diff --git a/doc/dynare.texi b/doc/dynare.texi index 4721f2f3892e8368c47571ccc07e249ca9f2dce7..861700c513db7f857a1eccb59b54f7003ea7e420 100644 --- a/doc/dynare.texi +++ b/doc/dynare.texi @@ -3062,7 +3062,9 @@ Order of Taylor approximation. Acceptable values are @code{1}, @code{2} and @code{3}. Note that for third order, @code{k_order_solver} option is implied and only empirical moments are available (you must provide a value for @code{periods} -option). Default: @code{2} (except after an @code{estimation} command, +option). A value of @code{2} or more is incompatible with @code{block} +and @code{bytecode} options of the @code{model} block. Default: +@code{2} (except after an @code{estimation} command, in which case the default is the value used for the estimation). @item k_order_solver diff --git a/matlab/dr_block.m b/matlab/dr_block.m index 0e5088ae971d67cca68723eb9a0819564f69605d..f4589eeb1df522ff0ee24a4520e396bbd6be91b7 100644 --- a/matlab/dr_block.m +++ b/matlab/dr_block.m @@ -52,9 +52,6 @@ function [dr,info,M_,options_,oo_] = dr_block(dr,task,M_,options_,oo_) info = 0; verbose = 0; -if options_.order > 1 - error('2nd and 3rd order approximation not implemented with block option') -end z = repmat(dr.ys,1,M_.maximum_lead + M_.maximum_lag + 1); zx = repmat([oo_.exo_simul oo_.exo_det_simul],M_.maximum_lead + M_.maximum_lag + 1, 1); diff --git a/preprocessor/ModFile.cc b/preprocessor/ModFile.cc index 3f6b4a429937b63782876ee6dbe01bc5576df678..f15ee9648998a7c19a74194845bb0e4478d1a180 100644 --- a/preprocessor/ModFile.cc +++ b/preprocessor/ModFile.cc @@ -161,6 +161,13 @@ ModFile::checkPass() exit(EXIT_FAILURE); } + if ((block || byte_code) && stochastic_statement_present + && mod_file_struct.order_option >= 2) + { + cerr << "ERROR: In 'model' block, 'block' and/or 'bytecode' options are not yet compatible with a stochastic model at order >= 2" << endl; + exit(EXIT_FAILURE); + } + if (use_dll && (block || byte_code)) { cerr << "ERROR: In 'model' block, 'use_dll' option is not compatible with 'block' or 'bytecode'" << endl;