diff --git a/matlab/dr1.m b/matlab/dr1.m index f717c03cb0be5d170b0e3ce12c886fea58ea4d06..8a483224b11582b6a3738ec1f5712c77109cdd9d 100644 --- a/matlab/dr1.m +++ b/matlab/dr1.m @@ -49,6 +49,8 @@ function [dr,info,M_,options_,oo_] = dr1(dr,task,M_,options_,oo_) % You should have received a copy of the GNU General Public License % along with Dynare. If not, see <http://www.gnu.org/licenses/>. +lead_lag_incidence = M_.lead_lag_incidence; + info = 0; if M_.maximum_endo_lag == 0 && options_.order > 1 @@ -64,7 +66,7 @@ end xlen = M_.maximum_endo_lead + M_.maximum_endo_lag + 1; klen = M_.maximum_endo_lag + M_.maximum_endo_lead + 1; -iyv = M_.lead_lag_incidence'; +iyv = lead_lag_incidence'; iyv = iyv(:); iyr0 = find(iyv) ; it_ = M_.maximum_lag + 1 ; @@ -74,7 +76,7 @@ if M_.exo_nbr == 0 end klen = M_.maximum_lag + M_.maximum_lead + 1; -iyv = M_.lead_lag_incidence'; +iyv = lead_lag_incidence'; iyv = iyv(:); iyr0 = find(iyv) ; it_ = M_.maximum_lag + 1 ; @@ -145,11 +147,11 @@ npred = dr.npred; nboth = dr.nboth; order_var = dr.order_var; nd = size(kstate,1); -nz = nnz(M_.lead_lag_incidence); +nz = nnz(lead_lag_incidence); sdyn = M_.endo_nbr - nstatic; -[junk,cols_b,cols_j] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+1, ... +[junk,cols_b,cols_j] = find(lead_lag_incidence(M_.maximum_endo_lag+1, ... order_var)); b = zeros(M_.endo_nbr,M_.endo_nbr); b(:,cols_b) = jacobia_(:,cols_j); @@ -194,7 +196,7 @@ if M_.maximum_endo_lead == 0 info(2) = temp'*temp; end if options_.loglinear == 1 - klags = find(M_.lead_lag_incidence(1,:)); + klags = find(lead_lag_incidence(1,:)); dr.ghx = repmat(1./dr.ys,1,size(dr.ghx,2)).*dr.ghx.* ... repmat(dr.ys(klags),size(dr.ghx,1),1); dr.ghu = repmat(1./dr.ys,1,size(dr.ghu,2)).*dr.ghu; @@ -248,7 +250,7 @@ if (options_.aim_solver == 1) && (task == 0) error('Problem with AIM solver - Try to remove the "aim_solver" option') end else % use original Dynare solver - k1 = M_.lead_lag_incidence(find([1:klen] ~= M_.maximum_endo_lag+1),:); + k1 = lead_lag_incidence(find([1:klen] ~= M_.maximum_endo_lag+1),:); a = aa(:,nonzeros(k1')); b(:,cols_b) = aa(:,cols_j); b10 = b(1:nstatic,1:nstatic); @@ -411,8 +413,8 @@ end %exogenous deterministic variables if M_.exo_det_nbr > 0 - f1 = sparse(jacobia_(:,nonzeros(M_.lead_lag_incidence(M_.maximum_endo_lag+2:end,order_var)))); - f0 = sparse(jacobia_(:,nonzeros(M_.lead_lag_incidence(M_.maximum_endo_lag+1,order_var)))); + f1 = sparse(jacobia_(:,nonzeros(lead_lag_incidence(M_.maximum_endo_lag+2:end,order_var)))); + f0 = sparse(jacobia_(:,nonzeros(lead_lag_incidence(M_.maximum_endo_lag+1,order_var)))); fudet = sparse(jacobia_(:,nz+M_.exo_nbr+1:end)); M1 = inv(f0+[zeros(M_.endo_nbr,nstatic) f1*gx zeros(M_.endo_nbr,nyf-nboth)]); M2 = M1*f1; @@ -428,56 +430,26 @@ if options_.order == 1 end % Second order -%tempex = oo_.exo_simul ; - -%hessian = real(hessext('ff1_',[z; oo_.exo_steady_state]))' ; -kk = flipud(cumsum(flipud(M_.lead_lag_incidence(M_.maximum_endo_lag+1:end,order_var)),1)); -if M_.maximum_endo_lag > 0 - kk = [cumsum(M_.lead_lag_incidence(1:M_.maximum_endo_lag,order_var),1); kk]; -end -kk = kk'; -kk = find(kk(:)); -nk = size(kk,1) + M_.exo_nbr + M_.exo_det_nbr; -k1 = M_.lead_lag_incidence(:,order_var); -k1 = k1'; -k1 = k1(:); -k1 = k1(kk); -k2 = find(k1); -kk1(k1(k2)) = k2; -kk1 = [kk1 length(k1)+1:length(k1)+M_.exo_nbr+M_.exo_det_nbr]; -kk = reshape([1:nk^2],nk,nk); -kk1 = kk(kk1,kk1); -%[junk,junk,hessian] = feval([M_.fname '_dynamic'],z, oo_.exo_steady_state); -hessian(:,kk1(:)) = hessian1; +k1 = nonzeros(lead_lag_incidence(:,order_var)'); +kk = [k1; length(k1)+(1:M_.exo_nbr+M_.exo_det_nbr)']; +nk = size(kk,1); +kk1 = reshape([1:nk^2],nk,nk); +kk1 = kk1(kk,kk); +hessian = hessian1(:,kk1(:)); clear hessian1 -%oo_.exo_simul = tempex ; -%clear tempex - -n1 = 0; -n2 = np; zx = zeros(np,np); zu=zeros(np,M_.exo_nbr); -for i=2:M_.maximum_endo_lag+1 - k1 = sum(kstate(:,2) == i); - zx(n1+1:n1+k1,n2-k1+1:n2)=eye(k1); - n1 = n1+k1; - n2 = n2-k1; -end -kk = flipud(cumsum(flipud(M_.lead_lag_incidence(M_.maximum_endo_lag+1:end,order_var)),1)); +zx(1:np,:)=eye(np); k0 = [1:M_.endo_nbr]; gx1 = dr.ghx; hu = dr.ghu(nstatic+[1:npred],:); -zx = [zx; gx1]; -zu = [zu; dr.ghu]; -for i=1:M_.maximum_endo_lead - k1 = find(kk(i+1,k0) > 0); - zu = [zu; gx1(k1,1:npred)*hu]; - gx1 = gx1(k1,:)*hx; - zx = [zx; gx1]; - kk = kk(:,k0); - k0 = k1; -end +k0 = find(lead_lag_incidence(M_.maximum_endo_lag+1,order_var)'); +zx = [zx; gx1(k0,:)]; +zu = [zu; dr.ghu(k0,:)]; +k1 = find(lead_lag_incidence(M_.maximum_endo_lag+2,order_var)'); +zu = [zu; gx1(k1,:)*hu]; +zx = [zx; gx1(k1,:)*hx]; zx=[zx; zeros(M_.exo_nbr,np);zeros(M_.exo_det_nbr,np)]; zu=[zu; eye(M_.exo_nbr);zeros(M_.exo_det_nbr,M_.exo_nbr)]; [nrzx,nczx] = size(zx); @@ -488,46 +460,19 @@ rhs = -rhs; %lhs n = M_.endo_nbr+sum(kstate(:,2) > M_.maximum_endo_lag+1 & kstate(:,2) < M_.maximum_endo_lag+M_.maximum_endo_lead+1); -A = zeros(n,n); -B = zeros(n,n); -A(1:M_.endo_nbr,1:M_.endo_nbr) = jacobia_(:,M_.lead_lag_incidence(M_.maximum_endo_lag+1,order_var)); +A = zeros(M_.endo_nbr,M_.endo_nbr); +B = zeros(M_.endo_nbr,M_.endo_nbr); +A(:,k0) = jacobia_(:,nonzeros(lead_lag_incidence(M_.maximum_endo_lag+1,order_var))); % variables with the highest lead -k1 = find(kstate(:,2) == M_.maximum_endo_lag+M_.maximum_endo_lead+1); -if M_.maximum_endo_lead > 1 - k2 = find(kstate(:,2) == M_.maximum_endo_lag+M_.maximum_endo_lead); - [junk,junk,k3] = intersect(kstate(k1,1),kstate(k2,1)); -else - k2 = [1:M_.endo_nbr]; - k3 = kstate(k1,1); -end +k1 = find(kstate(:,2) == M_.maximum_endo_lag+2); % Jacobian with respect to the variables with the highest lead -B(1:M_.endo_nbr,end-length(k2)+k3) = jacobia_(:,kstate(k1,3)+M_.endo_nbr); +fyp = jacobia_(:,kstate(k1,3)+M_.endo_nbr); +B(:,nstatic+npred-dr.nboth+1:end) = fyp; offset = M_.endo_nbr; -k0 = [1:M_.endo_nbr]; gx1 = dr.ghx; -for i=1:M_.maximum_endo_lead-1 - k1 = find(kstate(:,2) == M_.maximum_endo_lag+i+1); - [k2,junk,k3] = find(kstate(k1,3)); - A(1:M_.endo_nbr,offset+k2) = jacobia_(:,k3+M_.endo_nbr); - n1 = length(k1); - A(offset+[1:n1],nstatic+[1:npred]) = -gx1(kstate(k1,1),1:npred); - gx1 = gx1*hx; - A(offset+[1:n1],offset+[1:n1]) = eye(n1); - n0 = length(k0); - E = eye(n0); - if i == 1 - [junk,junk,k4]=intersect(kstate(k1,1),[1:M_.endo_nbr]); - else - [junk,junk,k4]=intersect(kstate(k1,1),kstate(k0,1)); - end - i1 = offset-n0+n1; - B(offset+[1:n1],offset-n0+[1:n0]) = -E(k4,:); - k0 = k1; - offset = offset + n1; -end [junk,k1,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+M_.maximum_endo_lead+1,order_var)); A(1:M_.endo_nbr,nstatic+1:nstatic+npred)=... - A(1:M_.endo_nbr,nstatic+[1:npred])+jacobia_(:,k2)*gx1(k1,1:npred); + A(1:M_.endo_nbr,nstatic+[1:npred])+fyp*gx1(k1,1:npred); C = hx; D = [rhs; zeros(n-M_.endo_nbr,size(rhs,2))]; @@ -538,16 +483,10 @@ mexErrCheck('gensylv', err); %ghxu %rhs hu = dr.ghu(nstatic+1:nstatic+npred,:); -%kk = reshape([1:np*np],np,np); -%kk = kk(1:npred,1:npred); -%rhs = -hessian*kron(zx,zu)-f1*dr.ghxx(end-nyf+1:end,kk(:))*kron(hx(1:npred,:),hu(1:npred,:)); - [rhs, err] = sparse_hessian_times_B_kronecker_C(hessian,zx,zu,options_.threads.kronecker.sparse_hessian_times_B_kronecker_C); mexErrCheck('sparse_hessian_times_B_kronecker_C', err); -nyf1 = sum(kstate(:,2) == M_.maximum_endo_lag+2); hu1 = [hu;zeros(np-npred,M_.exo_nbr)]; -%B1 = [B(1:M_.endo_nbr,:);zeros(size(A,1)-M_.endo_nbr,size(B,2))]; [nrhx,nchx] = size(hx); [nrhu1,nchu1] = size(hu1); @@ -562,9 +501,6 @@ dr.ghxu = A\rhs; %ghuu %rhs -kk = reshape([1:np*np],np,np); -kk = kk(1:npred,1:npred); - [rhs, err] = sparse_hessian_times_B_kronecker_C(hessian,zu,options_.threads.kronecker.sparse_hessian_times_B_kronecker_C); mexErrCheck('sparse_hessian_times_B_kronecker_C', err); @@ -585,7 +521,8 @@ dr.ghuu = dr.ghuu(1:M_.endo_nbr,:); % reordering predetermined variables in diminishing lag order O1 = zeros(M_.endo_nbr,nstatic); O2 = zeros(M_.endo_nbr,M_.endo_nbr-nstatic-npred); -LHS = jacobia_(:,M_.lead_lag_incidence(M_.maximum_endo_lag+1,order_var)); +LHS = zeros(M_.endo_nbr,M_.endo_nbr); +LHS(:,k0) = jacobia_(:,nonzeros(lead_lag_incidence(M_.maximum_endo_lag+1,order_var))); RHS = zeros(M_.endo_nbr,M_.exo_nbr^2); kk = find(kstate(:,2) == M_.maximum_endo_lag+2); gu = dr.ghu; @@ -593,51 +530,19 @@ guu = dr.ghuu; Gu = [dr.ghu(nstatic+[1:npred],:); zeros(np-npred,M_.exo_nbr)]; Guu = [dr.ghuu(nstatic+[1:npred],:); zeros(np-npred,M_.exo_nbr*M_.exo_nbr)]; E = eye(M_.endo_nbr); -M_.lead_lag_incidenceordered = flipud(cumsum(flipud(M_.lead_lag_incidence(M_.maximum_endo_lag+1:end,order_var)),1)); -if M_.maximum_endo_lag > 0 - M_.lead_lag_incidenceordered = [cumsum(M_.lead_lag_incidence(1:M_.maximum_endo_lag,order_var),1); M_.lead_lag_incidenceordered]; -end -M_.lead_lag_incidenceordered = M_.lead_lag_incidenceordered'; -M_.lead_lag_incidenceordered = M_.lead_lag_incidenceordered(:); -k1 = find(M_.lead_lag_incidenceordered); -M_.lead_lag_incidenceordered(k1) = [1:length(k1)]'; -M_.lead_lag_incidenceordered =reshape(M_.lead_lag_incidenceordered,M_.endo_nbr,M_.maximum_endo_lag+M_.maximum_endo_lead+1)'; kh = reshape([1:nk^2],nk,nk); kp = sum(kstate(:,2) <= M_.maximum_endo_lag+1); E1 = [eye(npred); zeros(kp-npred,npred)]; H = E1; hxx = dr.ghxx(nstatic+[1:npred],:); -for i=1:M_.maximum_endo_lead - for j=i:M_.maximum_endo_lead - [junk,k2a,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+j+1,order_var)); - [junk,k3a,k3] = ... - find(M_.lead_lag_incidenceordered(M_.maximum_endo_lag+j+1,:)); - nk3a = length(k3a); - [B1, err] = sparse_hessian_times_B_kronecker_C(hessian(:,kh(k3,k3)),gu(k3a,:),options_.threads.kronecker.sparse_hessian_times_B_kronecker_C); - mexErrCheck('sparse_hessian_times_B_kronecker_C', err); - RHS = RHS + jacobia_(:,k2)*guu(k2a,:)+B1; - end - % LHS - [junk,k2a,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+i+1,order_var)); - LHS = LHS + jacobia_(:,k2)*(E(k2a,:)+[O1(k2a,:) dr.ghx(k2a,:)*H O2(k2a,:)]); - - if i == M_.maximum_endo_lead - break - end +[junk,k2a,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+2,order_var)); +[B1, err] = sparse_hessian_times_B_kronecker_C(hessian(:,kh(k2,k2)),gu(k2a,:),options_.threads.kronecker.sparse_hessian_times_B_kronecker_C); +mexErrCheck('sparse_hessian_times_B_kronecker_C', err); +RHS = RHS + jacobia_(:,k2)*guu(k2a,:)+B1; + +% LHS +LHS = LHS + jacobia_(:,k2)*(E(k2a,:)+[O1(k2a,:) dr.ghx(k2a,:)*H O2(k2a,:)]); - kk = find(kstate(:,2) == M_.maximum_endo_lag+i+1); - gu = dr.ghx*Gu; - [nrGu,ncGu] = size(Gu); - [G1, err] = A_times_B_kronecker_C(dr.ghxx,Gu,options_.threads.kronecker.A_times_B_kronecker_C); - mexErrCheck('A_times_B_kronecker_C', err); - [G2, err] = A_times_B_kronecker_C(hxx,Gu,options_.threads.kronecker.A_times_B_kronecker_C); - mexErrCheck('A_times_B_kronecker_C', err); - guu = dr.ghx*Guu+G1; - Gu = hx*Gu; - Guu = hx*Guu; - Guu(end-npred+1:end,:) = Guu(end-npred+1:end,:) + G2; - H = E1 + hx*H; -end RHS = RHS*M_.Sigma_e(:); dr.fuu = RHS; %RHS = -RHS-dr.fbias; diff --git a/matlab/set_state_space.m b/matlab/set_state_space.m index da74202d5fa0a2b07f5f77c2db2bf1cadeab9489..52b8ad6b0426ccde517982ba46fb1bf6e4147b90 100644 --- a/matlab/set_state_space.m +++ b/matlab/set_state_space.m @@ -39,9 +39,9 @@ endo_nbr = M_.endo_nbr; lead_lag_incidence = M_.lead_lag_incidence; klen = max_lag + max_lead + 1; -fwrd_var = find(any(lead_lag_incidence(max_lag+2:end,:),1))'; +fwrd_var = find(lead_lag_incidence(max_lag+2:end,:))'; if max_lag > 0 - pred_var = find(any(lead_lag_incidence(1,:),1))'; + pred_var = find(lead_lag_incidence(1,:))'; both_var = intersect(pred_var,fwrd_var); pred_var = setdiff(pred_var,both_var); fwrd_var = setdiff(fwrd_var,both_var); @@ -66,11 +66,11 @@ inv_order_var(order_var) = (1:endo_nbr); if max_lag > 0 kmask = []; if max_lead > 0 - kmask = [cumsum(flipud(lead_lag_incidence(max_lag+2:end,order_var)),1)] ; + kmask = lead_lag_incidence(max_lag+2,order_var) ; end - kmask = [kmask; flipud(cumsum(lead_lag_incidence(1,order_var),1))] ; + kmask = [kmask; lead_lag_incidence(1,order_var)] ; else - kmask = cumsum(flipud(lead_lag_incidence(max_lag+2:klen,order_var)),1) ; + kmask = lead_lag_incidence(max_lag+2,order_var) ; end kmask = kmask';