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Abstract

In this document, we describe the basic ideas and the methodology identified
to realize the parallel package within the DYNARE project (called the “Parallel
DYNARE” hereafter) and its algorithmic performance. The parallel methodology
has been developed taking into account two different perspectives: the “User per-
spective” and the “Developers perspective”. The fundamental requirement of the
“User perspective” is to allow DYNARE users to use the parallel routines easily,
quickly and appropriately. Under the “Developers perspective”, on the other hand,
we need to build a core of parallelizing routines that are sufficiently abstract and
modular to allow DYNARE software developers to use them easily as a sort of
‘parallel paradigm’, for application to any DYNARE routine or portion of code con-
taining computational intensive loops suitable for parallelization. We will finally

show tests showing the effectiveness of the parallel implementation.



1 The ideas implemented in Parallel DYNARE

The basic idea behind “Parallel Dynare” is to build a framework to parallelize portions
of code that require a minimal (i.e. start-end communication) or no communications
between different processes, denoted in the literature as “embarrassingly parallel” (

, : , ). In more complicated cases there are different and more
sophisticated solutions to write (or re-write) parallel codes using, for example, OpenMP
or MPI. Within DYNARE, we can find many portions of code with the above features:
loops of computational sequences with no interdependency that are coded sequentially.
Clearly, this does not make optimal use of computers having 2-4-8, or more cores or CPUs.
The basic idea is to assign the different and independent computational sequences to
different cores, CPU’s or computers and coordinating this new distributed computational

environment with the following criteria:

e provide the necessary input data to any sequence, possibly including results obtained

from previous DYNARE sessions (e.g. a first batch of Metropolis iterations);

e distribute the workload, automatically balancing between the computational re-

sources;
e collect the output data;

e ensure the coherence of the results with the original sequential execution.

Generally, during a program execution, the largest computational time is spent to
execute nested cycles. For simplicity and without loss in generality we can consider here
only for cycles (it is possible to demonstrate that any while cycle admits an equivalent
for cycle). Then, after identifying the most computationally expensive for cycles, we
can split their execution (i.e. the number or iterations) between different cores, CPUs,

computers. For example, consider the following simple MATLAB piece of code:



n=2;
m=10"6;
Matrix= zeros(n,m);
for i=1:n,
Matrix(i, :)=rand(1,m);
end,
Mse= Matrix;

Example 1

With one CPU this cycle is executed in sequence: first for i=1, and then for i=2.
Nevertheless, these 2 iterations are completely independent. Then, from a theoretical

point of view, if we have two CPUs (cores) we can rewrite the above code as:

n=2;
m=1076;
<provide to CPUl and CPU2 input data m>

<Execute on CPU1> <Execute on CPU2>
Matrixl = zeros(1,m); Matrix2 = zeros(1,m);
Matrix1(1,:)=rand(1,m); Matrix2(1,:)=rand(1,m);
save Matrixil save Matrix?2

retrieve Matrixl and Matrix2
Mpe(1,:) = Matrixl;
Mpe(2,:) = Matrix2;

Example 2

The for cycle has disappeared and it has been split into two separated sequences that
can be executed in parallel on two CPUs. We have the same result (Mpa=Mse) but the

computational time can be reduced up to 50%.

2 The DYNARE environment

We have considered the following DYNARE components suitable to be parallelized using

the above strategy:

1. the Random Walk- (and the analogous Independent-)-Metropolis-Hastings algo-
rithm with multiple chains: the different chains are completely independent and

do not require any communication between them, so it can be executed on different

4



cores/CPUs/Computer Network easily;

2. a number of procedures performed after the completion of Metropolis, that use the

posterior MC sample:
(a) the diagnostic tests for the convergence of the Markov Chain
(mcmc_diagnostics.m);
(b) the function that computes posterior IRF’s (posteriorIRF.m).

(c) the function that computes posterior statistics for filtered and smoothed vari-
ables, forecasts, smoothed shocks, etc..

(prior_posterior_statistics.m).

(d) the utility function that loads matrices of results and produces plots for pos-

terior statistics (pm3.m).

Unfortunately, MATLAB does not provide commands to simply write parallel code

as in Example 2 (i.e. the pseudo-commands : <provide inputs>, <execute on CPU>

and <retrieve>). In other words, MATLAB does not allow concurrent programming: it

does not support multi-threads, without the use (and purchase) of MATLAB Distributed

Computing Toolbox. Then, to obtain the behavior described in Example 2, we had to

find an alternative solution.

The solution that we have found can be synthesized as follows:

When the execution of the code should start in parallel (as in Example 2),
instead of running it inside the active MATLAB session, the following steps

are performed:

1. the control of the execution is passed to the operating system (Windows/Linuzx)

that allows for multi-threading;

2. concurrent threads (i.e. MATLAB instances) are launched on different

processors/cores/machines;

3. when the parallel computations are concluded the control is given back

to the original MATLAB session that collects the result from all parallel



‘agents’ involved and coherently continue along the sequential computa-

tion.

Three core functions have been developed implementing this behavior, namely MasterParallel .m,
slaveParallel.m and fParallel.m. The first function (MasterParallel.m) operates at
the level of the ‘master’ (original) thread and acts as a wrapper of the portion of code to
be distributed in parallel, distributes the tasks and collects the results from the parallel
computation. The other functions (slaveParallel.m and fParallel.m) operate at the
level of each individual ‘slave’ thread and collect the jobs distributed by the ‘master’,
execute them and make the final results available to the master. The two different im-
plementations of slave operation comes from the fact that, in a single DYNARE session,
there may be a number parallelized sessions that are launched by the master thread.

Therefore, those two routines reflect two different versions of the parallel package:

1. the ‘slave’ MATLAB sessions are closed after completion of each single job, and new

instances are called for any subsequent parallelized task (fParallel.m);

2. once opened, the ‘slave’ MATLAB sessions are kept open during the DYNARE
session, waiting for the jobs to be executed, and are only closed upon completion of

the DYNARE session on the ‘master’ (slaveParallel.m).

We will see that none of the two options is superior to the other, depending on the

model size.

3 Installation and utilization

Here we describe how to run parallel sessions in DYNARE and, for the developers com-
munity, how to apply the package to parallelize any suitable piece of code that may be

deemed necessary.



3.1 Requirements
3.1.1 For a Windows grid

1. a standard Windows network (SMB) must be in place;

2. PsTools ( , ) must be installed in the path of the master Windows

machine;

3. the Windows user on the master machine has to be user of any other slave machine

in the cluster, and that user will be used for the remote computations.

3.1.2 For a UNIX grid

1. SSH must be installed on the master and on the slave machines;

2. the UNIX user on the master machine has to be user of any other slave machine in

the cluster, and that user will be used for the remote computations;

3. SSH keys must be installed so that the SSH connection from the master to the slaves

can be done without passwords, or using an SSH agent.

3.2 The user perspective

We assume here that the reader has some familiarity with DYNARE and its use. For the
DYNARE users, the parallel routines are fully integrated and hidden inside the DYNARE
environment.

3.2.1 The interface

The general idea is to put all the configuration of the cluster in a config file different
from the MOD file, and to trigger the parallel computation with option(s) on the dynare

command line. The configuration file is designed as follows:
e be in a standard location

— $HOME/ .dynare under Unix;



— c:\Documents and Setting\<username>\Application Data\dynare.ini on Windows;

e have provisions for other Dynare configuration parameters unrelated to parallel

computation
e allow to specify several clusters, each one associated with a nickname;

e For each cluster, specify a list of slaves with a list of options for each slave [if not
explicitly specified by the configuration file, the preprocessor sets the options to

default];
The list of slave options includes:

Name : name of the node;

CPUnbr : this is the number of CPU’s to be used on that computer; if CPUnbr is a
vector of integers, the syntax is [s:d], with d>=s (d, s are integer); the first core
has number 1 so that, on a quad-core, use 4 to use all cores, but use [3:4] to specify
just the last two cores (this is particularly relevant for Windows where it is possible

to assign jobs to specific processors);

ComputerName : Computer name on the network or IP address; use the NETBIOS

name under Windows', or the DNS name under Unix.;

UserName : required for remote login; in order to assure proper communications be-
tween the master and the slave threads, it must be the same user name actu-
ally logged on the ‘master’ machine. On a Windows network, this is in the form
DOMAIN\username, like DEPT\JohnSmith, i.e. user JohnSmith in windows group
DEPT;

Password : required for remote login (only under Windows): it is the user password on

DOMAIN and ComputerName;

RemoteDrive : Drive to be used on remote computer (only for Windows, for example

the drive C or drive D);

In Windows XP it is possible find this name in "My Computer’ — > mouse right click — > "Property’
— > "Computer Name’.



RemoteDirectory : Directory to be used on remote computer, the parallel toolbox will

create a new empty temporary subfolder which will act as remote working directory;
DynarePath : path to matlab directory within the Dynare installation directory;
MatlabOctavePath : path to MATLAB or Octave executable;
SingleCompThread : disable MATLAB’s native multithreading;

Those options have the following specifications:

Node Options type default Win Unix
Local | Remote | Local | Remote

Name string (stop) | * * * *

CPUnbr integer | (stop) | * * * *
or array

ComputerName string (stop) *

UserName string empty *

Password string empty *

RemoteDrive string empty *

RemoteDirectory string empty * *

DynarePath string empty

MatlabOctavePath | string empty

SingleCompThread | boolean | true

The cluster options are as follows

Cluster Options | type default | Meaning Required
Name string | empty | name of the node *
Members string | empty | list of members in this cluster | *

The syntax of the configuration file will take the following form (the order in which

the clusters and nodes are listed is not significant):



[cluster]
Name = cl
Members = nl n2 n3

[cluster]
Name = c2
Members = n2 n3

[node]

Name = nl

ComputerName = localhost
CPUnbr = 1

[node]

Name = n2

ComputerName = karaba.cepremap.org
CPUnbr = 5

UserName = houtanb

RemoteDirectory = /home/houtanb/Remote
DynarePath = /home/houtanb/dynare/matlab
MatlabOctavePath = matlab

[node]

Name = n3

ComputerName = hal.cepremap.ens.fr
CPUnbr = 3

UserName = houtanb

RemoteDirectory = /home/houtanb/Remote
DynarePath = /home/houtanb/dynare/matlab
MatlabOctavePath = matlab

Finally, the DYNARE command line options are:

conffile=<path>: specify the location of the configuration file if it is not standard

parallel: trigger the parallel computation using the first cluster specified in config

file

parallel=<clustername>: trigger the parallel computation, using the given cluster

parallel_slave_open_mode: use the leaveSlaveOpen mode in the cluster

parallel_test: just test the cluster, don’t actually run the MOD file
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3.2.2 Preprocessing cluster settings

The DYNARE pre-processor treats user-defined configurations by filling a new sub-structure

in the options_ structure, named parallel, with the following fields:

options_.parallel=
struct (’Local’, Value,
’ComputerName’, Value,
’CPUnbr’, Value,
’UserName’, Value,
’Password’, Value,
’RemoteDrive’, Value,
’RemoteFolder’, Value,
’MatlabOctavePath’, Value,
’DynarePath’, Value);

All these fields correspond to the slave options except Local, which is set by the

pre-processor according to the value of ComputerName:

Local: the variable Local is binary, so it can have only two values 0 and 1. If ComputerName
is set to localhost, the preprocessor sets Local = 1 and the parallel computation
is executed on the local machine, i.e. on the same computer (and working directory)
where the DYNARE project is placed. For any other value for ComputerName, we

will have Local = 0;

In addition to the parallel structure, which can be in a vector form, to allow spe-
cific entries for each slave machine in the cluster, there is another options_ field, called
parallel_info, which stores all options that are common to all cluster. Namely, accord-
ing to the parallel_slave_open_mode in the command line, the leaveSlaveOpen field

takes values:

leaveSlaveOpen=1 : with parallel_slave_open_mode, i.e. the slaves operate ‘Always-

Open’.

leaveSlaveOpen=0 : without parallel_slave_open_mode, i.e. the slaves operate ‘Open-

Close’;
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3.2.3 Example syntax for Windows and Unix, for local parallel runs (assum-
ing quad-core)

In this case, the only slave options are ComputerName and CPUnbr.

[cluster]
Name = local
Members = nl

[node]

Name = nl

ComputerName = localhost
CPUnbr = 4

3.2.4 Examples of Windows syntax for remote runs

e the Windows Password has to be typed explicitly;

e RemoteDrive has to be typed explicitly;

e for UserName, ALSO the group has to be specified, like DEPT\JohnSmith, i.e. user

JohnSmith in windows group DEPT;

e ComputerName is the name of the computer in the windows network, i.e. the output

of hostname, or the full IP address.

Example 1 Parallel codes that are run on a remote computer named vonNeumann with

eight cores, using only the cores 4,5,6, working on the drive 'C’ and folder '"dynare_calcs\Remote’.

The computer vonNeumann is in a net domain of the CompuTown university, with

user John logged with the password ***x*x:
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[cluster]
Name = vonNeumann
Members = n2

[node]

Name = n2

ComputerName = vonNeumann

CPUnbr = [4:6]

UserName = COMPUTOWN\John

Password = *xxx*

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote
DynarePath = c:\dynare\matlab
MatlabOctavePath = matlab

Example 2 We can build a cluster, combining local and remote runs. For example the
following configuration file includes the two previous configurations but also gives

the possibility (with cluster name c2) to build a grid with a total number of 7 CPU’s

[cluster]
Name = local
Members = nl

[cluster]
Name = vonNeumann
Members = n2

[cluster]
Name = c2
Members = nl n2

[node]

Name = nl

ComputerName = localhost
CPUnbr = 4

[node]

Name = n2

ComputerName = vonNeumann

CPUnbr = [4:6]

UserName = COMPUTOWN\John

Password = *xxx*

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote
DynarePath = c:\dynare\matlab
MatlabOctavePath = matlab
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Example 3 We can build a cluster, combining many remote machines. For example the

following commands build a grid of four machines with a total number of 14 CPU’s:

[cluster]
Name = c4
Members = nl n2 n3 n4

[node]

Name = nl

ComputerName = vonNeumannl

CPUnbr = 4

UserName = COMPUTOWN\John

Password = s*%*%*

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote
DynarePath = c:\dynare\matlab
MatlabOctavePath = matlab

[node]

Name = n2

ComputerName = vonNeumann2

CPUnbr = 4

UserName = COMPUTOWN\John

Password = **x*x*

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote
DynarePath = c:\dynare\matlab
MatlabOctavePath = matlab

[node]

Name = n3

ComputerName = vonNeumann3
CPUnbr = 2

UserName = COMPUTOWN\John
Password = %%k

RemoteDrive = D

RemoteDirectory = dynare_calcs\Remote
DynarePath = c:\dynare\matlab
MatlabOctavePath = matlab

[node]

Name = n4

ComputerName = vonNeumann4

CPUnbr = 4

UserName = COMPUTOWN\John

Password = **x*x*

RemoteDrive = C

RemoteDirectory = John\dynare_calcs\Remote
DynarePath = c:\dynare\matlab
MatlabOctavePath = matlab
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3.2.5 Example Unix syntax for remote runs

e no Password and RemoteDrive fields are needed;

e ComputerName is the full IP address or the DNS address.

One remote slave: the following command defines remote runs on the machine name .domain. org.

[cluster]
Name = unixl
Members = n2

[node]

Name = n2

ComputerName = name.domain.org

CPUnbr = 4

UserName = JohnSmith

RemoteDirectory = /home/john/Remote
DynarePath = /home/john/dynare/matlab
MatlabOctavePath = matlab

Combining local and remote runs: the following commands define a cluster of local
an remote CPU’s.

[cluster]
Name = unix2
Members = nl n2

[node]

Name = nl
ComputerName
CPUnbr = 4

localhost

[node]

Name = n2
ComputerName
CPUnbr = 4
UserName = JohnSmith

RemoteDirectory = /home/john/Remote
DynarePath = /home/john/dynare/matlab
MatlabOctavePath = matlab

name.domain.org

3.2.6 Testing the cluster

In this section we describe what happens when the user omits a mandatory entry or

provides bad values for them and how DYNARE reacts in these cases. In the parallel
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package there is a utility (AnalyseComputationalEnvironment.m) devoted to this task
(this is triggered by the command line option parallel_test). When necessary during

the discussion, we use the parallel entries used in the previous examples.

ComputerName: If Local=0, DYNARE checks if the computer vonNeumann exists and
if it is possible communicate with it. If this is not the case, an error message is

generated and the computation is stopped.

CPUnbr: a value for this variable must be in the form [s:d] with d>=s. If the user
types values s>d, their order is flipped and a warning message is sent. When the
user provides a correct value for this field, DYNARE checks if d CPUs (or cores)
are available on the computer. Suppose that this check returns an integer nC. We

can have three possibilities:

1. nC= d; all the CPU’s available are used, no warning message are generated by

DYNARE;
2. nC> d; some CPU’s will not be used;

3. nC< d; DYNARE alerts the user that there are less CPU’s than those declared.
The parallel tasks would run in any case, but some CPU’s will have multiple

instances assigned, with no gain in computational time.

UserName & Password: if Local = 1, no information about user name and password
is necessary: “I am working on this computer”. When remote computations on a
Windows network are required, DYNARE checks if the user name and password are
correct, otherwise execution is stopped with an error; for a Unix network, the user

and the proper operation of SSH is checked;

RemoteDrive & RemoteDirectory: if Local = 1, these fields are not required since
the working directory of the ‘slaves’ will be the same of the ‘master’. If Local = 0,
DYNARE tries to copy a file (Tracing.txt) in this remote location. If this operation

fails, the DYNARE execution is stopped with an error;
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MatlabOctavePath & DynarePath: MATLAB instances are tried on slaves and the
DYNARE path is checked.

3.3 The Developers perspective

In this section we describe with some accuracy the DYNARE parallel routines.

Windows: With Windows operating system, the parallel package requires the installa-
tion of a free software package called PsTools ( , ). PsTools suite
is a resource kit with a number of command line tools that mimics administrative
features available under the Unix environment. PsTools can be downloaded from

( ) and extracted in a Windows directory on your computer: to
make PsTools working properly, it is mandatory to add this directory to the Win-
dows path. After this step it is possible to invoke and use the PsTools commands
from any location in the Windows file system. PsTools, MATLAB and DYNARE
have to be installed and work properly on all the machines in the grid for parallel

computation.

Unix: With Unix operating system, SSH must be installed on the master and on the
slave machines. Moreover, SSH keys must be installed so that the SSH connections

from the master to the slaves can be done without passwords.

As soon as the computational environment is set-up for working on a grid of CPU’s,
the parallel package allows to parallelize any loop that is computationally expensive,
following the step by step procedure showed in Table 1. This is done using five basic
functions: masterParallel.m, fParallel.m or slaveParallel.m, fMessageStatus.m,

closeSlave.mn.

masterParallel is the entry point to the parallelization system:

e [t is called from the master computer, at the point where the parallelization
system should be activated. Its main arguments are the name of the function

containing the task to be run on every slave computer, inputs to that function

17



stored in two structures (one for local and the other for global variables), and
the configuration of the cluster; this function exits when the task has finished
on all computers of the cluster, and returns the output in a structure vector

(one entry per slave);

e all file exchange through the filesystem is concentrated in this masterParallel
routine: so it prepares and send the input information for slaves, it retrieves
from slaves the info about the status of remote computations stored on remote
slaves by the remote processes; finally it retrieves outputs stored on remote

machines by slave processes;
e there are two modes of parallel execution, triggered by option parallel_slave_open_mode:

— when parallel_slave_open_mode=0, the slave processes are closed after
the completion of each task, and new instances are initiated when a new

job is required; this mode is managed by fParallel.m [‘Open-Close’];

— when parallel_slave_open_mode=1, the slave processes are kept running
after the completion of each task, and wait for new jobs to be performed;

this mode is managed by slaveParallel.m [‘Always-Open’];

slaveParallel.m/fParallel.m: are the top-level functions to be run on every slave;
their main arguments are the name of the function to be run (containing the com-
puting task), and some information identifying the slave; the functions use the input
information that has been previously prepared and sent by masterParallel through
the filesystem, call the computing task, finally the routines store locally on remote
machines the outputs such that masterParallel retrieves back the outputs to the

master computer;

fMessageStatus.m: provides the core for simple message passing during slave execution:
using this routine, slave processes can store locally on remote machine basic info on
the progress of computations; such information is retrieved by the master process
(i.e. masterParallel.m) allowing to echo progress of remote computations on the

master; the routine fMessageStatus.m is also the entry-point where a signal of
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interruption sent by the master can be checked and executed; this routine typically

replaces calls to waitbar.m;

closeSlave.m is the utility that sends a signal to remote slaves to close themselves. In the
standard operation, this is only needed with the ‘Always-Open’ mode and it is called
when DYNARE computations are completed. At that point, slaveParallel.m will
get a signal to terminate and no longer wait for new jobs. However, this utility is
also useful in any parallel mode if, for any reason, the master needs to interrupt the

remote computations which are running;

The parallel toolbox also includes a number of utilities:

AnalyseComputationalEnviroment.m: this a testing utility that checks that the

cluster works properly and echoes error messages when problems are detected;

InitializeComputationalEnviroment.m : initializes some internal variables and

remote directories;

distributeJobs.m: uses a simple algorithm to distribute evenly jobs across the

available CPU’s;

a number of generalized routines that properly perform delete, copy, mkdir, rmdir

commands through the network file-system (i.e. used from the master to operate

on slave machines); the routines are adaptive to the actual environment (Windows

or Unix);

dynareParallelDelete.m : generalized delete;

dynareParallelDir.m : generalized dir;

dynareParallelGetFiles.m : generalized copy FROM slaves TO master machine;

dynareParallelMkDir.m : generalized mkdir on remote machines;

dynareParallelRmDir.m : generalized rmdir on remote machined;

dynareParallelSendFiles.m : generalized copy TO slaves FROM master ma-
chine;
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In Table 1 we have synthesized the main steps for parallelizing MATLAB codes.
So far, we have parallelized the following functions, by selecting the most computa-

tionally intensive loops:

1. the cycle looping for multiple chain random walk Metropolis:
random_walk_metropolis_hastings,

random_walk_metropolis_hastings_core;

2. the cycle looping for multiple chain independent Metropolis:
independent_metropolis_hastings.m,

independent_metropolis_hastings_core.m;

3. the cycle looping over estimated parameters computing univariate diagnostics:
mcmc_diagnostics.m,

mcmc_diagnostics_core.m;

4. the Monte Carlo cycle looping over posterior parameter subdraws performing the
IRF simulations (<*>_corel) and the cycle looping over exogenous shocks plotting
IRF’s charts (<*>_core2):
posteriorIRF.m,

posteriorIRF_corel.m, posteriorIRF_core2.m;

5. the Monte Carlo cycle looping over posterior parameter subdraws, that computes
filtered, smoothed, forecasted variables and shocks:
prior_posterior_statistics.m,

prior_posterior_statistics_core.m;

6. the cycle looping over endogenous variables making posterior plots of filter, smoother,

forecasts: pm3.m, pm3_core.m.

3.3.1 Write a parallel code: an example

Using a MATLAB pseudo (but very realistic) code, we now describe in detail how to

use the above step by step procedure to parallelize the random walk Metropolis Hastings
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. locate within DYNARE the portion of code suitable to be parallelized, i.e. an
expensive cycle for;

. suppose that the function tuna.m contains a cycle for that is suitable for paral-
lelization: this cycle has to be extracted from tuna.m and put it in a new MATLAB
function named tuna_core.m;

. at the point where the expensive cycle should start, the function tuna.m invokes
the utility masterParallel.m, passing to it the options_.parallel structure, the
name of the of the function to be run in parallel (tuna_core.m), the local and global
variables needed and all the information about the files (MATLAB functions *.m;
data files *.mat) that will be handled by tuna_core.m;

. the function masterParallel .m reads the input arguments provided by tuna.m and:

e decides how to distribute the task evenly across the available CPU’s (using the
utility routine distributeJobs.m); prepares and initializes the computational
environment (i.e. copy files/data) for each slave machine;

e uses the PsTools and the Operating System commands to launch new MAT-
LAB instances, synchronize the computations, monitor the progress of slave
tasks through a simple message passing system (see later) and collect results
upon completion of the slave threads;

. the slave threads are executed using the MATLAB functions
fParallel.m/slaveParallel.m as wrappers for implementing the tasks sent
by the master (i.e. to run the tuna_core.m routine);

. the utility fMessageStatus.m can be used within the core routine tuna_core.m to
send information to the master regarding the progress of the slave thread;

. when all DYNARE computations are completed, closeSlave.m closes all open re-
mote MATLAB/OCTAVE instances waiting for new jobs to be run.

Table 1: Procedure for parallelizing portions of codes.
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algorithm. Any other function can be parallelized in the same way.

It is obvious that most of the computational time spent by the

random_walk_metropolis_hastings.m function is given by the cycle looping over the

parallel chains performing the Metropolis:

function random_walk_metropolis_hastings

(TargetFun, ProposalFun, ..., varargin)
[...]
for b = fblck:nblck,
end
[...]

Since those chains are totally independent, the obvious way to reduce the computa-

tional time is to parallelize this loop, executing the (nblck-fblck) chains on different

computers/CPUs/cores.

To do so, we remove the for cycle and put it in a new function named <*>_core.m:

function myoutput =
random_walk_metropolis_hastings_core(myinputs,fblck,nblck, ...)

[...]

just list global variables needed (they are set-up properly by fParallel or slaveParallel)
global bayestopt_ estim_params_ options_ M_ oo_
here we collect all local variables stored in myinputs

TargetFun=myinputs.TargetFun;
ProposalFun=myinputs.ProposalFun;
xparaml=myinputs.xparaml;

[...]

here we run the loop

for b = fblck:nblck,

end

[...]
here we wrap all output arguments needed by the ‘master’ routine

myoutput.record = record;

[...]

The split of the for cycle has to be performed in such a way that the new <*>_core func-
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tion can work in both serial and parallel mode. In the latter case, such a function will
be invoked by the slave threads and executed for the number of iterations assigned by
masterParallel .m.

The modified random_walk_metropolis_hastings.m is therefore:

function random_walk_metropolis_hastings(TargetFun,ProposalFun,\ldots,varargin)
[...]

% here we wrap all local variables needed by the <*>_core function

localVars = struct(’TargetFun’, TargetFun,

[...]
7d)’ d);
[...]
% here we put the switch between serial and parallel computation:
if isnumeric(options_.parallel) || (nblck-fblck)==0,

% serial computation
fout = random_walk_metropolis_hastings_core(localVars, fblck,nblck, 0);
record = fout.record;

else
% parallel computation

% global variables for parallel routines
globalVars = struct(’M_’,M_,
[...]

’o0_’, 00_);

% which files have to be copied to run remotely
NamFileInput(1,:) = {’’, [ModelName ’_static.m’]};
NamFileInput(2,:) = {’’, [ModelName ’_dynamic.m’]};
[ ...]

% call the master parallelizing utility

[fout, nBlockPerCPU, totCPU] = masterParallel(options_.parallel,
fblck, nblck, NamFileInput, ’random_walk_metropolis_hastings_core’,
localVars, globalVars, options_.parallel_info);

% collect output info from parallel tasks provided in fout
[...]

end

% collect output info from either serial or parallel tasks
irun = fout (1) .irun;

NewFile = fout (1) .NewFile;

[...]

Finally, in order to allow the master thread to monitor the progress of the slave threads,
some message passing elements have to be introduced in the <*>_core.m file. The utility

function fMessageStatus.m has been designed as an interface for this task, and can be
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seen as a generalized form of the MATLAB utility waitbar.m.
In the following example, we show a typical use of this utility, again from the random
walk Metropolis routine:

for j = l:nrumns

[...]

% define the progress of the loop:
prtfrc = j/nruns;

% define a running message:

% first indicate which chain is running on the current CPU [b]
% out of the chains [mh_nblock] requested by the DYNARE user
waitbarString = [ ’(° int2str(b) ’/’ int2str(mh_nblck) ’)

% then add possible further information, like the acceptation rate
> sprintf(’%f done, acceptation rate %f’,prtfrc,isux/j)]

if mod(j, 3)==0 & “whoiam
% serial computation
waitbar(prtfrc,hh_fig,waitbarString);

elseif mod(j,50)==0 & whoiam,
% parallel computation
fMessageStatus (prtfrc,
whoiam,
waitbarString,
waitbarTitle,
options_.parallel(ThisMatlab))

end

end

In the previous example, a number of arguments are used to identify which CPU and which
computer in the claster is sending the message, namely:

% whoiam [int] index number of this CPU among all CPUs in the

h cluster

% ThisMatlab [int] index number of this slave machine in the cluster
yA (entry in options_.parallel)

The message is stored as a MATLAB data file *.mat saved on the working directory of
remote slave computer. The master will will check periodically for those messages and
retrieve the files from remote computers and produce an advanced monitoring plot.

So, assuming to run two Metropolis chains, under the standard serial implementation

there will be a first waitbar popping up on matlab, corresponding to the first chain:
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) Metropolis-Hastings [Z| |§|E|

{1/2) 0.356400 done, acceptation rate 0.301066

followed by a second waitbar, when the first chain is completed.

) Metropolis-Hastings

(2/2) 0168000 done, acceptation rate 0.324405

On the other hand, under the parallel implementation, a parallel monitoring plot will

be produced by masterParallel.m:

J Parallel random_walk_metropolis_hastings_core
Local - (172) 0.235000 done, acceptation rate 0.145532
| ]

Local - (272) 0.225000 done, acceptation rate 0.110667
| ]

4 Parallel DYNARE: testing

We checked the new parallel platform for DYNARE performing a number of tests, us-
ing different models and computer architectures. We present here all tests performed
with Windows XP/MATLAB. However, similar tests were performed successfully under
Linux/Ubuntu environment. In the Bayesian estimation of DSGE models with DYNARE,
most of the computing time is devoted to the posterior parameter estimation with the
Metropolis algorithm. The first and second tests are therefore focused on the paral-
lelization of the Random Walking Metropolis Hastings algorithm (Sections 4.1-4.2). In
addition, further tests (Sections 4.3-4.4) are devoted to test all the parallelized functions
in DYNARE.

4.1 Test 1.

The main goal here was to evaluate the parallel package on a fized hardware platform
and using chains of wvariable length. The model used for testing is a modification of
Hradisky et al. (2006). This is a small scale open economy DSGE model with 6 observed

variables, 6 endogenous variables and 19 parameters to be estimated. We estimated the
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model on a bi-processor machine (Fujitsu Siemens, Celsius R630) powered with an Intel®

Xeon™CPU 2.80GHz Hyper Treading Technology; first with the original serial Metropolis

and subsequently using the parallel solution, to take advantage of the two processors

technology. We ran chains of increasing length: 2500, 5000, 10,000, 50,000, 100,000,

250,000, 1,000,000.

800
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300
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o

—— One processor
—=— two processors

400000 600000 800000 1000000 1200000

Figure 1: Computational time (in minutes) versus chain length for the serial and parallel
implementation (Metropolis with two chains).

0

400000 600000 800000 1000000 1200000

Figure 2: Reduction of computational time (i.e. the ‘time gain’) using the parallel coding
versus chain length. The time gain is computed as (T — T,,) /1, where T, and 7, denote
the computing time of the serial and parallel implementations respectively.

Overall results are given in Figure 1, showing the computational time versus chain

length, and Figure 2, showing the reduction of computational time (or the time gain)
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Machine Single-processor | Bi-processor | Dual core
Parallel 8:01:21 7:02:19 5:39:38
Serial 10:12:22 13:38:30 11:02:14
Speed-Up rate 1.2722 1.9381 1.9498
Ideal Speed-UP rate | ~1.5 2 2

Table 2: Trail results with normal PC operation. Computing time expressed in h:m:s.
Speed-up rate is computed as 7T,/T,, where Ty and 7T}, are the computing times for the
serial and parallel implementations.

with respect to the serial implementation provided by the parallel coding. The gain in
computing time of the exercise is of about 45% on this test case, so reducing from 11.40

hours to about 6 hours the cost of running 1,000,000 Metropolis iterations (the ideal gain
would be of 50% in this case).

4.2 Test 2.

The scope of the second test was to verify if results were robust over different hardware
platforms. We estimated the model with chain lengths of 1,000,000 runs on the following

hardware platforms:

e Single processor machine: Intel® Pentiumd® CPU 3.40GHz with Hyper Treading

Technology (Fujitsu-Siemens Scenic Esprimo);

e Bi-processor machine: two CPU’s Intel® Xeon™2.80GHz Hyper Treading Technol-

ogy (Fujitsu-Siemens, Celsius R630);

e Dual core machine: Intel Centrino T2500 2.00GHz Dual Core (Fujitsu-Siemens,

LifeBook S Series).

We first run the tests with normal configuration. However, since (i) dissimilar software
environment on the machine can influence the computation; (ii) Windows service (Net-
work, Hard Disk writing, Demon, Software Updating, Antivirus, etc.) can start during
the simulation; we also run the tests not allowing for any other process to start during
the estimation. Table 2 gives results for the ordinary software environment and process

priority is set as low/normal.
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Environment Computing time | Speed-up rate

w.r.t. Table 2
Parallel Waitbar Not Visi- | 5:06:00 1.06
ble
Parallel waitbar Not Visi- | 4:40:49 1.22

ble, Real-time Process pri-
ority, Unplugged network
cable.

Table 3: Trail results with different software configurations (optimized operating environ-
ment for computational requirements).

Results showed that Dual-core technology provides a similar gain if compared with
bi-processor results, again about 45%. The striking results was that the Dual-core pro-
cessor clocked at 2.0GHz was about 30% faster than the Bi-processor clocked at 2.8GHz.
Interesting gains were also obtained via multi-threading on the Single-processor machine,
with speed-up being about 1.27 (i.e. time gain of about 21%). However, beware that we
burned a number of processors performing tests on single processors with hyper-threading
and using very long chains (1,000,000 runs)! We re-run the tests on the Dual-core ma-
chine, by cleaning the PC operation from any interference by other programs and show
results in Table 3. A speed-up rate of 1.06 (i.e. 5.6% time gain) can be obtained simply
hiding the MATLAB waitbar. The speed-up rate can be pushed to 1.22 (i.e. 18% time
gain) by disconnecting the network and setting the priority of the process to real time.
It can be noted that from the original configuration, taking 11:02 hours to run the two
parallel chains, the computational time can be reduced to 4:40 hours (i.e. for a total time
gain of over 60% with respect to the serial computation) by parallelizing and optimally
configuring the operating environment. These results are somehow surprising and show
how it is possible to reduce dramatically the computational time with slight modification
in the software configuration.

Given the excellent results reported above, we have parallelized many other DYNARE
functions. This implies that parallel instances can be invoked many times during a single
DYNARE session. Under the basic parallel toolbox implementation, that we call the
‘Open/Close’ strategy, this implies that MATLAB instances are opened and closed many

times by system calls, possibly slowing down the computation, specially for ‘entry-level’

28



computer resources. As mentioned before, this suggested to implement an alternative
strategy for the parallel toolbox, that we call the ‘Always-Open’ strategy, where the slave
MATLAB threads, once opened, stay alive and wait for new tasks assigned by the master
until the full DYNARE procedure is completed. We show next the tests of these latest

implementations.

4.3 Test 3

In this Section we use the ( ) model as test function? and a very simple computer
class, quite diffuse nowadays: Netbook personal Computer. In particular we used the
Dell Mini 10 with Processor Intel® Atom™Z520 (1,33 GHz, 533 MHz), 1 GB di RAM
(with Hyper-trading). First, we tested the computational gain of running a full Bayesian
estimation: Metropolis (two parallel chains), MCMC diagnostics, posterior IRF’s and
filtered, smoothed, forecasts, etc. In other words, we designed DYNARE sessions that
invoke all parallelized functions. Results are shown in Figures 3-4. In Figure 3 we
show the computational time versus the length of the Metropolis chains in the serial and
parallel setting (‘Open/Close’ strategy). With very short chain length, parallel setting
obviously slows down performances of the computations (due to delays in open/close
MATLAB sessions and in synchronization), while increasing the chain length, we can get
speed-up rates up to 1.41 on this ‘entry-level’ portable computer (single processor and
Hyper-threading). In order to appreciate the gain of parallelizing all functions invoked
after Metropolis, in Figure 4 we show the results of the experiment, but without running
Metropolis, i.e. we use the options load_mh_files = 1 and mh_replic = 0 DYNARE
options (i.e. Metropolis and MCMC diagnostics are not invoked). The parallelization of
the functions invoked after Metropolis allows to attain speed-up rates of 1.14 (i.e. time
gain of about 12%). Note that the computational cost of these functions is proportional to
the chain length only when the latter is relatively small. In fact, the number of sub-draws
taken by posteriorIRF.m or prior_posterior_statistics.m is proportional to the

total number of MH draws up to a maximum threshold of 500 sub-draws (for IRF’s) and

2The ( ) model is also selected as the ‘official’ test model for the parallel toolbox in
DYNARE.
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Figure 3: Computational Time (s) versus Metropolis length, running all the parallelized
functions in DYNARE and the basic parallel implementation (the ‘Open/Close’ strategy).
(Lubik, 2003).
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Figure 4: Computational Time (s) versus Metropolis length, loading previously performed
MH runs and running only the parallelized functions after Metropolis (L.ubik, 2003). Basic
parallel implementation (the ‘Open/Close’ strategy).
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Figure 5: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’ strategy. Com-
putational Time (s) versus Metropolis length, running all the parallelized functions in

DYNARE ( , 2003).
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Figure 6: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’ strategy. Com-
putational Time (s) versus Metropolis length, running only the parallelized functions after
Metropolis ( : ).

1,200 sub-draws (for smoother). This is reflected in the shape of the plots, which attain a
plateau when these thresholds are reached. In Figures 5-6 we plot results of the same type
of tests just described, but comparing the ‘Open/Close’ and the ‘Always-open’ strategies.
We can see in both graphs that the more sophisticated approach ’Always-open’ provides
some reduction in computational time. When the entire Bayesian analysis is performed
(including Metropolis and MCMC diagnostics, Figure 5) the gain is on average of 5%,
but it can be more than 10% for short chains. When the Metropolis is not performed, the
gain rises on average at about 10%. As expectable, the gain of the ‘Always-open’ strategy

is specially visible when the computational time spent in a single parallel session is not
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too long if compared to the cost of opening and closing new MATLAB sessions under the

‘Open/Close’ approach.

4.4 Test 4

Here we increase the dimension of the test model, using the QUEST III model (

, ), using a more powerful Notebook Samsung Q 45 with an Dual core Processor
Intel Centrino. In Figures 7-8 we show the computational gain of the parallel coding with
the ‘Open/Close’ strategy. When the Metropolis is included in the analysis (Figure 7),
the computational gain increases with the chain length. For 50,000 MH iterations, the
speed-up rate is about 1.42 (i.e. a 30% time gain), but pushing the computation up to
1,000,000 runs provides an almost ideal speed-up of 1.9 (i.e. a gain of about 50% similar
to Figure 1). It is also interesting to note that for this medium/large size model, even at
very short chain length, the parallel coding is always winning over the serial. Excluding
the Metropolis from DYNARE execution (Figure 8), we can see that the speed-up rate of

running the posterior analysis in parallel on two cores reaches 1.6 (i.e. 38% of time gain).
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Figure 7: Computational Time (s) versus Metropolis length, running all the parallelized
functions in DYNARE and the basic parallel implementation (the ‘Open/Close’ strategy).

( , 2009).

Y

We also checked the efficacy of the ‘Always-open’ approach with respect to the ‘Open/Close

(Figures 9 and 10). We can see in Figure 9 that, running the entire Bayesian analysis, no
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advantage can be appreciated from the more sophisticated ‘Always-open’ approach.

On the other hand, in Figure 10, we can see that the ‘Always-open’ approach still
provides a small speed-up rate of about 1.03. These results confirm the previous comment
that the gain of the ‘Always-open’ strategy is specially visible when the computational
time spent in a single parallel session is not too long, and therefore, the bigger the model

size, the less the advantage of this strategy.

5 Conclusions

The methodology identified for parallelizing MATLAB codes within DYNARE proved to
be effective in reducing the computational time of the most extensive loops. This method-
ology is suitable for ‘embarrassingly parallel’ codes, requiring only a minimal communi-
cation flow between slave and master threads. The parallel DYNARE is built around
a few ‘core’ routines, that act as a sort of ‘parallel paradigm’. Based on those rou-
tines, parallelization of expensive loops is made quite simple for DYNARE developers.
A basic message passing system is also provided, that allows the master thread to mon-
itor the progress of slave threads. The test model 1s2003.mod is available in the folder

\tests\parallel of the DYNARE distribution, that allows running parallel examples.
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Figure 8: Computational Time (s) versus Metropolis length, loading previously performed
MH runs and running only the parallelized functions after Metropolis ( , ).
Basic parallel implementation (the ‘Open/Close’ strategy).
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Figure 9: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’ strategy. Com-
putational Time (s) versus Metropolis length, running all the parallelized functions in
DYNARE (Ratto et al., 2009).
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Figure 10: Comparison of the ‘Open/Close’ strategy and the ‘Always-open’ strategy.
Computational Time (s) versus Metropolis length, running only the parallelized functions
after Metropolis (QUEST IIT model Ratto et al., 2009).
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Figure 11: Prior (grey lines) and posterior density of estimated parameters (black =
100,000 runs; red = 1,000,000 runs) using the RWMH algorithm (QUEST III model

, 2009).
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Figure 13: Prior (grey lines) and posterior density of estimated parameters (black =
100,000 runs; red = 1,000,000 runs) using the RWMH algorithm (QUEST III model
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A A tale on parallel computing

This is a general introduction to Parallel Computing. Readers can skip it, provided they
have a basic knowledge of DYNARE and Computer Programming ( , ;
, ; , ). There exists an ample scientific literature
as well as an enormous quantity of information on the Web, about parallel computing.
Sometimes, this amount of information may result ambiguous and confusing in the no-
tation adopted and the description of technologies. Then main the goal here is therefore
to provide a very simple introduction to this subject, leaving the reader to
( ) for a more extensive and clear introduction to computer science.

Modern computer systems (hardware and software) is conceptually identical to the first
computer developed by J. Von Neumann. Nevertheless, over time, hardware, software,
but most importantly hardware € software together have acquired an ever increasing
ability to perform incredibly complex and intensive tasks. Given this complexity, we use
to explain the modern computer systems as the “avenue paradigm”, that we summarize
in the next tale.

Nowadays there is a small but lovely town called “CompuTown”. In CompuTown
there are many roads, which are all very similar to each other, and also many gardens.
The most important road in CompuTown is the Von Neumann Avenue. The first building
in Von Neumann Avenue has three floors (this is a computer system: PC, workstation,
etc.; see Figure 18 and ( )). Floors communicate between them only with
a single stair. In each floor there are people coming from the same country, with the same
language, culture and uses. People living, moving and interacting with each other in the
first and second floor are the programs or software agents or, more generally speaking,
algorithms (see chapters 3, 5, 6 and 7 in ( )). Examples of the latter are
the softwares MATLAB, Octave, and a particular program called the operating system
(Windows, Linux, Mac OS, etc.).

People at the ground floor are the transistors, the RAM, the CPU, the hard disk,
etc. (i.e. the Computer Architecture, see chapters 1 and 2 in ). People at the

second floor communicate with people at the first floor using the only existing scale (the
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Figure 18: The first building in Von Neumann Avenue: a Computer System

pipe). In these communications, people talk two different languages, and therefore do not
understand each other. To remove this problem people define a set of words, fixed and
understood by everybody: the Programming Languages. More specifically, these languages
are called high-level programming languages (Java, C/C++, FORTRAN,MATLAB, etc.),
because they are related to people living on the upper floors of the building! Sometimes
people in the building use also pictures to communicate: the icons and graphical user
interface.

In a similar way, people at the first loor communicate with people at the ground floor.
Not surprisingly, in this case, people use low-level programming languages to communi-
cate to each other (assembler, binary code, machine language, etc.). More importantly,
however, people at the first floor must also manage and coordinate the requests from
people on the second floor to people at the ground floor, since there is no direct commu-
nication between ground and second floor. For example they need to translate high-level
programming languages into binary code®: the Operating System performs this task.

Sometimes, people at the second floor try to talk directly with people at the ground
floor, via the system calls. In the parallelizing software presented in this document, we will

use frequently these system calls, to distribute the jobs between the available hardware

3The process to transform an high-level programming languages into binary code is called compilation
process.
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resources, and to coordinate the overall parallel computational process. If only a single
person without family lives on the ground floor, such as the porter, we have a CPU single
core. In this case, the porter can only do one task at a time for the people in first or
second floor (the main characteristic of the Von Neumann architecture). For example,
in the morning he first collects and sorts the mail for the people in the building, and
only after completing this task he can take care of the garden. If the porter has to
do many jobs, he needs to write in a paper the list of things to do: the memory and
the CPU load. Furthermore, to properly perform its tasks, sometimes the porter has to
move some objects trough the passageways at the ground floor (the System Bus). If the
passageways have standard width, we will have a 32 bits CPU architecture (or bus). If
the passageways are very large we will have, for example, a 64 bits CPU architecture (or
bus). In this scenario, there will be very busy days where many tasks have to be done
and many things have to be moved around: the porter will be very tired, although he
will be able to ‘survive’. The most afflicted are always the people at the first floor. Every
day they have a lot of new, complex requests from the people at the second floor. These
requests must be translated in a correct way and passed to the porter. The people at the
second floor (the highest floor) “live in cloud cuckoo land”. These people want everything
to be done easily and promptly: the artificial intelligence, robotics, etc. The activity in
the building increases over time, so the porter decides to get helped in order to reduce

the execution time for a single job. There are two ways to do this:

e the municipality of CompuTown interconnects all the buildings in the city using
roads, so that the porter can share and distribute the jobs (the Computer Networks):
if the porters involved have the same nationality and language we have a Computer
Cluster, otherwise we have a Grid. Nevertheless, in both cases, it is necessary to
define a correct way in which porters can manage, share and complete a shared job:

the communication protocol (TCP/IP, internet protocol, etc.);

e the building administrator employs an additional porter, producing a Bi-Processor
Computer. In other case, the porter may get married, producing a dual-core CPU.

In this case, the wife can help the porter to perform his tasks or even take entirely
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some jobs for her (for example do the accounting, take care of the apartment, etc.).
If the couple has a children, they can have a further little help: the thread and then

the Hyper-threading technology.

Now a problem arises: who should coordinate the activities between the porters (and
their family) and between the other buildings? Or, in other words, should we refurbish
the first and second floors to take advantage of the innovations on the ground floor and
of the new roads in CompuTown? First we can lodge new persons at the first floor:
the operating systems with a set of network tools and multi-processors support, as well
as new people at the second floor with new programming paradigms (MPI, OpenMP,
Parrallel DYNARE; etc.). Second, a more complex communication scheme between first
and ground floor is necessary, building a new set of stairs. So, for example, if we have
two stairs between ground and first floor and two porters, using multi-processors and
a new parallel programming paradigm, we can assign jobs to each porter directly and
independently, and then coordinate the overall work. In parallel DYNARE we use this
kind of ‘refurbishing’ to reduce the computational time and to meet the request of people
at the second floor.

Unfortunately, this is only an idealized scenario, where all the citizens in CompuTown
live in peace and cooperate between them. In reality, some building occupants argue with
each other and this can cause stopping their job: these kinds of conflicts may be linked
to software and hardware compatibility (between ground and first floor), or to different
software versions (between second and first floor). The building administration or the
municipality of CompuTown have to take care of these problems an fix them, to make the
computer system operate properly.

This tale (that can be also called The Programs’s Society) covered in a few pages the

fundamental ideas of computer science.
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