_prior;" << endl
         << lhs_field << "(eifind).subsample_prior(1:" << subsample_declaration_map.size()
         << ") = estimation_info.empty_prior;" << endl
         << lhs_field << "(eifind).range_index = estimation_info.subsamples(subsamples_indx).range_index;"
         << endl;
}

SubsamplesEqualStatement::SubsamplesEqualStatement(const string &to_name1_arg,
                                                   const string &to_name2_arg,
                                                   const string &from_name1_arg,
                                                   const string &from_name2_arg,
                                                   const SymbolTable &symbol_table_arg) :
  to_name1(to_name1_arg),
  to_name2(to_name2_arg),
  from_name1(from_name1_arg),
  from_name2(from_name2_arg),
  symbol_table(symbol_table_arg)
{
}

void
SubsamplesEqualStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "subsamples_to_indx = get_new_or_existing_ei_index('subsamples_index', '"
         << to_name1 << "','" << to_name2 << "');" << endl
         << "estimation_info.subsamples_index(subsamples_to_indx) = {'" << to_name1;
  if (!to_name2.empty())
    output << ":" << to_name2;
  output << "'};" << endl
         << "subsamples_from_indx = get_existing_subsamples_indx('" << from_name1 << "','" << from_name2 << "');"
         << endl
         << "estimation_info.subsamples(subsamples_to_indx) = estimation_info.subsamples(subsamples_from_indx);"
         << endl;

  // Initialize associated subsample substructures in estimation_info
  const SymbolType symb_type = symbol_table.getType(to_name1);
  string lhs_field;
  if (symb_type == eParameter)
    lhs_field = "parameter";
  else if (symb_type == eExogenous || symb_type == eExogenousDet)
    lhs_field = "structural_innovation";
  else
    lhs_field = "measurement_error";

  output << "eifind = get_new_or_existing_ei_index('" << lhs_field;

  if (!to_name2.empty())
    output << "_corr";
  output << "_prior_index', '"
         << to_name1 << "', '";
  if (!to_name2.empty())
    output << to_name2;
  output << "');" << endl;

  lhs_field = "estimation_info." + lhs_field;
  if (!to_name2.empty())
    lhs_field += "_corr";
  output << lhs_field << "_prior_index(eifind) = {'" << to_name1;
  if (!to_name2.empty())
    output << ":" << to_name2;
  output << "'};" << endl;

  output << lhs_field << "(eifind).subsample_prior = estimation_info.empty_prior;" << endl
         << lhs_field << "(eifind).subsample_prior(1:size(estimation_info.subsamples(subsamples_to_indx).range_index,2)) = estimation_info.empty_prior;"
         << endl
         << lhs_field << "(eifind).range_index = estimation_info.subsamples(subsamples_to_indx).range_index;"
         << endl;
}

JointPriorStatement::JointPriorStatement(const vector<string> joint_parameters_arg,
                                         const PriorDistributions &prior_shape_arg,
                                         const OptionsList &options_list_arg) :
  joint_parameters(joint_parameters_arg),
  prior_shape(prior_shape_arg),
  options_list(options_list_arg)
{
}

void
JointPriorStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  if (joint_parameters.size() < 2)
    {
      cerr << "ERROR: you must pass at least two parameters to the joint prior statement" << endl;
      exit(EXIT_FAILURE);
    }

  if (prior_shape == eNoShape)
    {
      cerr << "ERROR: You must pass the shape option to the prior statement." << endl;
      exit(EXIT_FAILURE);
    }

  if (options_list.num_options.find("mean") == options_list.num_options.end() &&
      options_list.num_options.find("mode") == options_list.num_options.end())
    {
      cerr << "ERROR: You must pass at least one of mean and mode to the prior statement." << endl;
      exit(EXIT_FAILURE);
    }

  OptionsList::num_options_t::const_iterator it_num = options_list.num_options.find("domain");
  if (it_num != options_list.num_options.end())
    {
      using namespace boost;
      vector<string> tokenizedDomain;
      split(tokenizedDomain, it_num->second, is_any_of("[ ]"), token_compress_on);
      if (tokenizedDomain.size() != 4)
        {
          cerr << "ERROR: You must pass exactly two values to the domain option." << endl;
          exit(EXIT_FAILURE);
        }
    }
}

void
JointPriorStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  for (vector<string>::const_iterator it = joint_parameters.begin() ; it != joint_parameters.end(); it++)
    output << "eifind = get_new_or_existing_ei_index('joint_parameter_prior_index', '"
           << *it << "', '');" << endl
           << "estimation_info.joint_parameter_prior_index(eifind) = {'" << *it << "'};" << endl;

  output << "key = {[";
  for (vector<string>::const_iterator it = joint_parameters.begin() ; it != joint_parameters.end(); it++)
    output << "get_new_or_existing_ei_index('joint_parameter_prior_index', '" << *it << "', '') ..."
           << endl << "    ";
  output << "]};" << endl;

  string lhs_field("estimation_info.joint_parameter_tmp");

  writeOutputHelper(output, "domain", lhs_field);
  writeOutputHelper(output, "interval", lhs_field);
  writeOutputHelper(output, "mean", lhs_field);
  writeOutputHelper(output, "median", lhs_field);
  writeOutputHelper(output, "mode", lhs_field);

  assert(prior_shape != eNoShape);
  output << lhs_field << ".shape = " << prior_shape << ";" << endl;

  writeOutputHelper(output, "shift", lhs_field);
  writeOutputHelper(output, "stdev", lhs_field);
  writeOutputHelper(output, "truncate", lhs_field);
  writeOutputHelper(output, "variance", lhs_field);

  output << "estimation_info.joint_parameter_tmp = [key, ..." << endl
         << "    " << lhs_field << ".domain , ..." << endl
         << "    " << lhs_field << ".interval , ..." << endl
         << "    " << lhs_field << ".mean , ..." << endl
         << "    " << lhs_field << ".median , ..." << endl
         << "    " << lhs_field << ".mode , ..." << endl
         << "    " << lhs_field << ".shape , ..." << endl
         << "    " << lhs_field << ".shift , ..." << endl
         << "    " << lhs_field << ".stdev , ..." << endl
         << "    " << lhs_field << ".truncate , ..." << endl
         << "    " << lhs_field << ".variance];" << endl
         << "estimation_info.joint_parameter = [estimation_info.joint_parameter; estimation_info.joint_parameter_tmp];" << endl
         << "estimation_info=rmfield(estimation_info, 'joint_parameter_tmp');" << endl;
}

void
JointPriorStatement::writeOutputHelper(ostream &output, const string &field, const string &lhs_field) const
{
  OptionsList::num_options_t::const_iterator itn = options_list.num_options.find(field);
  output << lhs_field << "." << field << " = {";
  if (field=="variance")
    output << "{";
  if (itn != options_list.num_options.end())
    output << itn->second;
  else
    output << "{}";
  if (field=="variance")
    output << "}";
  output << "};" << endl;
}


BasicPriorStatement::~BasicPriorStatement()
{
}

BasicPriorStatement::BasicPriorStatement(const string &name_arg,
                                         const string &subsample_name_arg,
                                         const PriorDistributions &prior_shape_arg,
                                         const expr_t &variance_arg,
                                         const OptionsList &options_list_arg) :
  name(name_arg),
  subsample_name(subsample_name_arg),
  prior_shape(prior_shape_arg),
  variance(variance_arg),
  options_list(options_list_arg)
{
}

void
BasicPriorStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  if (prior_shape == eNoShape)
    {
      cerr << "ERROR: You must pass the shape option to the prior statement." << endl;
      exit(EXIT_FAILURE);
    }

  if (options_list.num_options.find("mean") == options_list.num_options.end() &&
      options_list.num_options.find("mode") == options_list.num_options.end())
    {
      cerr << "ERROR: You must pass at least one of mean and mode to the prior statement." << endl;
      exit(EXIT_FAILURE);
    }

  OptionsList::num_options_t::const_iterator it_stdev = options_list.num_options.find("stdev");
  if ((it_stdev == options_list.num_options.end() && variance == NULL) ||
      (it_stdev != options_list.num_options.end() && variance != NULL))
    {
      cerr << "ERROR: You must pass exactly one of stdev and variance to the prior statement." << endl;
      exit(EXIT_FAILURE);
    }

  OptionsList::num_options_t::const_iterator it_num = options_list.num_options.find("domain");
  if (it_num != options_list.num_options.end())
    {
      using namespace boost;
      vector<string> tokenizedDomain;
      split(tokenizedDomain, it_num->second, is_any_of("[ ]"), token_compress_on);
      if (tokenizedDomain.size() != 4)
        {
          cerr << "ERROR: You must pass exactly two values to the domain option." << endl;
          exit(EXIT_FAILURE);
        }
    }
}

bool
BasicPriorStatement::is_structural_innovation(const SymbolType symb_type) const
{
  if (symb_type == eExogenous || symb_type == eExogenousDet)
    return true;
  return false;
}

void
BasicPriorStatement::get_base_name(const SymbolType symb_type, string &lhs_field) const
{
  if (symb_type == eExogenous || symb_type == eExogenousDet)
    lhs_field = "structural_innovation";
  else
    lhs_field = "measurement_error";
}

void
BasicPriorStatement::writeCommonOutput(ostream &output, const string &lhs_field) const
{
  output << lhs_field << " = estimation_info.empty_prior;" << endl;

  writeCommonOutputHelper(output, "domain", lhs_field);
  writeCommonOutputHelper(output, "interval", lhs_field);
  writeCommonOutputHelper(output, "mean", lhs_field);
  writeCommonOutputHelper(output, "median", lhs_field);
  writeCommonOutputHelper(output, "mode", lhs_field);

  assert(prior_shape != eNoShape);
  output << lhs_field << ".shape = " << prior_shape << ";" << endl;

  writeCommonOutputHelper(output, "shift", lhs_field);
  writeCommonOutputHelper(output, "stdev", lhs_field);
  writeCommonOutputHelper(output, "truncate", lhs_field);

  if (variance)
    {
      output << lhs_field << ".variance = ";
      variance->writeOutput(output);
      output << ";" << endl;
    }
}

void
BasicPriorStatement::writeCommonOutputHelper(ostream &output, const string &field, const string &lhs_field) const
{
  OptionsList::num_options_t::const_iterator itn = options_list.num_options.find(field);
  if (itn != options_list.num_options.end())
    output << lhs_field << "." << field << " = "<< itn->second << ";" << endl;
}

void
BasicPriorStatement::writePriorOutput(ostream &output, string &lhs_field, const string &name2) const
{
  if (subsample_name.empty())
    lhs_field += ".prior(1)";
  else
    {
      output << "subsamples_indx = get_existing_subsamples_indx('" << name << "','" << name2 << "');" << endl
             << "eisind = get_subsamples_range_indx(subsamples_indx, '" << subsample_name << "');" << endl;
      lhs_field += ".subsample_prior(eisind)";
    }
  writeCommonOutput(output, lhs_field);
}

void
BasicPriorStatement::writeCVarianceOption(ostream &output) const
{
  output << "variance = ";
  if (variance)
    variance->writeOutput(output);
  else
    output << "numeric_limits<double>::quiet_NaN()";
  output << ";" << endl;
}

void
BasicPriorStatement::writeCDomain(ostream &output) const
{
  output << "domain.clear();" << endl;
  OptionsList::num_options_t::const_iterator it_num = options_list.num_options.find("domain");
  if (it_num != options_list.num_options.end())
    {
      using namespace boost;
      vector<string> tokenizedDomain;
      split(tokenizedDomain, it_num->second, is_any_of("[ ]"), token_compress_on);
      for (vector<string>::iterator it = tokenizedDomain.begin();
           it != tokenizedDomain.end(); it++ )
        if (!it->empty())
          output << "domain.push_back(" << *it << ");" << endl;
    }
}

void
BasicPriorStatement::writeCOutputHelper(ostream &output, const string &field) const
{
  OptionsList::num_options_t::const_iterator itn = options_list.num_options.find(field);
  if (itn != options_list.num_options.end())
    output << field << " = " << itn->second << ";" << endl;
  else
    output << field << " = " << "numeric_limits<double>::quiet_NaN();" << endl;
}

void
BasicPriorStatement::writeCShape(ostream &output) const
{
  output << "shape = ";
  switch (prior_shape)
    {
    case eBeta:
      output  << "\"beta\";" << endl;
      break;
    case eGamma:
      output  << "\"gamma\";" << endl;
      break;
    case eNormal:
      output  << "\"normal\";" << endl;
      break;
    case eInvGamma:
      output  << "\"inv_gamma\";" << endl;
      break;
    case eUniform:
      output  << "\"uniform\";" << endl;
      break;
    case eInvGamma2:
      output  << "\"inv_gamma2\";" << endl;
      break;
    case eDirichlet:
      output  << "\"dirichlet\";" << endl;
      break;
    case eWeibull:
      output  << "\"weibull\";" << endl;
      break;
    case eNoShape:
      assert(prior_shape != eNoShape);
    }
}

PriorStatement::PriorStatement(const string &name_arg,
                               const string &subsample_name_arg,
                               const PriorDistributions &prior_shape_arg,
                               const expr_t &variance_arg,
                               const OptionsList &options_list_arg) :
  BasicPriorStatement(name_arg, subsample_name_arg, prior_shape_arg, variance_arg, options_list_arg)
{
}

void
PriorStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  string lhs_field = "estimation_info.parameter(eifind)";
  output << "eifind = get_new_or_existing_ei_index('parameter_prior_index', '"
         << name << "', '');" << endl
         << "estimation_info.parameter_prior_index(eifind) = {'" << name << "'};" << endl;
  writePriorOutput(output, lhs_field, "");
}

void
PriorStatement::writeCOutput(ostream &output, const string &basename)
{
  output << endl
         << "index = param_names[\""<< name << "\"];" << endl;
  writeCShape(output);
  writeCOutputHelper(output, "mean");
  writeCOutputHelper(output, "mode");
  writeCOutputHelper(output, "stdev");
  writeCVarianceOption(output);
  writeCDomain(output);

  output << "msdsgeinfo->addPrior(new ModFilePrior(" << endl
         << "     index, shape, mean, mode, stdev, variance, domain));" << endl;
}

StdPriorStatement::StdPriorStatement(const string &name_arg,
                                     const string &subsample_name_arg,
                                     const PriorDistributions &prior_shape_arg,
                                     const expr_t &variance_arg,
                                     const OptionsList &options_list_arg,
                                     const SymbolTable &symbol_table_arg ) :
  BasicPriorStatement(name_arg, subsample_name_arg, prior_shape_arg, variance_arg, options_list_arg),
  symbol_table(symbol_table_arg)
{
}

void
StdPriorStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  string lhs_field;
  get_base_name(symbol_table.getType(name), lhs_field);
  output << "eifind = get_new_or_existing_ei_index('" << lhs_field << "_prior_index', '"
         << name << "', '');" << endl
         << "estimation_info." << lhs_field << "_prior_index(eifind) = {'" << name << "'};" << endl;

  lhs_field = "estimation_info." + lhs_field + "(eifind)";
  writePriorOutput(output, lhs_field, "");
}

void
StdPriorStatement::writeCOutput(ostream &output, const string &basename)
{
  output << endl
         << "index = ";
  if (is_structural_innovation(symbol_table.getType(name)))
    output << "exo_names";
  else
    output << "endo_names";
  output << "[\""<< name << "\"];" << endl;

  writeCShape(output);
  writeCOutputHelper(output, "mean");
  writeCOutputHelper(output, "mode");
  writeCOutputHelper(output, "stdev");
  writeCVarianceOption(output);
  writeCDomain(output);

  if (is_structural_innovation(symbol_table.getType(name)))
    output << "msdsgeinfo->addStructuralInnovationPrior(new ModFileStructuralInnovationPrior(";
  else
    output << "msdsgeinfo->addMeasurementErrorPrior(new ModFileMeasurementErrorPrior(";
  output << endl << "     index, shape, mean, mode, stdev, variance, domain));" << endl;
}

CorrPriorStatement::CorrPriorStatement(const string &name_arg1, const string &name_arg2,
                                       const string &subsample_name_arg,
                                       const PriorDistributions &prior_shape_arg,
                                       const expr_t &variance_arg,
                                       const OptionsList &options_list_arg,
                                       const SymbolTable &symbol_table_arg ) :
  BasicPriorStatement(name_arg1, subsample_name_arg, prior_shape_arg, variance_arg, options_list_arg),
  name1(name_arg2),
  symbol_table(symbol_table_arg)
{
}

void
CorrPriorStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  BasicPriorStatement::checkPass(mod_file_struct, warnings);
  if (symbol_table.getType(name) != symbol_table.getType(name1))
    {
      cerr << "ERROR: In the corr(A,B).prior statement, A and B must be of the same type. "
           << "In your case, " << name << " and " << name1 << " are of different "
           << "types." << endl;
      exit(EXIT_FAILURE);
    }
}

void
CorrPriorStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  string lhs_field;
  get_base_name(symbol_table.getType(name), lhs_field);

  output << "eifind = get_new_or_existing_ei_index('" << lhs_field << "_corr_prior_index', '"
         << name << "', '" << name1 << "');" << endl
         << "estimation_info." << lhs_field << "_corr_prior_index(eifind) = {'"
         << name << ":" << name1 << "'};" << endl;

  lhs_field = "estimation_info." + lhs_field + "_corr(eifind)";
  writePriorOutput(output, lhs_field, name1);
}

void
CorrPriorStatement::writeCOutput(ostream &output, const string &basename)
{
  output << endl
         << "index = ";
  if (is_structural_innovation(symbol_table.getType(name)))
    output << "exo_names";
  else
    output << "endo_names";
  output << "[\""<< name << "\"];" << endl;

  output << "index1 = ";
  if (is_structural_innovation(symbol_table.getType(name1)))
    output << "exo_names";
  else
    output << "endo_names";
  output << "[\""<< name1 << "\"];" << endl;

  writeCShape(output);
  writeCOutputHelper(output, "mean");
  writeCOutputHelper(output, "mode");
  writeCOutputHelper(output, "stdev");
  writeCVarianceOption(output);
  writeCDomain(output);

  if (is_structural_innovation(symbol_table.getType(name)))
    output << "msdsgeinfo->addStructuralInnovationCorrPrior(new ModFileStructuralInnovationCorrPrior(";
  else
    output << "msdsgeinfo->addMeasurementErrorCorrPrior(new ModFileMeasurementErrorCorrPrior(";
  output << endl <<"     index, index1, shape, mean, mode, stdev, variance, domain));" << endl;
}

PriorEqualStatement::PriorEqualStatement(const string &to_declaration_type_arg,
                                         const string &to_name1_arg,
                                         const string &to_name2_arg,
                                         const string &to_subsample_name_arg,
                                         const string &from_declaration_type_arg,
                                         const string &from_name1_arg,
                                         const string &from_name2_arg,
                                         const string &from_subsample_name_arg,
                                         const SymbolTable &symbol_table_arg) :
  to_declaration_type(to_declaration_type_arg),
  to_name1(to_name1_arg),
  to_name2(to_name2_arg),
  to_subsample_name(to_subsample_name_arg),
  from_declaration_type(from_declaration_type_arg),
  from_name1(from_name1_arg),
  from_name2(from_name2_arg),
  from_subsample_name(from_subsample_name_arg),
  symbol_table(symbol_table_arg)
{
}

void
PriorEqualStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  if ((to_declaration_type != "par" && to_declaration_type != "std" && to_declaration_type != "corr") ||
      (from_declaration_type != "par" && from_declaration_type != "std" && from_declaration_type != "corr"))
    {
      cerr << "Internal Dynare Error" << endl;
      exit(EXIT_FAILURE);
    }
}

void
PriorEqualStatement::get_base_name(const SymbolType symb_type, string &lhs_field) const
{
  if (symb_type == eExogenous || symb_type == eExogenousDet)
    lhs_field = "structural_innovation";
  else
    lhs_field = "measurement_error";
}

void
PriorEqualStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  string lhs_field, rhs_field;

  if (to_declaration_type == "par")
    lhs_field = "parameter";
  else
    get_base_name(symbol_table.getType(to_name1), lhs_field);

  if (from_declaration_type == "par")
    rhs_field = "parameter";
  else
    get_base_name(symbol_table.getType(from_name1), rhs_field);


  if (to_declaration_type == "corr")
    lhs_field += "_corr";

  if (from_declaration_type == "corr")
    rhs_field += "_corr";

  output << "ei_to_ind = get_new_or_existing_ei_index('" << lhs_field << "_prior_index', '"
         << to_name1 << "', '" << to_name2<< "');" << endl
         << "ei_from_ind = get_new_or_existing_ei_index('" << rhs_field << "_prior_index', '"
         << from_name1 << "', '" << from_name2<< "');" << endl
         << "estimation_info." << lhs_field << "_prior_index(ei_to_ind) = {'" << to_name1;

  if (to_declaration_type == "corr")
    output << ":" << to_name2;
  output << "'};" << endl;

  if (to_declaration_type == "par")
    lhs_field = "parameter";

  if (from_declaration_type == "par")
    rhs_field = "parameter";

  lhs_field = "estimation_info." + lhs_field + "(ei_to_ind)";
  rhs_field = "estimation_info." + rhs_field + "(ei_from_ind)";

  if (to_subsample_name.empty())
    lhs_field += ".prior";
  else
    {
      output << "subsamples_to_indx = get_existing_subsamples_indx('" << to_name1 << "','" << to_name2 << "');" << endl
             << "ei_to_ss_ind = get_subsamples_range_indx(subsamples_to_indx, '" << to_subsample_name << "');" << endl;
      lhs_field += ".subsample_prior(ei_to_ss_ind)";
    }

  if (from_subsample_name.empty())
    rhs_field += ".prior";
  else
    {
      output << "subsamples_from_indx = get_existing_subsamples_indx('" << from_name1 << "','" << from_name2 << "');" << endl
             << "ei_from_ss_ind = get_subsamples_range_indx(subsamples_from_indx, '" << from_subsample_name << "');" << endl;
      rhs_field += ".subsample_prior(ei_from_ss_ind)";
    }

  output << lhs_field << " = " << rhs_field << ";" << endl;
}

BasicOptionsStatement::~BasicOptionsStatement()
{
}

BasicOptionsStatement::BasicOptionsStatement(const string &name_arg,
                                             const string &subsample_name_arg,
                                             const OptionsList &options_list_arg) :
  name(name_arg),
  subsample_name(subsample_name_arg),
  options_list(options_list_arg)
{
}

void
BasicOptionsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
}

bool
BasicOptionsStatement::is_structural_innovation(const SymbolType symb_type) const
{
  if (symb_type == eExogenous || symb_type == eExogenousDet)
    return true;
  return false;
}

void
BasicOptionsStatement::get_base_name(const SymbolType symb_type, string &lhs_field) const
{
  if (symb_type == eExogenous || symb_type == eExogenousDet)
    lhs_field = "structural_innovation";
  else
    lhs_field = "measurement_error";
}

void
BasicOptionsStatement::writeCommonOutput(ostream &output, const string &lhs_field) const
{
  output << lhs_field << " = estimation_info.empty_options;" << endl;

  writeCommonOutputHelper(output, "bounds", lhs_field);
  writeCommonOutputHelper(output, "init", lhs_field);
  writeCommonOutputHelper(output, "jscale", lhs_field);
}

void
BasicOptionsStatement::writeCommonOutputHelper(ostream &output, const string &field, const string &lhs_field) const
{
  OptionsList::num_options_t::const_iterator itn = options_list.num_options.find(field);
  if (itn != options_list.num_options.end())
    output << lhs_field << "." << field << " = " << itn->second << ";" << endl;
}

void
BasicOptionsStatement::writeCOutputHelper(ostream &output, const string &field) const
{
  OptionsList::num_options_t::const_iterator itn = options_list.num_options.find(field);
  if (itn != options_list.num_options.end())
    output << field << " = " << itn->second << ";" << endl;
  else
    output << field << " = " << "numeric_limits<double>::quiet_NaN();" << endl;
}

void
BasicOptionsStatement::writeOptionsOutput(ostream &output, string &lhs_field, const string &name2) const
{
  if (subsample_name.empty())
    lhs_field += ".options(1)";
  else
    {
      output << "subsamples_indx = get_existing_subsamples_indx('" << name << "','" << name2 << "');" << endl
             << "eisind = get_subsamples_range_indx(subsamples_indx, '" << subsample_name << "');" << endl;
      lhs_field += ".subsample_options(eisind)";
    }
  writeCommonOutput(output, lhs_field);
}

OptionsStatement::OptionsStatement(const string &name_arg,
                                   const string &subsample_name_arg,
                                   const OptionsList &options_list_arg) :
  BasicOptionsStatement(name_arg, subsample_name_arg, options_list_arg)
{
}

void
OptionsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  string lhs_field = "estimation_info.parameter(eifind)";
  output << "eifind = get_new_or_existing_ei_index('parameter_options_index', '"
         << name << "', '');" << endl
         << "estimation_info.parameter_options_index(eifind) = {'" << name << "'};" << endl;
  writeOptionsOutput(output, lhs_field, "");
}

void
OptionsStatement::writeCOutput(ostream &output, const string &basename)
{
  output << endl
         << "index = param_names[\""<< name << "\"];" << endl;
  writeCOutputHelper(output, "init");
  output << "msdsgeinfo->addOption(new ModFileOption(index, init));" << endl;
}

StdOptionsStatement::StdOptionsStatement(const string &name_arg,
                                         const string &subsample_name_arg,
                                         const OptionsList &options_list_arg,
                                         const SymbolTable &symbol_table_arg ) :
  BasicOptionsStatement(name_arg, subsample_name_arg, options_list_arg),
  symbol_table(symbol_table_arg)
{
}

void
StdOptionsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  string lhs_field;
  get_base_name(symbol_table.getType(name), lhs_field);
  output << "eifind = get_new_or_existing_ei_index('" << lhs_field << "_options_index', '"
         << name << "', '');" << endl
         << "estimation_info." << lhs_field << "_options_index(eifind) = {'" << name << "'};" << endl;

  lhs_field = "estimation_info." + lhs_field + "(eifind)";
  writeOptionsOutput(output, lhs_field, "");
}

void
StdOptionsStatement::writeCOutput(ostream &output, const string &basename)
{
  output << endl
         << "index = ";
  if (is_structural_innovation(symbol_table.getType(name)))
    output << "exo_names";
  else
    output << "endo_names";
  output << "[\""<< name << "\"];" << endl;

  writeCOutputHelper(output, "init");

  if (is_structural_innovation(symbol_table.getType(name)))
    output << "msdsgeinfo->addStructuralInnovationOption(new ModFileStructuralInnovationOption(";
  else
    output << "msdsgeinfo->addMeasurementErrorOption(new ModFileMeasurementErrorOption(";
  output << "index, init));" << endl;
}

CorrOptionsStatement::CorrOptionsStatement(const string &name_arg1, const string &name_arg2,
                                           const string &subsample_name_arg,
                                           const OptionsList &options_list_arg,
                                           const SymbolTable &symbol_table_arg ) :
  BasicOptionsStatement(name_arg1, subsample_name_arg, options_list_arg),
  name1(name_arg2),
  symbol_table(symbol_table_arg)
{
}

void
CorrOptionsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  if (symbol_table.getType(name) != symbol_table.getType(name1))
    {
      cerr << "ERROR: In the corr(A,B).options statement, A and B must be of the same type. "
           << "In your case, " << name << " and " << name1 << " are of different "
           << "types." << endl;
      exit(EXIT_FAILURE);
    }
}

void
CorrOptionsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  string lhs_field;
  get_base_name(symbol_table.getType(name), lhs_field);

  output << "eifind = get_new_or_existing_ei_index('" << lhs_field << "_corr_options_index', '"
         << name << "', '" << name1 << "');" << endl
         << "estimation_info." << lhs_field << "_corr_options_index(eifind) = {'"
         << name << ":" << name1 << "'};" << endl;

  lhs_field = "estimation_info." + lhs_field + "_corr(eifind)";
  writeOptionsOutput(output, lhs_field, name1);
}

void
CorrOptionsStatement::writeCOutput(ostream &output, const string &basename)
{
  output << endl
         << "index = ";
  if (is_structural_innovation(symbol_table.getType(name)))
    output << "exo_names";
  else
    output << "endo_names";
  output << "[\""<< name << "\"];" << endl;

  output << "index1 = ";
  if (is_structural_innovation(symbol_table.getType(name1)))
    output << "exo_names";
  else
    output << "endo_names";
  output << "[\""<< name1 << "\"];" << endl;

  writeCOutputHelper(output, "init");

  if (is_structural_innovation(symbol_table.getType(name)))
    output << "msdsgeinfo->addStructuralInnovationCorrOption(new ModFileStructuralInnovationCorrOption(";
  else
    output << "msdsgeinfo->addMeasurementErrorCorrOption(new ModFileMeasurementErrorCorrOption(";
  output << "index, index1, init));" << endl;
}

OptionsEqualStatement::OptionsEqualStatement(const string &to_declaration_type_arg,
                                             const string &to_name1_arg,
                                             const string &to_name2_arg,
                                             const string &to_subsample_name_arg,
                                             const string &from_declaration_type_arg,
                                             const string &from_name1_arg,
                                             const string &from_name2_arg,
                                             const string &from_subsample_name_arg,
                                             const SymbolTable &symbol_table_arg) :
  to_declaration_type(to_declaration_type_arg),
  to_name1(to_name1_arg),
  to_name2(to_name2_arg),
  to_subsample_name(to_subsample_name_arg),
  from_declaration_type(from_declaration_type_arg),
  from_name1(from_name1_arg),
  from_name2(from_name2_arg),
  from_subsample_name(from_subsample_name_arg),
  symbol_table(symbol_table_arg)
{
}

void
OptionsEqualStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  if ((to_declaration_type != "par" && to_declaration_type != "std" && to_declaration_type != "corr") ||
      (from_declaration_type != "par" && from_declaration_type != "std" && from_declaration_type != "corr"))
    {
      cerr << "Internal Dynare Error" << endl;
      exit(EXIT_FAILURE);
    }
}

void
OptionsEqualStatement::get_base_name(const SymbolType symb_type, string &lhs_field) const
{
  if (symb_type == eExogenous || symb_type == eExogenousDet)
    lhs_field = "structural_innovation";
  else
    lhs_field = "measurement_error";
}

void
OptionsEqualStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  string lhs_field, rhs_field;

  if (to_declaration_type == "par")
    lhs_field = "parameter";
  else
    get_base_name(symbol_table.getType(to_name1), lhs_field);

  if (from_declaration_type == "par")
    rhs_field = "parameter";
  else
    get_base_name(symbol_table.getType(from_name1), rhs_field);


  if (to_declaration_type == "corr")
    lhs_field += "_corr";

  if (from_declaration_type == "corr")
    rhs_field += "_corr";

  output << "ei_to_ind = get_new_or_existing_ei_index('" << lhs_field << "_options_index', '"
         << to_name1 << "', '" << to_name2<< "');" << endl
         << "ei_from_ind = get_new_or_existing_ei_index('" << rhs_field << "_options_index', '"
         << from_name1 << "', '" << from_name2<< "');" << endl
         << "estimation_info." << lhs_field << "_options_index(ei_to_ind) = {'" << to_name1;

  if (to_declaration_type == "corr")
    output << ":" << to_name2;
  output << "'};" << endl;

  if (to_declaration_type == "par")
    lhs_field = "parameter";

  if (from_declaration_type == "par")
    rhs_field = "parameter";

  lhs_field = "estimation_info." + lhs_field + "(ei_to_ind)";
  rhs_field = "estimation_info." + rhs_field + "(ei_from_ind)";

  if (to_subsample_name.empty())
    lhs_field += ".options";
  else
    {
      output << "subsamples_to_indx = get_existing_subsamples_indx('" << to_name1 << "','" << to_name2 << "');" << endl
             << "ei_to_ss_ind = get_subsamples_range_indx(subsamples_to_indx, '" << to_subsample_name << "');" << endl;
      lhs_field += ".subsample_options(ei_to_ss_ind)";
    }

  if (from_subsample_name.empty())
    rhs_field += ".options";
  else
    {
      output << "subsamples_from_indx = get_existing_subsamples_indx('" << from_name1 << "','" << from_name2 << "');" << endl
             << "ei_from_ss_ind = get_subsamples_range_indx(subsamples_from_indx, '" << from_subsample_name << "');" << endl;
      rhs_field += ".subsample_options(ei_from_ss_ind)";
    }

  output << lhs_field << " = " << rhs_field << ";" << endl;
}

CalibSmootherStatement::CalibSmootherStatement(const SymbolList &symbol_list_arg,
                                               const OptionsList &options_list_arg)
  : symbol_list(symbol_list_arg), options_list(options_list_arg)
{
}

void
CalibSmootherStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.calib_smoother_present = true;
}

void
CalibSmootherStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output);
  symbol_list.writeOutput("var_list_", output);
  output << "options_.smoother = 1;" << endl;
  output << "options_.order = 1;" << endl;
  output << "[oo_,M_,options_,bayestopt_]=evaluate_smoother('calibration',var_list_,M_,oo_,options_,bayestopt_,estim_params_);" << endl;
}

ExtendedPathStatement::ExtendedPathStatement(const OptionsList &options_list_arg)
  : options_list(options_list_arg)
{
}

void
ExtendedPathStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
{
  mod_file_struct.extended_path_present = true;

  if (options_list.num_options.find("periods") == options_list.num_options.end())
    {
      cerr << "ERROR: the 'periods' option of 'extended_path' is mandatory" << endl;
      exit(EXIT_FAILURE);
    }

  // Fill in option_occbin of mod_file_struct
  OptionsList::string_options_t::const_iterator it = options_list.num_options.find("occbin");
  if (it != options_list.string_options.end())
    mod_file_struct.occbin_option = true;
}

void
ExtendedPathStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  // Beware: options do not have the same name in the interface and in the M code...

  for (OptionsList::num_options_t::const_iterator it = options_list.num_options.begin();
       it != options_list.num_options.end(); ++it)
    if (it->first != string("periods"))
      output << "options_." << it->first << " = " << it->second << ";" << endl;

  output << "extended_path([], " << options_list.num_options.find("periods")->second
         << ", [], options_, M_, oo_);" << endl;
}

ModelDiagnosticsStatement::ModelDiagnosticsStatement()
{
}

void
ModelDiagnosticsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  output << "model_diagnostics(M_,options_,oo_);" << endl;
}

Smoother2histvalStatement::Smoother2histvalStatement(const OptionsList &options_list_arg) :
  options_list(options_list_arg)
{
}

void
Smoother2histvalStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
{
  options_list.writeOutput(output, "options_smoother2histval");
  output << "smoother2histval(options_smoother2histval);" << endl;
}