diff --git a/doc/bvar-a-la-sims.tex b/doc/bvar-a-la-sims.tex index b176c21995b9e53218050bae2f7be06b2d85b75c..c69ed695b39d9586217aea0746dbc2139f753f0b 100644 --- a/doc/bvar-a-la-sims.tex +++ b/doc/bvar-a-la-sims.tex @@ -102,7 +102,13 @@ Before constructing the dummy observations, one needs to choose values for the f \item $d$: the decay factor for scaling down the coefficients of lagged values. Controlled by option \texttt{bvar\_prior\_decay}, with a default of 0.5 \item $\omega$ controls the tightness for the prior on $\Sigma$. Must be an integer. Controlled by option \texttt{bvar\_prior\_omega}, with a default of 1 \item $\lambda$ and $\mu$: additional tuning parameters, respectively controlled by option \texttt{bvar\_prior\_lambda} (with a default of 5) and option \texttt{bvar\_prior\_mu} (with a default of 2) -\item based on a short presample $Y^0$ (in Dynare implementation, this presample consists of the $p$ observations used to initialize the VAR), one also calculates $\sigma = std(Y^0)$ and $\bar{y} = mean(Y^0)$ +\item based on a short presample $Y^0$ (in Dynare implementation, this + presample consists of the $p$ observations used to initialize the VAR, plus + one extra observation at the beginning of the sample\footnote{In Dynare 4.2.1 + and older versions, only $p$ observations where used. As a consequence the + case $p=1$ was buggy, since the standard error of a one observation sample + is undefined.}), one also calculates $\sigma = std(Y^0)$ and $\bar{y} = + mean(Y^0)$ \end{itemize} Below is a description of the different dummy observations. For the sake of simplicity, we should assume that $ny = 2$, $nx = 1$ and $p = 3$. The generalization is straigthforward. diff --git a/matlab/bvar_toolbox.m b/matlab/bvar_toolbox.m index 917e6100e7f9c746dc9c63a39f0be156702cc342..eb0a55ccaaef47f40781b90a135e99cfcf102e29 100644 --- a/matlab/bvar_toolbox.m +++ b/matlab/bvar_toolbox.m @@ -98,7 +98,7 @@ mnprior.tight = options_.bvar_prior_tau; mnprior.decay = options_.bvar_prior_decay; % Use only initializations lags for the variance prior -vprior.sig = std(dataset(options_.first_obs+options_.presample-nlags:options_.first_obs+options_.presample-1,:))'; +vprior.sig = std(dataset(options_.first_obs+options_.presample-nlags:options_.first_obs+options_.presample,:))' vprior.w = options_.bvar_prior_omega; lambda = options_.bvar_prior_lambda;