diff --git a/matlab/PosteriorIRF_core1.m b/matlab/PosteriorIRF_core1.m index fb909f8893c558156758f6e34214725fec399d6b..7fa1716f6f1c5fbaa13aef2f968dc04f9532bc8a 100644 --- a/matlab/PosteriorIRF_core1.m +++ b/matlab/PosteriorIRF_core1.m @@ -194,7 +194,7 @@ while fpar<B end if MAX_nirfs_dsgevar IRUN = IRUN+1; - [fval,info,junk1,junk2,junk3,junk3,junk4,PHI,SIGMAu,iXX] = dsge_var_likelihood(deep',dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_); + [fval,info,~,~,~,~,~,PHI,SIGMAu,iXX] = dsge_var_likelihood(deep',dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_); dsge_prior_weight = M_.params(strmatch('dsge_prior_weight', M_.param_names)); DSGE_PRIOR_WEIGHT = floor(dataset_.nobs*(1+dsge_prior_weight)); SIGMA_inv_upper_chol = chol(inv(SIGMAu*dataset_.nobs*(dsge_prior_weight+1))); diff --git a/matlab/WriteShockDecomp2Excel.m b/matlab/WriteShockDecomp2Excel.m index d0ecd7cc47ee5f96f9a0d611d501b09fa7af3ecd..cdce0ec48dbaacb004eb38aa6554d0cbb20b441a 100644 --- a/matlab/WriteShockDecomp2Excel.m +++ b/matlab/WriteShockDecomp2Excel.m @@ -93,7 +93,7 @@ for j=1:nvar d0={}; z1 = squeeze(z(i_var(j),:,:)); if screen_shocks - [junk, isort] = sort(mean(abs(z1(1:end-2,:)')), 'descend'); + [~, isort] = sort(mean(abs(z1(1:end-2,:)')), 'descend'); labels = char(char(shock_names(isort(1:16))),'Others', 'Initial values'); zres = sum(z1(isort(17:end),:),1); z1 = [z1(isort(1:16),:); zres; z1(comp_nbr0:end,:)]; diff --git a/matlab/annualized_shock_decomposition.m b/matlab/annualized_shock_decomposition.m index 5f5e086748cb9d350bec989f1c91f58cb32ca7ae..63400893fd06de554f64bd9b2f2ffdfba15b9bce 100644 --- a/matlab/annualized_shock_decomposition.m +++ b/matlab/annualized_shock_decomposition.m @@ -128,7 +128,7 @@ if realtime_==0 myopts=options_; myopts.plot_shock_decomp.type='qoq'; myopts.plot_shock_decomp.realtime=0; - [z, junk] = plot_shock_decomposition(M_,oo_,myopts,[]); + [z, ~] = plot_shock_decomposition(M_,oo_,myopts,[]); else z = oo_; end @@ -287,7 +287,7 @@ if isstruct(aux) yaux=aux.y; end -[nvar , nterms, junk] = size(z); +[nvar, nterms, ~] = size(z); for j=1:nvar for k =1:nterms ztmp = squeeze(z(j,k,min((t0-3):-4:1):end)); diff --git a/matlab/bksupk.m b/matlab/bksupk.m index 64de63b8b6e37c5c239dad2d0fcc6b278202b696..cca78d7f617b57f00c30925da3417bf26a973222 100644 --- a/matlab/bksupk.m +++ b/matlab/bksupk.m @@ -40,7 +40,7 @@ irf = icc1+(options_.periods-1)*ny ; d1 = zeros(options_.periods*ny,1) ; ofs = (((options_.periods-1)*ny+1)-1)*jcf*8 ; -junk = fseek(fid,ofs,-1) ; +[~] = fseek(fid,ofs,-1) ; c = fread(fid,[jcf,ny],'float64')'; d1(ir) = c(:,jcf) ; @@ -52,7 +52,7 @@ while i <= M_.maximum_lead || i <= options_.periods irf1 = selif(irf,irf<=options_.periods*ny) ; ofs = (((options_.periods-i)*ny+1)-1)*jcf*8 ; - junk = fseek(fid,ofs,-1) ; + [~] = fseek(fid,ofs,-1) ; c = fread(fid,[jcf,ny],'float64')' ; d1(ir) = c(:,jcf) - c(:,1:size(irf1,1))*d1(irf1) ; @@ -64,7 +64,7 @@ end while i <= options_.periods ofs = (((options_.periods-i)*ny+1)-1)*jcf*8 ; - junk = fseek(fid,ofs,-1) ; + [~] = fseek(fid,ofs,-1) ; c = fread(fid,[jcf,ny],'float64')' ; d1(ir) = c(:,jcf)-c(:,icf)*d1(irf) ; diff --git a/matlab/check_list_of_variables.m b/matlab/check_list_of_variables.m index 8fabffe54bd1c4b61b0831699d5640fa7d45f5c6..f13182c855f9290d68b0e04e9b11cd488427be38 100644 --- a/matlab/check_list_of_variables.m +++ b/matlab/check_list_of_variables.m @@ -32,7 +32,7 @@ function varlist = check_list_of_variables(options_, M_, varlist) % along with Dynare. If not, see <http://www.gnu.org/licenses/>. % Get uniques -[junk1, junk2, index_uniques] = varlist_indices(varlist, M_.endo_names); +[~, ~, index_uniques] = varlist_indices(varlist, M_.endo_names); varlist = varlist(index_uniques); msg = false; diff --git a/matlab/check_posterior_sampler_options.m b/matlab/check_posterior_sampler_options.m index 4683639f3af1418b084e16d42ad58e0f3645093c..0cb50758672fae4ec22f02b9dd6a115727ba4cea 100644 --- a/matlab/check_posterior_sampler_options.m +++ b/matlab/check_posterior_sampler_options.m @@ -387,7 +387,7 @@ if ~strcmp(posterior_sampler_options.posterior_sampling_method,'slice') end if options_.load_mh_file && posterior_sampler_options.use_mh_covariance_matrix - [junk, invhess] = compute_mh_covariance_matrix; + [~, invhess] = compute_mh_covariance_matrix; posterior_sampler_options.invhess = invhess; end @@ -409,7 +409,7 @@ if strcmp(posterior_sampler_options.posterior_sampling_method,'slice') error('check_posterior_sampler_options:: This error should not occur, please contact developers.') end % % % if options_.load_mh_file && options_.use_mh_covariance_matrix, - % % % [junk, invhess] = compute_mh_covariance_matrix; + % % % [~, invhess] = compute_mh_covariance_matrix; % % % posterior_sampler_options.invhess = invhess; % % % end [V1, D]=eig(invhess); diff --git a/matlab/discretionary_policy_1.m b/matlab/discretionary_policy_1.m index f154912d4e874babd2584662d307bff1cc19ae74..91586970b43cd88f119d139c8549c285ed8ec20d 100644 --- a/matlab/discretionary_policy_1.m +++ b/matlab/discretionary_policy_1.m @@ -63,7 +63,7 @@ end %call steady_state_file if present to update parameters if options_.steadystate_flag % explicit steady state file - [junk,M_.params,info] = evaluate_steady_state_file(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_, ... + [~,M_.params,info] = evaluate_steady_state_file(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_, ... options_,0); end [U,Uy,W] = feval([M_.fname,'.objective.static'],zeros(endo_nbr,1),[], M_.params); @@ -129,7 +129,7 @@ iter=1; for j=1:numel(Indices) eval(['A',Indices{j},'=zeros(eq_nbr,endo_nbr);']) if strcmp(Indices{j},'0')||(strcmp(Indices{j},'lag') && MaxLag)||(strcmp(Indices{j},'lead') && MaxLead) - [junk,row,col]=find(lead_lag_incidence(iter,:)); + [~,row,col]=find(lead_lag_incidence(iter,:)); eval(['A',Indices{j},'(:,row)=jacobia_(:,col);']) iter=iter+1; end diff --git a/matlab/dr_block.m b/matlab/dr_block.m index 0b4d676ee7f9c0aa8a832cb008027b0920e5d896..c0209d527fd892a567cdceeec8b765729cd4ab0f 100644 --- a/matlab/dr_block.m +++ b/matlab/dr_block.m @@ -409,7 +409,7 @@ for i = 1:Size index_c = lead_lag_incidence(2,:); % Index of all endogenous variables present at time=t index_s = lead_lag_incidence(2,1:n_static); % Index of all static endogenous variables present at time=t if n_static > 0 - [Q, junk] = qr(jacob(:,index_s)); + [Q, ~] = qr(jacob(:,index_s)); aa = Q'*jacob; else aa = jacob; @@ -476,7 +476,7 @@ for i = 1:Size if isfield(options_,'indeterminacy_continuity') if options_.indeterminacy_msv == 1 [ss,tt,w,q] = qz(E',D'); - [ss,tt,w,junk] = reorder(ss,tt,w,q); + [ss,tt,w,~] = reorder(ss,tt,w,q); ss = ss'; tt = tt'; w = w'; diff --git a/matlab/draw_prior_density.m b/matlab/draw_prior_density.m index 8e9ff93c6b782939d0080c99c8acf5921c931e68..b5d993e85427d33ea90432b7f223fffd9c42d2ea 100644 --- a/matlab/draw_prior_density.m +++ b/matlab/draw_prior_density.m @@ -111,7 +111,7 @@ switch pshape(indx) end if pshape(indx) ~= 5 - [junk,k1] = max(dens); + [~,k1] = max(dens); if k1 == 1 || k1 == length(dens) k = find(dens > 10); dens(k) = NaN; diff --git a/matlab/dyn_first_order_solver.m b/matlab/dyn_first_order_solver.m index 6981971673ef91b54e0b88c47472e7d27e12174a..c7f97e9b5b91bbf4a6e2de8bbf9cd201e222ebe7 100644 --- a/matlab/dyn_first_order_solver.m +++ b/matlab/dyn_first_order_solver.m @@ -124,7 +124,7 @@ if isempty(reorder_jacobian_columns) nsfwrd)))]; index_e2 = npred+nboth+(1:nboth); - [junk,cols_b] = find(lead_lag_incidence(maximum_lag+1, order_var)); + [~,cols_b] = find(lead_lag_incidence(maximum_lag+1, order_var)); reorder_jacobian_columns = [nonzeros(lead_lag_incidence(:,order_var)'); ... nz+(1:exo_nbr)']; @@ -138,7 +138,7 @@ dr.state_var = state_var; jacobia = jacobia(:,reorder_jacobian_columns); if nstatic > 0 - [Q, junk] = qr(jacobia(:,index_s)); + [Q, ~] = qr(jacobia(:,index_s)); aa = Q'*jacobia; else aa = jacobia; diff --git a/matlab/dyn_ramsey_static.m b/matlab/dyn_ramsey_static.m index cf171e847adff4e1134c18454303016065710486..ccbad5e7bc57108297f292e5d7bd14d8ca65c7ad 100644 --- a/matlab/dyn_ramsey_static.m +++ b/matlab/dyn_ramsey_static.m @@ -75,7 +75,7 @@ elseif options_.steadystate_flag ys_init(k_inst) = inst_val; exo_ss = [oo.exo_steady_state oo.exo_det_steady_state]; [xx,params] = evaluate_steady_state_file(ys_init,exo_ss,M,options_,~options_.steadystate.nocheck); %run steady state file again to update parameters - [junk,junk,steady_state] = nl_func(inst_val); %compute and return steady state + [~,~,steady_state] = nl_func(inst_val); %compute and return steady state else n_var = M.orig_endo_nbr; xx = oo.steady_state(1:n_var); @@ -85,7 +85,7 @@ else if info1~=0 check=81; end - [junk,junk,steady_state] = nl_func(xx); + [~,~,steady_state] = nl_func(xx); end @@ -194,8 +194,8 @@ end function result = check_static_model(ys,M,options_,oo) result = false; if (options_.bytecode) - [chck, res, junk] = bytecode('static',ys,[oo.exo_steady_state oo.exo_det_steady_state], ... - M.params, 'evaluate'); + [chck, res, ~] = bytecode('static',ys,[oo.exo_steady_state oo.exo_det_steady_state], ... + M.params, 'evaluate'); else res = feval([M.fname '.static'],ys,[oo.exo_steady_state oo.exo_det_steady_state], ... M.params); diff --git a/matlab/dyn_risky_steadystate_solver.m b/matlab/dyn_risky_steadystate_solver.m index a17e213261c149ac0ab38b1d68623346bd5b75ed..04c50b84b234287a994130c8e792906f8119f810 100644 --- a/matlab/dyn_risky_steadystate_solver.m +++ b/matlab/dyn_risky_steadystate_solver.m @@ -88,7 +88,7 @@ exo_nbr = M.exo_nbr; M.var_order_endo_names = M.endo_names(dr.order_var); -[junk,dr.i_fwrd_g,i_fwrd_f] = find(lead_lag_incidence(3,order_var)); +[~,dr.i_fwrd_g,i_fwrd_f] = find(lead_lag_incidence(3,order_var)); dr.i_fwrd_f = i_fwrd_f; nd = nnz(lead_lag_incidence) + M.exo_nbr; dr.nd = nd; diff --git a/matlab/dyn_second_order_solver.m b/matlab/dyn_second_order_solver.m index df6ba76939e7217aa97a9dab88ed4dcad48e839e..5040d14933c6ff8bbd335189767e62bd06fd43dc 100644 --- a/matlab/dyn_second_order_solver.m +++ b/matlab/dyn_second_order_solver.m @@ -105,7 +105,7 @@ k1 = find(kstate(:,2) == M_.maximum_endo_lag+2); % Jacobian with respect to the variables with the highest lead fyp = jacobia(:,kstate(k1,3)+nnz(M_.lead_lag_incidence(M_.maximum_endo_lag+1,:))); B(:,nstatic+M_.npred+1:end) = fyp; -[junk,k1,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+M_.maximum_endo_lead+1,order_var)); +[~,k1,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+M_.maximum_endo_lead+1,order_var)); A(1:M_.endo_nbr,nstatic+1:nstatic+nspred)=... A(1:M_.endo_nbr,nstatic+[1:nspred])+fyp*gx1(k1,1:nspred); C = Gy; @@ -162,7 +162,7 @@ kp = sum(kstate(:,2) <= M_.maximum_endo_lag+1); E1 = [eye(nspred); zeros(kp-nspred,nspred)]; H = E1; hxx = dr.ghxx(nstatic+[1:nspred],:); -[junk,k2a,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+2,order_var)); +[~,k2a,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+2,order_var)); k3 = nnz(M_.lead_lag_incidence(1:M_.maximum_endo_lag+1,:))+(1:M_.nsfwrd)'; [B1, err] = sparse_hessian_times_B_kronecker_C(hessian_mat(:,kh(k3,k3)),gu(k2a,:),threads_BC); mexErrCheck('sparse_hessian_times_B_kronecker_C', err); diff --git a/matlab/dynare.m b/matlab/dynare.m index fa38088034ad18c854ceac8677d451e0f47b7220..00f18c37725237027c5d26ba4a565eabe033f99b 100644 --- a/matlab/dynare.m +++ b/matlab/dynare.m @@ -191,7 +191,7 @@ end if ispc arch = getenv('PROCESSOR_ARCHITECTURE'); else - [junk, arch] = system('uname -m'); + [~, arch] = system('uname -m'); end if isempty(strfind(arch, '64')) diff --git a/matlab/dynare_estimation_1.m b/matlab/dynare_estimation_1.m index a0eb52924b210df5d63c48acbc458d8d9affa865..776adbaa05953f0347b303870037faf004daed67 100644 --- a/matlab/dynare_estimation_1.m +++ b/matlab/dynare_estimation_1.m @@ -235,8 +235,8 @@ if ~isequal(options_.mode_compute,0) && ~options_.mh_posterior_mode_estimation if options_.analytic_derivation && strcmp(func2str(objective_function),'dsge_likelihood') ana_deriv_old = options_.analytic_derivation; options_.analytic_derivation = 2; - [junk1, junk2,junk3, junk4, hh] = feval(objective_function,xparam1, ... - dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_); + [~,~,~,~,hh] = feval(objective_function,xparam1, ... + dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_); options_.analytic_derivation = ana_deriv_old; elseif ~isnumeric(options_.mode_compute) || ~(isequal(options_.mode_compute,5) && newratflag~=1 && strcmp(func2str(objective_function),'dsge_likelihood')) % with flag==0, we force to use the hessian from outer product gradient of optimizer 5 @@ -373,9 +373,8 @@ if any(bayestopt_.pshape > 0) && ~options_.mh_posterior_mode_estimation skipline() end if options_.dsge_var - [junk1,junk2,junk3,junk4,junk5,junk6,junk7,oo_.dsge_var.posterior_mode.PHI_tilde,oo_.dsge_var.posterior_mode.SIGMA_u_tilde,oo_.dsge_var.posterior_mode.iXX,oo_.dsge_var.posterior_mode.prior] =... + [~,~,~,~,~,~,~,oo_.dsge_var.posterior_mode.PHI_tilde,oo_.dsge_var.posterior_mode.SIGMA_u_tilde,oo_.dsge_var.posterior_mode.iXX,oo_.dsge_var.posterior_mode.prior] =... feval(objective_function,xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_); - clear('junk1','junk2','junk3','junk4','junk5','junk6','junk7'); end elseif ~any(bayestopt_.pshape > 0) && ~options_.mh_posterior_mode_estimation @@ -519,7 +518,7 @@ if (any(bayestopt_.pshape >0 ) && options_.mh_replic) || ... oo_.posterior.metropolis=oo_load_mh.oo_.posterior.metropolis; end end - [error_flag,junk,options_]= metropolis_draw(1,options_,estim_params_,M_); + [error_flag,~,options_]= metropolis_draw(1,options_,estim_params_,M_); if options_.bayesian_irf if error_flag error('Estimation::mcmc: I cannot compute the posterior IRFs!') diff --git a/matlab/dynare_estimation_init.m b/matlab/dynare_estimation_init.m index fb457520971337eb03564cd6d4eccbdb3e0e87d0..7676c644575736644517fca349c0ba9fbe794e5b 100644 --- a/matlab/dynare_estimation_init.m +++ b/matlab/dynare_estimation_init.m @@ -454,38 +454,38 @@ if options_.block == 1 % Set restrict_state to postion of observed + state variables in expanded state vector. oo_.dr.restrict_var_list = [k1(i_posA) M_.state_var(sort(i_posB))]; % set mf0 to positions of state variables in restricted state vector for likelihood computation. - [junk,bayestopt_.mf0] = ismember(M_.state_var',oo_.dr.restrict_var_list); + [~,bayestopt_.mf0] = ismember(M_.state_var',oo_.dr.restrict_var_list); % Set mf1 to positions of observed variables in restricted state vector for likelihood computation. - [junk,bayestopt_.mf1] = ismember(k1,oo_.dr.restrict_var_list); + [~,bayestopt_.mf1] = ismember(k1,oo_.dr.restrict_var_list); % Set mf2 to positions of observed variables in expanded state vector for filtering and smoothing. bayestopt_.mf2 = var_obs_index_dr; bayestopt_.mfys = k1; oo_.dr.restrict_columns = [size(i_posA,1)+(1:size(M_.state_var,2))]; [k2, i_posA, i_posB] = union(k3p, M_.state_var', 'rows'); bayestopt_.smoother_var_list = [k3p(i_posA); M_.state_var(sort(i_posB))']; - [junk,junk,bayestopt_.smoother_saved_var_list] = intersect(k3p,bayestopt_.smoother_var_list(:)); - [junk,ic] = intersect(bayestopt_.smoother_var_list,M_.state_var); + [~,~,bayestopt_.smoother_saved_var_list] = intersect(k3p,bayestopt_.smoother_var_list(:)); + [~,ic] = intersect(bayestopt_.smoother_var_list,M_.state_var); bayestopt_.smoother_restrict_columns = ic; - [junk,bayestopt_.smoother_mf] = ismember(k1, bayestopt_.smoother_var_list); + [~,bayestopt_.smoother_mf] = ismember(k1, bayestopt_.smoother_var_list); else % Define union of observed and state variables k2 = union(var_obs_index_dr,[M_.nstatic+1:M_.nstatic+M_.nspred]', 'rows'); % Set restrict_state to postion of observed + state variables in expanded state vector. oo_.dr.restrict_var_list = k2; % set mf0 to positions of state variables in restricted state vector for likelihood computation. - [junk,bayestopt_.mf0] = ismember([M_.nstatic+1:M_.nstatic+M_.nspred]',k2); + [~,bayestopt_.mf0] = ismember([M_.nstatic+1:M_.nstatic+M_.nspred]',k2); % Set mf1 to positions of observed variables in restricted state vector for likelihood computation. - [junk,bayestopt_.mf1] = ismember(var_obs_index_dr,k2); + [~,bayestopt_.mf1] = ismember(var_obs_index_dr,k2); % Set mf2 to positions of observed variables in expanded state vector for filtering and smoothing. bayestopt_.mf2 = var_obs_index_dr; bayestopt_.mfys = k1; - [junk,ic] = intersect(k2,nstatic+(1:npred)'); + [~,ic] = intersect(k2,nstatic+(1:npred)'); oo_.dr.restrict_columns = [ic; length(k2)+(1:nspred-npred)']; bayestopt_.smoother_var_list = union(k2,k3); - [junk,junk,bayestopt_.smoother_saved_var_list] = intersect(k3,bayestopt_.smoother_var_list(:)); - [junk,ic] = intersect(bayestopt_.smoother_var_list,nstatic+(1:npred)'); + [~,~,bayestopt_.smoother_saved_var_list] = intersect(k3,bayestopt_.smoother_var_list(:)); + [~,ic] = intersect(bayestopt_.smoother_var_list,nstatic+(1:npred)'); bayestopt_.smoother_restrict_columns = ic; - [junk,bayestopt_.smoother_mf] = ismember(var_obs_index_dr, bayestopt_.smoother_var_list); + [~,bayestopt_.smoother_mf] = ismember(var_obs_index_dr, bayestopt_.smoother_var_list); end if options_.analytic_derivation diff --git a/matlab/dynare_gradient.m b/matlab/dynare_gradient.m index 2f4dfc9d499623d5a4ef250d4bc7dad0adb7a868..71e9da33e7141129cd2f6f1717344d2d564668f1 100644 --- a/matlab/dynare_gradient.m +++ b/matlab/dynare_gradient.m @@ -52,11 +52,11 @@ for i=1:m else h = H(:,i); end - [Fh,junk1,junk2,flag] = feval(fcn, x+transpose(h), varargin{:}); + [Fh,~,~,flag] = feval(fcn, x+transpose(h), varargin{:}); if flag G(:,i) = (Fh-F)/epsilon; else - [Fh,junk1,junk2,flag] = feval(fcn, x-transpose(h), varargin{:}); + [Fh,~,~,flag] = feval(fcn, x-transpose(h), varargin{:}); if flag G(:,i) = (F-Fh)/epsilon; else diff --git a/matlab/evaluate_steady_state.m b/matlab/evaluate_steady_state.m index 993148fc1f8ca0ad50fdb074228fd53b0dc30fb7..9293d53acc052d2ef1ef2f18792083329b566783 100644 --- a/matlab/evaluate_steady_state.m +++ b/matlab/evaluate_steady_state.m @@ -307,7 +307,7 @@ if M.static_and_dynamic_models_differ z = repmat(ys,1,M.maximum_lead + M.maximum_lag + 1); zx = repmat([exo_ss'], M.maximum_lead + M.maximum_lag + 1, 1); if options.bytecode - [chck, r, junk]= bytecode('dynamic','evaluate', z, zx, M.params, ys, 1); + [chck, r, ~]= bytecode('dynamic','evaluate', z, zx, M.params, ys, 1); mexErrCheck('bytecode', chck); elseif options.block [r, oo.dr] = feval([M.fname '.dynamic'], z', zx, M.params, ys, M.maximum_lag+1, oo.dr); diff --git a/matlab/execute_prior_posterior_function.m b/matlab/execute_prior_posterior_function.m index cb7884e83916c945a4c19fb069f3f130204c5ec1..e998dd19b001da35cc7e16d89372aa18c0823da4 100644 --- a/matlab/execute_prior_posterior_function.m +++ b/matlab/execute_prior_posterior_function.m @@ -55,7 +55,7 @@ if strcmpi(type,'posterior') CutSample(M_, options_, estim_params_); %% initialize metropolis draws options_.sub_draws=n_draws; %set draws for sampling; changed value is not returned to base workspace - [error_flag,junk,options_]= metropolis_draw(1,options_,estim_params_,M_); + [error_flag,~,options_]= metropolis_draw(1,options_,estim_params_,M_); if error_flag error('EXECUTE_POSTERIOR_FUNCTION: The draws could not be initialized') end diff --git a/matlab/getH.m b/matlab/getH.m index a7de28bc0893bf77a7e2add2578301c729963614..efd53d9d6b98adf389a991549d6d90dac8e3d90e 100644 --- a/matlab/getH.m +++ b/matlab/getH.m @@ -319,8 +319,8 @@ if nargout > 5 end end -[junk,cols_b,cols_j] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+1, ... - oo_.dr.order_var)); +[~,cols_b,cols_j] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+1, ... + oo_.dr.order_var)); GAM0 = zeros(M_.endo_nbr,M_.endo_nbr); Dg0 = zeros(M_.endo_nbr,M_.endo_nbr,param_nbr); GAM0(:,cols_b) = g1(:,cols_j); diff --git a/matlab/get_name_of_the_last_mh_file.m b/matlab/get_name_of_the_last_mh_file.m index e6732a2ef4ca62647ddda2cd1cb76f7fce982dbd..2741f7b52fdf3daf860767e4b56ee35fb9000533 100644 --- a/matlab/get_name_of_the_last_mh_file.m +++ b/matlab/get_name_of_the_last_mh_file.m @@ -43,7 +43,7 @@ bk_number = record.Nblck ; predicted_mhname = [ BaseName '_mh' int2str(mh_number) '_blck' int2str(bk_number) '.mat' ] ; all_mh_files = dir([BaseName '_mh*_blck*' ]); -[junk,idx] = sort([all_mh_files.datenum]); +[~,idx] = sort([all_mh_files.datenum]); mhname = all_mh_files(idx(end)).name; if ~strcmpi(mhname,predicted_mhname) diff --git a/matlab/global_initialization.m b/matlab/global_initialization.m index 6a1acadc989ec25b802351e768ce5faadffd944d..93c1e8ad6bb38716744f88a0086cec22a130be15 100644 --- a/matlab/global_initialization.m +++ b/matlab/global_initialization.m @@ -130,8 +130,8 @@ set_dynare_seed('default'); % Create directories -[junk,junk]=mkdir(M_.fname); -[junk,junk]=mkdir([M_.fname filesep 'Output']); +[~,~]=mkdir(M_.fname); +[~,~]=mkdir([M_.fname filesep 'Output']); % Load user configuration file. if isfield(options_, 'global_init_file') diff --git a/matlab/graph_decomp.m b/matlab/graph_decomp.m index 7b150a5da03b081880c4c297ca5e9af1a7828b47..eda542009c4d280aa620e3c8f5d911ee52980aa7 100644 --- a/matlab/graph_decomp.m +++ b/matlab/graph_decomp.m @@ -108,7 +108,7 @@ comp_nbr0=comp_nbr; for j=1:nvar z1 = squeeze(z(i_var(j),:,:)); if screen_shocks - [junk, isort] = sort(mean(abs(z1(1:end-2,:)')), 'descend'); + [~, isort] = sort(mean(abs(z1(1:end-2,:)')), 'descend'); labels = char(char(shock_names(isort(1:16))),'Others', 'Initial values'); zres = sum(z1(isort(17:end),:),1); z1 = [z1(isort(1:16),:); zres; z1(comp_nbr0:end,:)]; diff --git a/matlab/graph_decomp_detail.m b/matlab/graph_decomp_detail.m index 2605dbac3e3eb93494a276ac40b8811317231997..9b920770ba9db4f9fe56a5657f0ed3cc7248fc22 100644 --- a/matlab/graph_decomp_detail.m +++ b/matlab/graph_decomp_detail.m @@ -135,7 +135,7 @@ comp_nbr0=comp_nbr; for j=1:nvar z1 = squeeze(z(i_var(j),:,:)); if screen_shocks, - [junk, isort] = sort(mean(abs(z1(1:end-2,:)')), 'descend'); + [~, isort] = sort(mean(abs(z1(1:end-2,:)')), 'descend'); labels = char(char(shock_names(isort(1:16))),'Others', 'Initial values'); zres = sum(z1(isort(17:end),:),1); z1 = [z1(isort(1:16),:); zres; z1(comp_nbr0:end,:)]; diff --git a/matlab/gsa/prior_draw_gsa.m b/matlab/gsa/prior_draw_gsa.m index c3c92d40d402d2ef2cf404f6569863ab6091cf4f..d772ae22a88a6ade4b631df1eed5c487883496cf 100644 --- a/matlab/gsa/prior_draw_gsa.m +++ b/matlab/gsa/prior_draw_gsa.m @@ -49,7 +49,7 @@ if init pdraw = zeros(npar,1); lbcum = zeros(npar,1); ubcum = ones(npar,1); - [junk1,junk2,junk3,lb,ub,junk4] = set_prior(estim_params_,M_,options_); %Prepare bounds + [~,~,~,lb,ub,~] = set_prior(estim_params_,M_,options_); %Prepare bounds if ~isempty(bayestopt_) && any(bayestopt_.pshape > 0) % Set prior bounds bounds = prior_bounds(bayestopt_, options_.prior_trunc); diff --git a/matlab/gsa/stab_map_.m b/matlab/gsa/stab_map_.m index f4f73188c7cd70ff10af777fe8c84f2a716eb206..15c6f22a5ca21b439979bfc187ffd5be805cf1ea 100644 --- a/matlab/gsa/stab_map_.m +++ b/matlab/gsa/stab_map_.m @@ -92,7 +92,7 @@ p2 = bayestopt_.p2(nshock+1:end); p3 = bayestopt_.p3(nshock+1:end); p4 = bayestopt_.p4(nshock+1:end); -[junk1,junk2,junk3,lb,ub,junk4] = set_prior(estim_params_,M_,options_); %Prepare bounds +[~,~,~,lb,ub,~] = set_prior(estim_params_,M_,options_); %Prepare bounds if ~isempty(bayestopt_) && any(bayestopt_.pshape > 0) % Set prior bounds bounds = prior_bounds(bayestopt_, options_.prior_trunc); diff --git a/matlab/identification_analysis.m b/matlab/identification_analysis.m index bc4d8ad86da4e93b624f9e1c7d6af929c2a2b6b6..69b10efadd76d89d7062fd1b87da409ec051fe90 100644 --- a/matlab/identification_analysis.m +++ b/matlab/identification_analysis.m @@ -198,7 +198,7 @@ if info(1)==0 if isoctave || matlab_ver_less_than('8.3') [V,D]=eig(cc); %fix for older Matlab versions that do not support computing left eigenvalues, see http://mathworks.com/help/releases/R2012b/matlab/ref/eig.html - [W,junk] = eig(cc.'); + [W,~] = eig(cc.'); W = conj(W); else [V,D,W]=eig(cc); diff --git a/matlab/initial_condition_decomposition.m b/matlab/initial_condition_decomposition.m index 52e468a9f116758f68124d0e5604bc5c4783cad2..0c846b1ff50493fcd5c5e0912ebe10fa660b341b 100644 --- a/matlab/initial_condition_decomposition.m +++ b/matlab/initial_condition_decomposition.m @@ -74,7 +74,7 @@ end if ~isfield(oo_,'initval_decomposition') options_.selected_variables_only = 0; %make sure all variables are stored options_.plot_priors=0; - [oo,M,junk1,junk2,Smoothed_Variables_deviation_from_mean] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_); + [oo,M,~,~,Smoothed_Variables_deviation_from_mean] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_); % reduced form dr = oo.dr; diff --git a/matlab/initial_estimation_checks.m b/matlab/initial_estimation_checks.m index bc7d9fb20ea29e003e4e253a04401b254cd439ef..05972ef30a52750731fe944f5be270eb8ef2a085 100644 --- a/matlab/initial_estimation_checks.m +++ b/matlab/initial_estimation_checks.m @@ -66,7 +66,7 @@ if isfield(EstimatedParameters,'param_vals') && ~isempty(EstimatedParameters.par %check whether steady state file changes estimated parameters Model_par_varied=Model; %store Model structure Model_par_varied.params(EstimatedParameters.param_vals(:,1))=Model_par_varied.params(EstimatedParameters.param_vals(:,1))*1.01; %vary parameters - [junk, new_steady_params_2] = evaluate_steady_state(DynareResults.steady_state,Model_par_varied,DynareOptions,DynareResults,DynareOptions.diffuse_filter==0); + [~, new_steady_params_2] = evaluate_steady_state(DynareResults.steady_state,Model_par_varied,DynareOptions,DynareResults,DynareOptions.diffuse_filter==0); changed_par_indices=find((old_steady_params(EstimatedParameters.param_vals(:,1))-new_steady_params(EstimatedParameters.param_vals(:,1))) ... | (Model_par_varied.params(EstimatedParameters.param_vals(:,1))-new_steady_params_2(EstimatedParameters.param_vals(:,1)))); @@ -105,7 +105,7 @@ end % display warning if some parameters are still NaN test_for_deep_parameters_calibration(Model); -[lnprior, junk1,junk2,info]= priordens(xparam1,BayesInfo.pshape,BayesInfo.p6,BayesInfo.p7,BayesInfo.p3,BayesInfo.p4); +[lnprior,~,~,info]= priordens(xparam1,BayesInfo.pshape,BayesInfo.p6,BayesInfo.p7,BayesInfo.p3,BayesInfo.p4); if info fprintf('The prior density evaluated at the initial values is Inf for the following parameters: %s\n',BayesInfo.name{info,1}) error('The initial value of the prior is -Inf') diff --git a/matlab/kalman/likelihood/kalman_filter_ss.m b/matlab/kalman/likelihood/kalman_filter_ss.m index 5510de9f36b9d262f470551878c6742b9e1e71fe..d8dc80468350f7ddb2c4a74550938c7d4405375d 100644 --- a/matlab/kalman/likelihood/kalman_filter_ss.m +++ b/matlab/kalman/likelihood/kalman_filter_ss.m @@ -114,9 +114,9 @@ while t <= last tmp = (a+K*v); if analytic_derivation if analytic_derivation==2 - [Da,junk,DLIKt,D2a,junk2, Hesst] = computeDLIK(k,tmp,Z,Zflag,v,T,K,[],iF,Da,DYss,DT,[],[],[],notsteady,D2a,D2Yss,D2T,[],[]); + [Da,~,DLIKt,D2a,~, Hesst] = computeDLIK(k,tmp,Z,Zflag,v,T,K,[],iF,Da,DYss,DT,[],[],[],notsteady,D2a,D2Yss,D2T,[],[]); else - [Da,junk,DLIKt,Hesst] = computeDLIK(k,tmp,Z,Zflag,v,T,K,[],iF,Da,DYss,DT,[],[],[],notsteady); + [Da,~,DLIKt,Hesst] = computeDLIK(k,tmp,Z,Zflag,v,T,K,[],iF,Da,DYss,DT,[],[],[],notsteady); end DLIK = DLIK + DLIKt; if analytic_derivation==2 || asy_hess diff --git a/matlab/kalman/likelihood/univariate_kalman_filter_ss.m b/matlab/kalman/likelihood/univariate_kalman_filter_ss.m index 9d8cbff06fa912f12c69768b34c2f2338ff33c7a..e67a87f18b4c6360e6ce077722f2cb00d04ecf11 100644 --- a/matlab/kalman/likelihood/univariate_kalman_filter_ss.m +++ b/matlab/kalman/likelihood/univariate_kalman_filter_ss.m @@ -153,7 +153,7 @@ while t<=last end if analytic_derivation if analytic_derivation==2 - [Da,junk,D2a] = univariate_computeDstate(k,a,P,T,Da,DP,DT,[],0,D2a,D2P,D2T); + [Da,~,D2a] = univariate_computeDstate(k,a,P,T,Da,DP,DT,[],0,D2a,D2P,D2T); else Da = univariate_computeDstate(k,a,P,T,Da,DP,DT,[],0); end diff --git a/matlab/lmmcp/lmmcp.m b/matlab/lmmcp/lmmcp.m index 50404ac7c948145c941dd7e07881f49e9d8127cb..e5911a4748186dcc60c4b31c15b34160d19d3b1e 100644 --- a/matlab/lmmcp/lmmcp.m +++ b/matlab/lmmcp/lmmcp.m @@ -392,7 +392,7 @@ while (k < kmax) && (Psix > eps2) Fx = Fxnew; Phix = Phixnew; Psix = Psixnew; - [junk,DFx] = feval(FUN,x,varargin{:}); + [~,DFx] = feval(FUN,x,varargin{:}); DPhix = DPhi(x,Fx,DFx,lb,ub,lambda1,lambda2,n,Indexset); DPsix = DPhix'*Phix; normDPsix = norm(DPsix); diff --git a/matlab/load_m_file_data_legacy.m b/matlab/load_m_file_data_legacy.m index a78563796ba4e05be90e12796725cfdaa61dc4c9..2709fe503290746eb19b1887929ff0b568511171 100644 --- a/matlab/load_m_file_data_legacy.m +++ b/matlab/load_m_file_data_legacy.m @@ -18,7 +18,7 @@ function o2WysrOISH = load_m_file_data_legacy(datafile, U7ORsJ0vy3) % --*-- Uni % along with Dynare. If not, see <http://www.gnu.org/licenses/>. cXDHdrXnqo5KwwVpTRuc6OprAW = datafile(1:end-2); -[pathtocXDHdrXnqo5KwwVpTRuc6OprAW,cXDHdrXnqo5KwwVpTRuc6OprAW,junk] = fileparts(cXDHdrXnqo5KwwVpTRuc6OprAW); +[pathtocXDHdrXnqo5KwwVpTRuc6OprAW,cXDHdrXnqo5KwwVpTRuc6OprAW,~] = fileparts(cXDHdrXnqo5KwwVpTRuc6OprAW); if ~isempty(pathtocXDHdrXnqo5KwwVpTRuc6OprAW) % We need to change directory, first we keep the current directory in memory... @@ -38,7 +38,7 @@ if ~isempty(pathtocXDHdrXnqo5KwwVpTRuc6OprAW) end % Clear all the variables except the ones defined in the script. -clear('pathtocXDHdrXnqo5KwwVpTRuc6OprAW', 'cXDHdrXnqo5KwwVpTRuc6OprAW', 'junk'); +clear('pathtocXDHdrXnqo5KwwVpTRuc6OprAW', 'cXDHdrXnqo5KwwVpTRuc6OprAW'); % Get the list of variables in the script. mj6F4eU1BN = whos(); diff --git a/matlab/model_diagnostics.m b/matlab/model_diagnostics.m index e8f5ff81c7c92a8f4a6d43a856586f56aedc792c..5696f772693ab9031acbd7d34c310cf85f69846f 100644 --- a/matlab/model_diagnostics.m +++ b/matlab/model_diagnostics.m @@ -204,22 +204,22 @@ z = repmat(dr.ys,1,klen); if ~options.block if options.order == 1 if (options.bytecode) - [chck, junk, loc_dr] = bytecode('dynamic','evaluate', z,exo_simul, ... - M.params, dr.ys, 1); + [chck, ~, loc_dr] = bytecode('dynamic','evaluate', z,exo_simul, ... + M.params, dr.ys, 1); jacobia_ = [loc_dr.g1 loc_dr.g1_x loc_dr.g1_xd]; else - [junk,jacobia_] = feval([M.fname '.dynamic'],z(iyr0),exo_simul, ... - M.params, dr.ys, it_); + [~,jacobia_] = feval([M.fname '.dynamic'],z(iyr0),exo_simul, ... + M.params, dr.ys, it_); end elseif options.order >= 2 if (options.bytecode) - [chck, junk, loc_dr] = bytecode('dynamic','evaluate', z,exo_simul, ... - M.params, dr.ys, 1); + [chck, ~, loc_dr] = bytecode('dynamic','evaluate', z,exo_simul, ... + M.params, dr.ys, 1); jacobia_ = [loc_dr.g1 loc_dr.g1_x]; else - [junk,jacobia_,hessian1] = feval([M.fname '.dynamic'],z(iyr0),... - exo_simul, ... - M.params, dr.ys, it_); + [~,jacobia_,hessian1] = feval([M.fname '.dynamic'],z(iyr0),... + exo_simul, ... + M.params, dr.ys, it_); end if options.use_dll % In USE_DLL mode, the hessian is in the 3-column sparse representation diff --git a/matlab/occbin/get_coef.m b/matlab/occbin/get_coef.m index f2dbde5a619dce0a95c22c304f09b4ab80258019..924be1b1c7dc19615cdb1f337cb6514322db7138 100644 --- a/matlab/occbin/get_coef.m +++ b/matlab/occbin/get_coef.m @@ -6,19 +6,19 @@ coef_y = zeros(endo_nbr,3*endo_nbr); coef_u = zeros(endo_nbr,M.exo_nbr); if M.maximum_lag > 0 - [junk,c1,c2] = find(ll(1,:)); + [~,c1,c2] = find(ll(1,:)); coef_y(:,c1) = jacobian(:,c2); - [junk,c1,c2] = find(ll(2,:)); + [~,c1,c2] = find(ll(2,:)); coef_y(:,c1+endo_nbr) = jacobian(:,c2); if M.maximum_lead > 0 - [junk,c1,c2] = find(ll(3,:)); + [~,c1,c2] = find(ll(3,:)); coef_y(:,c1+2*endo_nbr) = jacobian(:,c2); end else - [junk,c1,c2] = find(ll(1,:)); + [~,c1,c2] = find(ll(1,:)); coef_y(:,c1+endo_nbr) = jacobian(:,c2); if M.maximum_lead > 0 - [junk,c1,c2] = find(ll(2,:)); + [~,c1,c2] = find(ll(2,:)); coef_y(:,c1+2*endo_nbr) = jacobian(:,c2); end end diff --git a/matlab/optimization/csminwel1.m b/matlab/optimization/csminwel1.m index cfa8699322bfb2d3fff98f4914f1ab86f9184f73..902806596d0beb0e89f09d053c29db686fc7a456 100644 --- a/matlab/optimization/csminwel1.m +++ b/matlab/optimization/csminwel1.m @@ -142,7 +142,7 @@ while ~done elseif ischar(grad) [g1, badg1] = grad(x1,varargin{:}); else - [junk1,cost_flag,g1] = penalty_objective_function(x1,fcn,penalty,varargin{:}); + [~,cost_flag,g1] = penalty_objective_function(x1,fcn,penalty,varargin{:}); badg1 = ~cost_flag; end wall1=badg1; @@ -169,7 +169,7 @@ while ~done elseif ischar(grad) [g2, badg2] = grad(x2,varargin{:}); else - [junk2,cost_flag,g2] = penalty_objective_function(x1,fcn,penalty,varargin{:}); + [~,cost_flag,g2] = penalty_objective_function(x1,fcn,penalty,varargin{:}); badg2 = ~cost_flag; end wall2=badg2; @@ -201,7 +201,7 @@ while ~done elseif ischar(grad) [g3, badg3] = grad(x3,varargin{:}); else - [junk3,cost_flag,g3] = penalty_objective_function(x1,fcn,penalty,varargin{:}); + [~,cost_flag,g3] = penalty_objective_function(x1,fcn,penalty,varargin{:}); badg3 = ~cost_flag; end wall3=badg3; @@ -261,7 +261,7 @@ while ~done elseif ischar(grad) [gh, badgh] = grad(xh,varargin{:}); else - [junkh,cost_flag,gh] = penalty_objective_function(x1,fcn,penalty,varargin{:}); + [~,cost_flag,gh] = penalty_objective_function(x1,fcn,penalty,varargin{:}); badgh = ~cost_flag; end end diff --git a/matlab/optimization/numgrad3_.m b/matlab/optimization/numgrad3_.m index 6358138335d3170af2d72e77e9b3332579e15021..a59fa6ae6bfea0b0296e6efff44955d42c5e9379 100644 --- a/matlab/optimization/numgrad3_.m +++ b/matlab/optimization/numgrad3_.m @@ -46,12 +46,12 @@ for i=1:n xiold = x(i); h = step_length_correction(xiold,scale,i)*delta; x(i) = xiold + h; - [f1,junk1,cost_flag1] = penalty_objective_function(x, fcn, penalty, varargin{:}); + [f1,~,cost_flag1] = penalty_objective_function(x, fcn, penalty, varargin{:}); if ~cost_flag1 fprintf('Gradient w.r.t. parameter number %3d (x=%16.8f,+h=%16.8f,f0=%16.8f,f1=%16.8f,f2=%16.8f,g0=%16.8f): penalty on the right!\n',i,xiold,h,f0,f1,f2,(f1 - f2) / (2*h)) end x(i) = xiold - h; - [f2,junk2,cost_flag2] = penalty_objective_function(x, fcn, penalty, varargin{:}); + [f2,~,cost_flag2] = penalty_objective_function(x, fcn, penalty, varargin{:}); if ~cost_flag2 fprintf('Gradient w.r.t. parameter number %3d (x=%16.8f,+h=%16.8f,f0=%16.8f,f1=%16.8f,f2=%16.8f,g0=%16.8f): penalty on the left!\n',i,xiold,h,f0,f1,f2,(f1 - f2) / (2*h)) end diff --git a/matlab/optimization/numgrad5_.m b/matlab/optimization/numgrad5_.m index bbce6fd0efce3d17ec094be7e49e4ed63ef13b25..9fbdc9b8e4b7fde6b0a7109e206f4f6f8012ad43 100644 --- a/matlab/optimization/numgrad5_.m +++ b/matlab/optimization/numgrad5_.m @@ -48,13 +48,13 @@ for i=1:n xiold = x(i); h = step_length_correction(xiold,scale,i)*delta; x(i) = xiold+h; - [f1,junk1,cost_flag1,] = penalty_objective_function(x, fcn, penalty, varargin{:}); + [f1,~,cost_flag1,] = penalty_objective_function(x, fcn, penalty, varargin{:}); x(i) = xiold-h; - [f2,junk1,cost_flag2] = penalty_objective_function(x, fcn, penalty, varargin{:}); + [f2,~,cost_flag2] = penalty_objective_function(x, fcn, penalty, varargin{:}); x(i) = xiold+2*h; - [f3,junk1,cost_flag3] = penalty_objective_function(x, fcn, penalty, varargin{:}); + [f3,~,cost_flag3] = penalty_objective_function(x, fcn, penalty, varargin{:}); x(i) = xiold-2*h; - [f4,junk1,cost_flag4] = penalty_objective_function(x, fcn, penalty, varargin{:}); + [f4,~,cost_flag4] = penalty_objective_function(x, fcn, penalty, varargin{:}); if f0<f1 && f1<f3 && f0<f2 && f2<f4 g0 = 0; else diff --git a/matlab/optimization/simplex_optimization_routine.m b/matlab/optimization/simplex_optimization_routine.m index ab0d181e7e7c441153a3e2d33f7d3072ae09ad63..af11953f609b79adcbd4e81e29c8a92787860a8f 100644 --- a/matlab/optimization/simplex_optimization_routine.m +++ b/matlab/optimization/simplex_optimization_routine.m @@ -190,7 +190,7 @@ if verbose disp('Simplex initialization...') end initial_point = x; -[initial_score,junk1,nopenalty] = feval(objective_function,x,varargin{:}); +[initial_score,~,nopenalty] = feval(objective_function,x,varargin{:}); if ~nopenalty disp('Cannot initialize the simplex with the provided initial guess.') skipline() @@ -528,7 +528,7 @@ for j = 1:n end v(:,j+1) = y; x = y; - [fv(j+1),junk1,nopenalty_flag] = feval(objective_function,x,varargin{:}); + [fv(j+1),~,nopenalty_flag] = feval(objective_function,x,varargin{:}); if check_delta while ~nopenalty_flag if y(j)~=0 @@ -544,7 +544,7 @@ for j = 1:n end v(:,j+1) = y; x = y; - [fv(j+1),junk1,nopenalty_flag] = feval(objective_function,x,varargin{:}); + [fv(j+1),~,nopenalty_flag] = feval(objective_function,x,varargin{:}); end end end diff --git a/matlab/partial_information/dr1_PI.m b/matlab/partial_information/dr1_PI.m index b8bf5b36d072eb169c2adcb789759edeeaeb33bc..b741854968b4c091a57ee05c591756a18a6b1819 100644 --- a/matlab/partial_information/dr1_PI.m +++ b/matlab/partial_information/dr1_PI.m @@ -91,7 +91,7 @@ if options_.ramsey_policy && options_.ACES_solver == 0 opt.jacobian_flag = 0; oo_.steady_state = dynare_solve('ramsey_static',oo_.steady_state,opt,M_,options_,oo_,it_); options_.solve_algo = old_solve_algo; - [junk,junk,multbar] = ramsey_static(oo_.steady_state,M_,options_,oo_,it_); + [~,~,multbar] = ramsey_static(oo_.steady_state,M_,options_,oo_,it_); [jacobia_,M_] = ramsey_dynamic(oo_.steady_state,multbar,M_,options_,oo_,it_); klen = M_.maximum_lag + M_.maximum_lead + 1; dr.ys = [oo_.steady_state;zeros(M_.exo_nbr,1);multbar]; @@ -123,14 +123,14 @@ else lq_instruments.sim_ruleids=sim_ruleids; lq_instruments.tct_ruleids=tct_ruleids; %if isfield(lq_instruments,'xsopt_SS') %% changed by BY - [junk, lq_instruments.xsopt_SS,lq_instruments.lmopt_SS,s2,check] = opt_steady_get;%% changed by BY + [~, lq_instruments.xsopt_SS,lq_instruments.lmopt_SS,s2,check] = opt_steady_get;%% changed by BY [qc, DYN_Q] = QPsolve(lq_instruments, s2, check); %% added by BY z = repmat(lq_instruments.xsopt_SS,1,klen); else z = repmat(dr.ys,1,klen); end z = z(iyr0) ; - [junk,jacobia_] = feval([M_.fname '.dynamic'],z,[oo_.exo_simul ... + [~,jacobia_] = feval([M_.fname '.dynamic'],z,[oo_.exo_simul ... oo_.exo_det_simul], M_.params, dr.ys, it_); if options_.ACES_solver==1 && (length(sim_ruleids)>0 || length(tct_ruleids)>0 ) diff --git a/matlab/perfect-foresight-models/det_cond_forecast.m b/matlab/perfect-foresight-models/det_cond_forecast.m index 1e4fe53ad659f1344d7097f06f88c7ec2a49c8dd..0819820f9eed4a55c3a79d37f02b08791095cdde 100644 --- a/matlab/perfect-foresight-models/det_cond_forecast.m +++ b/matlab/perfect-foresight-models/det_cond_forecast.m @@ -368,7 +368,7 @@ end save_options_initval_file = options_.initval_file; options_.initval_file = '__'; -[pos_constrained_pf, junk] = find(constrained_perfect_foresight); +[pos_constrained_pf, ~] = find(constrained_perfect_foresight); indx_endo_solve_pf = constrained_vars(pos_constrained_pf); if isempty(indx_endo_solve_pf) pf = 0; @@ -572,7 +572,7 @@ else for t = 1:constrained_periods if direct_mode && ~isempty(is_constraint) - [pos_constrained_pf, junk] = find(constrained_perfect_foresight .* is_constraint(t, :)'); + [pos_constrained_pf, ~] = find(constrained_perfect_foresight .* is_constraint(t, :)'); indx_endo_solve_pf = constrained_vars(pos_constrained_pf); if isempty(indx_endo_solve_pf) pf = 0; @@ -580,7 +580,7 @@ else pf = length(indx_endo_solve_pf); end - [pos_constrained_surprise, junk] = find((1-constrained_perfect_foresight) .* is_constraint(t, :)'); + [pos_constrained_surprise, ~] = find((1-constrained_perfect_foresight) .* is_constraint(t, :)'); indx_endo_solve_surprise = constrained_vars(pos_constrained_surprise); if isempty(indx_endo_solve_surprise) @@ -591,7 +591,7 @@ else end if direct_mode && ~isempty(is_shock) - [pos_shock_pf, junk] = find(shock_perfect_foresight .* is_shock(t, :)'); + [pos_shock_pf, ~] = find(shock_perfect_foresight .* is_shock(t, :)'); indx_endo_solve_pf = shock_vars(pos_shock_pf); if isempty(indx_endo_solve_pf) b_pf = 0; @@ -599,7 +599,7 @@ else b_pf = length(indx_endo_solve_pf); end - [pos_shock_surprise, junk] = find((1-shock_perfect_foresight) .* is_shock(t, :)'); + [pos_shock_surprise, ~] = find((1-shock_perfect_foresight) .* is_shock(t, :)'); indx_endo_solve_surprise = shock_vars(pos_shock_surprise); if isempty(indx_endo_solve_surprise) diff --git a/matlab/perfect-foresight-models/perfect_foresight_solver.m b/matlab/perfect-foresight-models/perfect_foresight_solver.m index c770a630a32704fa2c1b2aec9e7282a4d1ea469a..17f607ca09e6d67e338bdd086df52a9714047ac0 100644 --- a/matlab/perfect-foresight-models/perfect_foresight_solver.m +++ b/matlab/perfect-foresight-models/perfect_foresight_solver.m @@ -179,9 +179,9 @@ if ~isreal(oo_.endo_simul(:)) %can only happen without bytecode yT = real(oo_.endo_simul(:,options_.periods+2)); yy = real(oo_.endo_simul(:,2:options_.periods+1)); illi = M_.lead_lag_incidence'; - [i_cols,junk,i_cols_j] = find(illi(:)); + [i_cols,~,i_cols_j] = find(illi(:)); illi = illi(:,2:3); - [i_cols_J1,junk,i_cols_1] = find(illi(:)); + [i_cols_J1,~,i_cols_1] = find(illi(:)); i_cols_T = nonzeros(M_.lead_lag_incidence(1:2,:)'); residuals = perfect_foresight_problem(yy(:),str2func([M_.fname '.dynamic']), y0, yT, ... oo_.exo_simul,M_.params,oo_.steady_state, ... diff --git a/matlab/perfect-foresight-models/perfect_foresight_solver_core.m b/matlab/perfect-foresight-models/perfect_foresight_solver_core.m index e20c9faf6fcbd2a5d3e82405ac6e8069f01165cc..1f55a2de48f97e8507c18b5496c59182217d94e3 100644 --- a/matlab/perfect-foresight-models/perfect_foresight_solver_core.m +++ b/matlab/perfect-foresight-models/perfect_foresight_solver_core.m @@ -123,16 +123,16 @@ if nargout>1 yy = oo_.endo_simul(:,2:options_.periods+1); if ~exist('illi') illi = M_.lead_lag_incidence'; - [i_cols,junk,i_cols_j] = find(illi(:)); + [i_cols,~,i_cols_j] = find(illi(:)); illi = illi(:,2:3); - [i_cols_J1,junk,i_cols_1] = find(illi(:)); + [i_cols_J1,~,i_cols_1] = find(illi(:)); i_cols_T = nonzeros(M_.lead_lag_incidence(1:2,:)'); end if options_.block && ~options_.bytecode maxerror = oo_.deterministic_simulation.error; else if options_.bytecode - [chck, residuals, junk]= bytecode('dynamic','evaluate', oo_.endo_simul, oo_.exo_simul, M_.params, oo_.steady_state, 1); + [chck, residuals, ~]= bytecode('dynamic','evaluate', oo_.endo_simul, oo_.exo_simul, M_.params, oo_.steady_state, 1); else residuals = perfect_foresight_problem(yy(:),str2func([M_.fname '.dynamic']), y0, yT, ... oo_.exo_simul,M_.params,oo_.steady_state, ... diff --git a/matlab/perfect-foresight-models/private/initialize_stacked_problem.m b/matlab/perfect-foresight-models/private/initialize_stacked_problem.m index 1a8f61838475f954c9e3d8d311fd8108317cad36..f019805dc907a030375dc6f81c09edd8dba0f259 100644 --- a/matlab/perfect-foresight-models/private/initialize_stacked_problem.m +++ b/matlab/perfect-foresight-models/private/initialize_stacked_problem.m @@ -71,8 +71,8 @@ y0 = endogenousvariables(:,M.maximum_lag); yT = endogenousvariables(:,M.maximum_lag+periods+1); z = endogenousvariables(:,M.maximum_lag+(1:periods)); illi = M.lead_lag_incidence'; -[i_cols, junk,i_cols_j] = find(illi(:)); +[i_cols,~,i_cols_j] = find(illi(:)); illi = illi(:,2:3); -[i_cols_J1, junk,i_cols_1] = find(illi(:)); +[i_cols_J1,~,i_cols_1] = find(illi(:)); i_cols_T = nonzeros(M.lead_lag_incidence(1:2,:)'); dynamicmodel = str2func([M.fname,'.dynamic']); \ No newline at end of file diff --git a/matlab/perfect-foresight-models/private/simulation_core.m b/matlab/perfect-foresight-models/private/simulation_core.m index 61f6693a462317b9010c68ca5a1a90e490a14368..aa66ef2de59c347feb3364ec71acb9b49ad42137 100644 --- a/matlab/perfect-foresight-models/private/simulation_core.m +++ b/matlab/perfect-foresight-models/private/simulation_core.m @@ -99,16 +99,16 @@ if nargout>1 yy = oo_.endo_simul(:,2:options_.periods+1); if ~exist('illi') illi = M_.lead_lag_incidence'; - [i_cols,junk,i_cols_j] = find(illi(:)); + [i_cols,~,i_cols_j] = find(illi(:)); illi = illi(:,2:3); - [i_cols_J1,junk,i_cols_1] = find(illi(:)); + [i_cols_J1,~,i_cols_1] = find(illi(:)); i_cols_T = nonzeros(M_.lead_lag_incidence(1:2,:)'); end if options_.block && ~options_.bytecode maxerror = oo_.deterministic_simulation.error; else if options_.bytecode - [chck, residuals, junk]= bytecode('dynamic','evaluate', oo_.endo_simul, oo_.exo_simul, M_.params, oo_.steady_state, 1); + [chck, residuals, ~]= bytecode('dynamic','evaluate', oo_.endo_simul, oo_.exo_simul, M_.params, oo_.steady_state, 1); else residuals = perfect_foresight_problem(yy(:),str2func([M_.fname '.dynamic']), y0, yT, ... oo_.exo_simul,M_.params,oo_.steady_state, ... diff --git a/matlab/prior_posterior_statistics_core.m b/matlab/prior_posterior_statistics_core.m index 7fa6832d2de4c6297bb876f91a107746ac6a08f2..320fb272febfd39120672a735d63df25ae364cfb 100644 --- a/matlab/prior_posterior_statistics_core.m +++ b/matlab/prior_posterior_statistics_core.m @@ -204,7 +204,7 @@ for b=fpar:B if run_smoother [dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_); - [alphahat,etahat,epsilonhat,alphatilde,SteadyState,trend_coeff,aK,junk1,junk2,P,junk4,junk5,trend_addition,state_uncertainty,M_,oo_,options_,bayestopt_] = ... + [alphahat,etahat,epsilonhat,alphatilde,SteadyState,trend_coeff,aK,~,~,P,~,~,trend_addition,state_uncertainty,M_,oo_,options_,bayestopt_] = ... DsgeSmoother(deep,gend,Y,data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_); stock_trend_coeff(options_.varobs_id,irun(9))=trend_coeff; diff --git a/matlab/realtime_shock_decomposition.m b/matlab/realtime_shock_decomposition.m index d955b8cb65c85b5c12886714fd317d4beec0adfa..02064a7b040de274d66116479467f278dd846cb8 100644 --- a/matlab/realtime_shock_decomposition.m +++ b/matlab/realtime_shock_decomposition.m @@ -98,8 +98,7 @@ nobs = options_.nobs; if forecast_ && any(forecast_params) M1=M_; M1.params = forecast_params; - [junk1,junk2,junk3,junk4,junk5,junk6,oo1] = dynare_resolve(M1,options_,oo_); - clear junk1 junk2 junk3 junk4 junk5 junk6 + [~,~,~,~,~,~,oo1] = dynare_resolve(M1,options_,oo_); end if fast_realtime @@ -109,7 +108,7 @@ if fast_realtime newString=sprintf(running_text); fprintf(['%s'],newString); options_.nobs=fast_realtime; - [oo0,M_,junk1,junk2,Smoothed_Variables_deviation_from_mean0] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_); + [oo0,M_,~,~,Smoothed_Variables_deviation_from_mean0] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_); gend0 = size(oo0.SmoothedShocks.(M_.exo_names{1}),1); prctdone=0.5; if isoctave @@ -120,7 +119,7 @@ if fast_realtime fprintf([s0,'%s'],newString); end options_.nobs=nobs; - [oo2,M_,junk1,junk2,Smoothed_Variables_deviation_from_mean2] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_); + [oo2,M_,~,~,Smoothed_Variables_deviation_from_mean2] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_); gend2 = size(oo2.SmoothedShocks.(M_.exo_names{1}),1); prctdone=1; if isoctave @@ -142,7 +141,7 @@ for j=presample+1:nobs % evalin('base',['options_.nobs=' int2str(j) ';']) options_.nobs=j; if ~fast_realtime - [oo,M_,junk1,junk2,Smoothed_Variables_deviation_from_mean] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_); + [oo,M_,~,~,Smoothed_Variables_deviation_from_mean] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_); gend = size(oo.SmoothedShocks.(M_.exo_names{1}),1); else gend = gend0+j-fast_realtime; diff --git a/matlab/shock_decomposition.m b/matlab/shock_decomposition.m index c35bf5e59dc96b61b80f2e0e28d9f9b485fc23a6..02c18a1867471b48e46eb3adee6dd2f31847ec50 100644 --- a/matlab/shock_decomposition.m +++ b/matlab/shock_decomposition.m @@ -72,7 +72,7 @@ end options_.selected_variables_only = 0; %make sure all variables are stored options_.plot_priors=0; -[oo_, M_, junk1, junk2, Smoothed_Variables_deviation_from_mean] = evaluate_smoother(parameter_set, varlist, M_, oo_, options_, bayestopt_, estim_params_); +[oo_, M_, ~, ~, Smoothed_Variables_deviation_from_mean] = evaluate_smoother(parameter_set, varlist, M_, oo_, options_, bayestopt_, estim_params_); % reduced form dr = oo_.dr; diff --git a/matlab/simulated_moments_estimation.m b/matlab/simulated_moments_estimation.m index 2d90a9aaa01b7504b49a865dd3562f2d7b6746ae..4a99ec77ea55a1d07bad2459cd1591dfc6611dd8 100644 --- a/matlab/simulated_moments_estimation.m +++ b/matlab/simulated_moments_estimation.m @@ -97,7 +97,7 @@ if nargin>2 if ~isunix error('The parallel version of SMM estimation is not implemented for non unix platforms!') end - [junk,hostname] = unix('hostname --fqdn'); + [~,hostname] = unix('hostname --fqdn'); hostname = deblank(hostname); master_is_running_a_job = 0; for i=1:length(parallel) diff --git a/matlab/stochastic_solvers.m b/matlab/stochastic_solvers.m index a3004899a49b68583d36e435a81dac98fa61926e..9f08b16010a4fd0435a064c7a97ce4f8c3741464 100644 --- a/matlab/stochastic_solvers.m +++ b/matlab/stochastic_solvers.m @@ -111,22 +111,22 @@ it_ = M_.maximum_lag + 1; z = repmat(dr.ys,1,klen); if local_order == 1 if (options_.bytecode) - [chck, junk, loc_dr] = bytecode('dynamic','evaluate', z,exo_simul, ... - M_.params, dr.ys, 1); + [chck, ~, loc_dr] = bytecode('dynamic','evaluate', z,exo_simul, ... + M_.params, dr.ys, 1); jacobia_ = [loc_dr.g1 loc_dr.g1_x loc_dr.g1_xd]; else - [junk,jacobia_] = feval([M_.fname '.dynamic'],z(iyr0),exo_simul, ... - M_.params, dr.ys, it_); + [~,jacobia_] = feval([M_.fname '.dynamic'],z(iyr0),exo_simul, ... + M_.params, dr.ys, it_); end elseif local_order == 2 if (options_.bytecode) - [chck, junk, loc_dr] = bytecode('dynamic','evaluate', z,exo_simul, ... - M_.params, dr.ys, 1); + [chck, ~, loc_dr] = bytecode('dynamic','evaluate', z,exo_simul, ... + M_.params, dr.ys, 1); jacobia_ = [loc_dr.g1 loc_dr.g1_x]; else - [junk,jacobia_,hessian1] = feval([M_.fname '.dynamic'],z(iyr0),... - exo_simul, ... - M_.params, dr.ys, it_); + [~,jacobia_,hessian1] = feval([M_.fname '.dynamic'],z(iyr0),... + exo_simul, ... + M_.params, dr.ys, it_); end if options_.use_dll % In USE_DLL mode, the hessian is in the 3-column sparse representation @@ -217,15 +217,15 @@ nz = nnz(M_.lead_lag_incidence); sdyn = M_.endo_nbr - nstatic; -[junk,cols_b,cols_j] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+1, ... - order_var)); +[~,cols_b,cols_j] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+1, ... + order_var)); b = zeros(M_.endo_nbr,M_.endo_nbr); b(:,cols_b) = jacobia_(:,cols_j); if M_.maximum_endo_lead == 0 % backward models: simplified code exist only at order == 1 if local_order == 1 - [k1,junk,k2] = find(kstate(:,4)); + [k1,~,k2] = find(kstate(:,4)); dr.ghx(:,k1) = -b\jacobia_(:,k2); if M_.exo_nbr dr.ghu = -b\jacobia_(:,nz+1:end); diff --git a/matlab/store_smoother_results.m b/matlab/store_smoother_results.m index 3688dd13f20b183fd07bc81546b33ecc616ca10b..bad4fe723d2c4faeb6454de47d12291d576842f6 100644 --- a/matlab/store_smoother_results.m +++ b/matlab/store_smoother_results.m @@ -204,7 +204,7 @@ if ~isempty(options_.nk) && options_.nk ~= 0 end else positions_in_declaration_order=oo_.dr.order_var(bayestopt_.smoother_var_list(bayestopt_.smoother_saved_var_list)); - [junk,sorted_index_declaration_order]=sort(positions_in_declaration_order); + [~,sorted_index_declaration_order]=sort(positions_in_declaration_order); oo_.FilteredVariablesKStepAhead(:,sorted_index_declaration_order,:)=oo_.FilteredVariablesKStepAhead; if ~isempty(PK) && options_.filter_covariance %get K-step ahead variances oo_.FilteredVariablesKStepAheadVariances(:,sorted_index_declaration_order,sorted_index_declaration_order,:)=oo_.FilteredVariablesKStepAheadVariances; diff --git a/matlab/user_has_matlab_license.m b/matlab/user_has_matlab_license.m index c8c681283ce8f924ed31caec0e94868d293cf0ff..6f8b3c2261a4e90eab381f14779977586f59ad73 100644 --- a/matlab/user_has_matlab_license.m +++ b/matlab/user_has_matlab_license.m @@ -31,7 +31,7 @@ function [hasLicense] = user_has_matlab_license(toolbox) if matlab_ver_less_than('7.12') hasLicense = license('test', toolbox); else - [hasLicense, junk] = license('checkout',toolbox); + [hasLicense, ~] = license('checkout',toolbox); end if ~hasLicense return diff --git a/matlab/utilities/general/clean_current_folder.m b/matlab/utilities/general/clean_current_folder.m index 6c302927e4b6e3195b04dca19e16663e410c4a11..df7e7bf790855bb53fcf43cad532ec4b357a649f 100644 --- a/matlab/utilities/general/clean_current_folder.m +++ b/matlab/utilities/general/clean_current_folder.m @@ -21,7 +21,7 @@ a = dir('*.mod'); for i = 1:length(a) - [junk,basename,extension] = fileparts(a(i).name); + [~,basename,extension] = fileparts(a(i).name); if exist([basename '.m']) delete([basename '.m']); end diff --git a/matlab/varlist_indices.m b/matlab/varlist_indices.m index 91b2f6e694bf8374e7b6d0c7620ce8ba7908541e..a166f28b66ce621eedb0848dd1b38ba58947b4f2 100644 --- a/matlab/varlist_indices.m +++ b/matlab/varlist_indices.m @@ -48,7 +48,7 @@ if ~all(check) end nvar = length(i_var); -[i_var_unique, index_uniques, junk] = unique(i_var, 'first'); +[i_var_unique, index_uniques, ~] = unique(i_var, 'first'); index_uniques = sort(index_uniques); i_var_unique = i_var(index_uniques);