From b70d99d1b4af4e6799858902868300a246e3b492 Mon Sep 17 00:00:00 2001 From: Michel Juillard <michel.juillard@mjui.fr> Date: Fri, 27 Dec 2019 18:58:32 +0100 Subject: [PATCH] Refactoring of initval_file and histval_file initval_file and hisvfal_file are now more flexible and have functionalities similar to option datafile in estimation. Closes: #1671 --- doc/manual/source/the-model-file.rst | 531 +++++++++++++++++- matlab/global_initialization.m | 1 + matlab/histvalf.m | 97 ++-- matlab/histvalf_initvalf.m | 223 ++++++++ matlab/initvalf.m | 94 +--- matlab/perfect-foresight-models/make_ex_.m | 34 +- matlab/perfect-foresight-models/make_y_.m | 35 +- .../perfect_foresight_setup.m | 7 +- matlab/perfect-foresight-models/sim1.m | 4 +- matlab/smoother2histval.m | 97 ++-- preprocessor | 2 +- tests/.gitignore | 6 +- tests/Makefile.am | 47 +- tests/histval_initval_file/my_assert.m | 4 + tests/histval_initval_file/ramst_data.mod | 68 +++ tests/histval_initval_file/ramst_data.xls | Bin 0 -> 19968 bytes tests/histval_initval_file/ramst_data.xlsx | Bin 0 -> 8575 bytes .../ramst_datafile.mod | 0 .../ramst_histval_file.mod | 96 ++++ .../ramst_initval_file.mod | 113 ++++ .../ramst_initval_file_data.m | 14 + .../histval_initval_file/sim_exo_lead_lag.mod | 43 ++ .../sim_exo_lead_lag_histvalf.mod | 76 +++ .../sim_exo_lead_lag_initvalf.mod | 56 ++ .../sim_histvalf_stoch_simul.mod | 86 +++ tests/histval_initval_file_unit_tests.m | 220 ++++++++ tests/initval_file/ramst_initval_file.mod | 55 -- tests/smoother2histval/fs2000_simul.mod | 6 +- tests/smoother2histval/fs2000_smooth.mod | 2 +- 29 files changed, 1712 insertions(+), 305 deletions(-) create mode 100644 matlab/histvalf_initvalf.m create mode 100644 tests/histval_initval_file/my_assert.m create mode 100644 tests/histval_initval_file/ramst_data.mod create mode 100644 tests/histval_initval_file/ramst_data.xls create mode 100644 tests/histval_initval_file/ramst_data.xlsx rename tests/{initval_file => histval_initval_file}/ramst_datafile.mod (100%) create mode 100644 tests/histval_initval_file/ramst_histval_file.mod create mode 100644 tests/histval_initval_file/ramst_initval_file.mod create mode 100644 tests/histval_initval_file/ramst_initval_file_data.m create mode 100644 tests/histval_initval_file/sim_exo_lead_lag.mod create mode 100644 tests/histval_initval_file/sim_exo_lead_lag_histvalf.mod create mode 100644 tests/histval_initval_file/sim_exo_lead_lag_initvalf.mod create mode 100644 tests/histval_initval_file/sim_histvalf_stoch_simul.mod create mode 100644 tests/histval_initval_file_unit_tests.m delete mode 100644 tests/initval_file/ramst_initval_file.mod diff --git a/doc/manual/source/the-model-file.rst b/doc/manual/source/the-model-file.rst index 07101fdb66..fb077a848a 100644 --- a/doc/manual/source/the-model-file.rst +++ b/doc/manual/source/the-model-file.rst @@ -1769,7 +1769,7 @@ in this case ``initval`` is used to specify the terminal conditions. in the last ``initval`` or ``endval`` block (or the steady state file if you provided one, see :ref:`st-st`). -.. command:: initval_file (filename = FILENAME); +.. command:: initval_file (OPTIONS...); |br| In a deterministic setup, this command is used to specify a path for all endogenous and exogenous variables. The length of @@ -1786,33 +1786,534 @@ in this case ``initval`` is used to specify the terminal conditions. by the path for endogenous variables for the simulation periods (excluding initial and terminal conditions) - The command accepts three file formats: + In perfect foresight and stochastic contexts, ``steady`` uses the + first observation loaded by ``initval_file`` as guess value to + solve for the steady state of the model. This first observation is + determined by the ``first_obs`` option when it is used. + + Don’t mix ``initval_file`` with ``initval`` statements. However, + after ``initval_file``, you can modify the historical initial + values with ``histval`` or ``histval_file`` statement. + + There can be several ``initval_file`` statements in a model + file. Each statement resets ``oo_.initval_series``. + + *Options* + + .. option:: datafile = FILENAME + filename = FILENAME (deprecated) + + The name of the file containing the data. It must be included in quotes if the filename + contains a path or an extension. The command accepts the following file formats: * M-file (extension ``.m``): for each endogenous and exogenous variable, the file must contain a row or column vector of - the same name. Their length must be ``periods + - M_.maximum_lag + M_.maximum_lead`` + the same name. * MAT-file (extension ``.mat``): same as for M-files. * Excel file (extension ``.xls`` or ``.xlsx``): for each - endogenous and exogenous, the file must contain a column of - the same name. NB: Octave only supports the ``.xlsx`` file - extension and must have the `io`_ package installed (easily - done via octave by typing ‘``pkg install -forge io``’). + endogenous and exogenous variable, the file must contain a + column of the same name. NB: Octave only supports the + ``.xlsx`` file extension and must have the `io`_ package + installed (easily done via octave by typing ‘``pkg + install -forge io``’). The first column may contain the date + of each observation. + * CSV files (extension ``.csv``): for each endogenous and + exogenous variable, the file must contain a column of the + same name. The first column may contain the date of each + observation. + + .. option:: first_obs = {INTEGER | DATE} + + The observation number or the date (see + :ref:`dates-members`) of the first observation to be used in the file + + .. option:: first_simulation_period = {INTEGER | DATE} + + The observation number in the file or the date (see + :ref:`dates <dates-members>`) at which the simulation (or the forecast) is + starting. This option avoids to have to compute the maximum + number of lags in the model. The observation corresponding to + the first period of simulation doesn’t need to exist in the + file as the only dates necessary for initialization are before + that date. + + .. option:: last_obs = {INTEGER | DATE} + + The observaton number or the date (see + :ref:`dates-members`) of the last observation to be used in + the file. + + .. option:: nobs = INTEGER + + The number of observations to be used in the file (starting + with first of ``first_obs`` observation). + + .. option:: series = DSERIES NAME + + The name of a DSERIES containing the data (see :ref:`dseries-members`) + + *Example 1* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + + The initial and terminal values are taken from file + ``mydata.csv`` (nothing guarantees that these vales are the + steady state of the model). The guess value for the + trajectories are also taken from the file. The file must + contain at least 203 observations of variables ``c``, ``x`` + and ``e``. If there are more than 203 observations available + in the file, the first 203 are used by + ``perfect_foresight_setup(periods=200)``. + Note that the values for the auxiliary variable corresponding + to ``x(-2)`` are automatically computed by ``initval_file``. + + *Example 2* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv, + first_obs=10); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + + The initial and terminal values are taken from file + ``mydata.csv`` starting with the 10th observation in the + file. There must be at least 212 observations in the file. + + *Example 3* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + ds = dseries(mydata.csv); + lds = log(ds); + + initval_file(series=lds, + first_obs=2010Q1); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; - .. warning:: The extension must be omitted in the command - argument. Dynare will automatically figure out the - extension and select the appropriate file type. If - there are several files with the same name but different - extensions, then the order of precedence is as follows: - first ``.m``, then ``.mat``, ``.xls`` and finally ``.xlsx``. + The initial and terminal values are taken from dseries + ``lds``. All observations are loaded starting with the 1st quarter of + 2010 until the end of the file. There must be data available + at least until 2050Q3. + + *Example 4* + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; -.. command:: histval_file (filename = FILENAME); + initval_file(datafile=mydata.csv, + first_simulation_period=2010Q1); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + + The initial and terminal values are taken from file + ``mydata.csv``. The observations in the file must have + dates. All observations are loaded from the 3rd quarter of + 2009 until the end of the file. There must be data available + in the file at least until 2050Q1. + + *Example 5* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv, + last_obs = 212); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + + The initial and terminal values are taken from file + ``mydata.csv``. The first 212 observations are loaded and the + first 203 observations will be used by + ``perfect_foresight_setup(periods=200)``. + + *Example 6* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv, + first_obs = 10, + nobs = 203); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + + The initial and terminal values are taken from file + ``mydata.csv``. Observations 10 to 212 are loaded. + + *Example 7* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv, + first_obs = 10); + + steady; + + The values of the 10th observation of ``mydata.csv`` are used + as guess value to compute the steady state. The exogenous + variables are set to values found in the file or zero if these + variables aren't present. + +.. command:: histval_file (OPTIONS...); |br| This command is equivalent to ``histval``, except that it reads its input from a file, and is typically used in conjunction with ``smoother2histval``. + *Options* + + .. option:: datafile = FILENAME + filename = FILENAME (deprecated) + + The name of the file containing the data. The command accepts + the following file formats: + + * M-file (extension ``.m``): for each endogenous and exogenous + variable, the file must contain a row or column vector of + the same name. + * MAT-file (extension ``.mat``): same as for M-files. + * Excel file (extension ``.xls`` or ``.xlsx``): for each + endogenous and exogenous variable, the file must contain a + column of the same name. NB: Octave only supports the + ``.xlsx`` file extension and must have the `io`_ package + installed (easily done via octave by typing ‘``pkg + install -forge io``’). The first column may contain the + date of each observation. + * CSV files (extension ``.csv``): for each endogenous and + exogenous variable, the file must contain a column of the + same name. The first column may contain the date of each + observation. + + .. option:: first_obs = {INTEGER | DATE} + + The observation number or the date (see :ref:`dates-members`) of + the first observation to be used in the file + + .. option:: first_simulation_period = {INTEGER | DATE} + + The observation number in the file or the date (see + :ref:`dates-members`) at which the simulation (or the forecast) is + starting. This option avoids to have to compute the maximum + number of lags in the model. The observation corresponding to + the first period of simulation doesn’t need to exist in the + file as the only dates necessary for initialization are before + that date. + + .. option:: last_obs = {INTEGER | DATE} + + The observation number or the date (see :ref:`dates-members`) of the + last observation to be used in the file. + + .. option:: nobs = INTEGER + + The number of observations to be used in the file (starting + with first of ``first_obs`` observation). + + .. option:: series = DSERIES NAME + + The name of a DSERIES containing the data (see :ref:`dseries-members`) + + *Example 1* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + steady_state_model; + x = 0; + c = exp(c*x/(1 - d)); + end; + + histval_file(datafile=mydata.csv); + + stoch_simul(order=1,periods=100); + + The initial values for the stochastic simulation are taken + from the two first rows of file ``mydata.csv``. + + *Example 2* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + histval_file(datafile=mydata.csv, + first_obs=10); + + stoch_simul(order=1,periods=100); + + The initial values for the stochastic simulation are taken + from rows 10 and 11 of file ``mydata.csv``. + + + *Example 3* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + histval_file(datafile=mydata.csv, + first_obs=2010Q1); + + stoch_simul(order=1,periods=100); + + The initial values for the stochastic simulation are taken + from observations 2010Q1 and 2010Q2 of file ``mydata.csv``. + + *Example 4* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + histval_file(datafile=mydata.csv, + first_simulation_period=2010Q1) + + stoch_simul(order=1,periods=100); + + The initial values for the stochastic simulation are taken + from observations 2009Q3 and 2009Q4 of file ``mydata.csv``. + + *Example 5* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + histval_file(datafile=mydata.csv, + last_obs = 4); + + stoch_simul(order=1,periods=100); + + The initial values for the stochastic simulation are taken + from the two first rows of file ``mydata.csv``. + + *Example 6* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv, + first_obs = 10, + nobs = 4); + + stoch_simul(order=1,periods=100); + + The initial values for the stochastic simulation are taken + from rows 10 and 11 of file ``mydata.csv``. + + *Example 7* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv, + first_obs=10); + + histval_file(datafile=myotherdata.csv); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + + Historical initial values for the simulation are taken from + the two first rows of file ``myotherdata.csv``. + + Terminal values and guess values for the simulation are taken + from file ``mydata.csv`` starting with the 12th observation in + the file. There must be at least 212 observations in the file. .. _shocks-exo: diff --git a/matlab/global_initialization.m b/matlab/global_initialization.m index 1b35a37e50..8f5f909d55 100644 --- a/matlab/global_initialization.m +++ b/matlab/global_initialization.m @@ -92,6 +92,7 @@ oo_.dr = []; oo_.exo_steady_state = []; oo_.exo_det_steady_state = []; oo_.exo_det_simul = []; +oo_.initval_series = dseries(); oo_.gui.ran_estimation = false; oo_.gui.ran_stoch_simul = false; diff --git a/matlab/histvalf.m b/matlab/histvalf.m index f1f9fb0983..f15e72511e 100644 --- a/matlab/histvalf.m +++ b/matlab/histvalf.m @@ -1,5 +1,5 @@ -function histvalf(fname) -%function histvalf(fname) +function [endo_histval, exo_histval, exo_det_histval] = histvalf(M, options) +%function [endo_histval, exo_histval, exo_det_histval] = histvalf(M, options) % Sets initial values for simulation using values contained in `fname`, a % file possibly created by a call to `smoother2histval` % @@ -13,7 +13,7 @@ function histvalf(fname) % none -% Copyright (C) 2014-2019 Dynare Team +% Copyright (C) 2014-2020 Dynare Team % % This file is part of Dynare. % @@ -30,72 +30,41 @@ function histvalf(fname) % You should have received a copy of the GNU General Public License % along with Dynare. If not, see <http://www.gnu.org/licenses/>. -global M_ oo_ ex0_ - -if ~exist(fname, 'file') - error(['Can''t find datafile: ' fname ]); +if ~isfield(options, 'nobs') || isempty(options.nobs) + options.nobs = M.orig_maximum_lag; end -M_.endo_histval = repmat(oo_.steady_state, 1, M_.maximum_endo_lag); - -% Also fill in oo_.exo_simul: necessary if we are in deterministic context, -% since aux vars for lagged exo are not created in this case -if isempty(oo_.exo_simul) - if isempty(ex0_) - oo_.exo_simul = repmat(oo_.exo_steady_state',M_.maximum_lag,1); +if ~isfield(options, 'first_obs') || isempty(options.first_obs) + if isfield(options, 'first_simulation_period') + options.first_obs = options.first_simulation_period ... + - options.nobs; else - oo_.exo_simul = repmat(ex0_',M_.maximum_lag,1); + options.first_obs = 1; + end +elseif isfield(options, 'first_simulation_period') + nobs = options.first_simulation_period - opions_.first_obs; + if options.nobs ~= nobs + error(sprintf(['HISTVALF: first_obs = %d and', ... + ' first_simulation_period = %d', ... + ' don''t provide for the number of' ... + ' lags in the model.'], ... + options.first_obs, ... + options.first_simulation_period)) end end -S = load(fname); - -outvars = fieldnames(S); +series = histvalf_initvalf('HISTVAL', M, options); +% capture the difference between stochastic and +% perfect foresight setup +k = M.orig_maximum_lag - M.maximum_lag + 1; +endo_histval = series{M.endo_names{:}}.data(k:end, :)'; -for i = 1:length(outvars) - ov_ = outvars{i}; - if ov_(end) == '_' - ov = ov_(1:end-1); - j = strmatch(ov, M_.endo_names, 'exact'); - if isempty(j) - warning(['smoother2histval: output variable ' ov ' does not exist.']) - end - else - % Lagged endogenous or exogenous, search through aux vars - undidx = find(ov_ == '_', 1, 'last'); % Index of last underscore in name - ov = ov_(1:(undidx-1)); - lead_lag = ov_((undidx+1):end); - lead_lag = regexprep(lead_lag,'l','-'); - lead_lag = str2num(lead_lag); - j = []; - for i = 1:length(M_.aux_vars) - if M_.aux_vars(i).type ~= 1 && M_.aux_vars(i).type ~= 3 - continue - end - if M_.aux_vars(i).type == 1 - % Endogenous - orig_var = M_.endo_names{M_.aux_vars(i).orig_index}; - else - % Exogenous - orig_var = M_.exo_names{M_.aux_vars(i).orig_index}; - end - if strcmp(orig_var, ov) && M_.aux_vars(i).orig_lead_lag == lead_lag - j = M_.aux_vars(i).endo_index; - end - end - if isempty(j) - % There is no aux var corresponding to (orig_var, lead_lag). - % If this is an exogenous variable, then it means we should put - % the value in oo_.exo_simul (we are probably in deterministic - % context). - k = strmatch(ov, M_.exo_names); - if isempty(k) - warning(['smoother2histval: output variable ' ov '(' lead_lag ') does not exist.']) - else - oo_.exo_simul((M_.maximum_lag-M_.maximum_endo_lag+1):M_.maximum_lag, k) = S.(ov_); - end - continue - end - end - M_.endo_histval(j, :) = S.(ov_); +exo_histval = []; +if M.exo_nbr + exo_histval = series{M.exo_names{:}}.data(k:end, :)'; end +exo_det_histval = []; +if M.exo_det_nbr + exo_det_histval = series{M.exo_names{:}}.data(k:end, :)'; +end + diff --git a/matlab/histvalf_initvalf.m b/matlab/histvalf_initvalf.m new file mode 100644 index 0000000000..e65779c493 --- /dev/null +++ b/matlab/histvalf_initvalf.m @@ -0,0 +1,223 @@ +function series = histvalf_initvalf(caller, M, options) +% function initvalf(M) +% +% handles options for histvalf_initvalf() and initvalf() +% +% INPUTS +% caller: string, name of calling function +% M: model structure +% options: options specific to initivalf +% +% OUTPUTS +% series: dseries containing selected data from a file or a dseries +% + +% Copyright (C) 2003-2020 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. + + +% dseries +if isfield(options, 'series') + series = options.series; + dseries_ispresent = true; +else + dseries_ispresent = false; +end + +% file +datafile = ''; +if isfield(options, 'filename') + warning([caller, '_FILE: option FILENAME is deprecated, please use', ... + ' option DATAFILE']) + if dseries_ispresent + error([caller, '_FILE: you can''t use option FILENAME and option SERIES', ... + ' at the same time']) + end + if isfield(options, 'datafile') + error([caller, '_FILE: you can''t use option DATAFILE and option FILENAME', ... + ' at the same time']) + end + datafile = options.filename; +end + +if isfield(options, 'datafile') + if dseries_ispresent + error([caller, '_FILE: you can''t use option DATAFILE and option SERIES', ... + ' at the same time']) + end + datafile = options.datafile; +end + +if datafile + [directory,basename,extension] = fileparts(datafile); + % Auto-detect extension if not provided + if isempty(extension) + if exist([basename '.m'],'file') + extension = '.m'; + elseif exist([basename '.mat'],'file') + extension = '.mat'; + elseif exist([basename '.xls'],'file') + extension = '.xls'; + elseif exist([basename '.xlsx'],'file') + extension = '.xlsx'; + else + error([caller, '_FILE: Can''t find datafile: ' basename '.{m,mat,xls,xlsx}']); + end + end + + fullname = [basename extension]; + series = dseries(fullname); +end + +% checking that all variable are present +error_flag = false; +for i = 1:M.orig_endo_nbr + if ~series.exist(M.endo_names{i}) + disp(sprintf('%s_FILE: endogenous variable %s is missing', ... + caller, M.endo_names{i})) + error_flag = true; + end +end + +for i = 1:M.exo_nbr + if ~series.exist(M.exo_names{i}) + disp(sprintf('%s_FILE: exogenous variable %s is missing', ... + caller, M.exo_names{i})) + error_flag = true; + end +end + +for i = 1:M.exo_det_nbr + if ~series.exist(M.exo_det_names{i}) + disp(sprintf('%s_FILE: exo_det variable %s is missing', ... + caller, M.exo_det_names{i})) + error_flag = true; + end +end + +if error_flag + error([caller, '_FILE: some variables are missing']) +end + +if exist(sprintf('+%s/dynamic_set_auxiliary_series', M.fname), 'file') + series = feval(sprintf('%s.dynamic_set_auxiliary_series', M.fname), series, M.params); +end + +% selecting observations +if isfield(options, 'nobs') + nobs = options.nobs; +else + nobs = 0; +end + +periods = series.dates; +nobs0 = series.nobs; + +first_obs_ispresent = false; +last_obs_ispresent = false; +if isfield(options, 'first_obs') + i = options.first_obs; + if i < 1 + error([caller, '_FILE: the first requested period is before available', ... + ' data.']) + elseif i > nobs0 + error([caller, '_FILE: the first requested period is after available', ... + ' data.']) + end + first_obs = periods(i); + if nobs > 0 + last_obs = first_obs + nobs - 1; + last_obs_ispresent = true; + end + first_obs_ispresent = true; +elseif isfield(options, 'firstobs') + first_obs = options.firstobs; + if nobs > 0 + last_obs = first_obs + nobs - 1; + last_obs_ispresent = true; + end + first_obs_ispresent = true; +end + +if last_obs_ispresent + if isfield(options, 'last_obs') + i = options.last_obs; + if i < 1 + error([caller, '_FILE: the last requested period is before available', ... + ' data.']) + elseif i > nobs0 + error([caller, '_FILE: the last requested period is after available', ... + ' data.']) + end + if last_obs ~= periods(i) + error([caller, '_FILE: FIST_OBS, LAST_OBS and NOBS contain', ... + ' inconsistent information. Use only two of these', ... + ' options.']) + end + elseif isfield(options, 'lastobs') + if last_obs ~= options.lastobs + error([caller, '_FILE: FIST_OBS, LAST_OBS and NOBS contain', ... + ' inconsistent information. Use only two of these', ... + ' options.']) + end + end +elseif isfield(options, 'last_obs') + i = options.last_obs; + if i < 1 + error([caller, '_FILE: the last requested period is before available', ... + ' data.']) + elseif i > nobs0 + error([caller, '_FILE: the last requested period is after available', ... + ' data.']) + end + last_obs = periods(i); + if nobs > 0 + first_obs = last_obs - nobs + 1; + first_obs_ispresent = true; + end + last_obs_ispresent = true; +elseif isfield(options, 'lastobs') + last_obs = options.lastobs; + if nobs > 0 + first_obs = last_obs - nobs + 1; + first_obs_ispresent = true; + end + last_obs_ispresent = true; +end + +if ~first_obs_ispresent + first_obs = periods(1); +end + +if ~last_obs_ispresent + if nobs > 0 + last_obs = first_obs + nobs - 1; + else + last_obs = periods(end); + end +end + +if first_obs < series.init + error([caller, '_FILE: the first requested period is before available', ... + ' data.']) +elseif last_obs > series.last + error([caller, '_FILE: the last requested period is after available', ... + ' data.']) +else + series = series(first_obs:last_obs); +end + diff --git a/matlab/initvalf.m b/matlab/initvalf.m index f301e045fd..17a5ff54a4 100644 --- a/matlab/initvalf.m +++ b/matlab/initvalf.m @@ -1,19 +1,18 @@ -function initvalf(fname_) -% function initvalf(fname_) +function series = initvalf(M, options) +% function initvalf(M) % -% Reads an initial path from the 'fname_' file for exogenous and endogenous variables +% handles options for histvalf() and initvalf() % % INPUTS -% fname_: name of the function or file containing the data +% caller: string, name of calling function +% M: model structure +% options: options specific to initivalf % % OUTPUTS -% none +% series: dseries containing selected data from a file or a dseries % -% SPECIAL REQUIREMENTS -% All variables local to this function have an underscore appended to -% their name, to minimize clashes with model variables loaded by this function. -% Copyright (C) 2003-2018 Dynare Team +% Copyright (C) 2003-2020 Dynare Team % % This file is part of Dynare. % @@ -30,81 +29,6 @@ function initvalf(fname_) % You should have received a copy of the GNU General Public License % along with Dynare. If not, see <http://www.gnu.org/licenses/>. -global M_ oo_ options_ +series = histvalf_initvalf('INITVALF', M, options); -series_ = 1; -[directory,basename,extension] = fileparts(fname_); - -% Auto-detect extension if not provided -if isempty(extension) - if exist([basename '.m'],'file') - extension = '.m'; - elseif exist([basename '.mat'],'file') - extension = '.mat'; - elseif exist([basename '.xls'],'file') - extension = '.xls'; - elseif exist([basename '.xlsx'],'file') - extension = '.xlsx'; - else - error(['Can''t find datafile: ' basename '.{m,mat,xls,xlsx}']); - end -end - -fullname = [basename extension]; - -if ~exist(fullname) - error(['Can''t find datafile: ' fullname ]); -end - -switch (extension) - case '.m' - eval(basename); - case '.mat' - load(basename); - case { '.xls', '.xlsx' } - [data_,names_v_]=xlsread(fullname); % Octave needs the extension explicitly - series_=0; - otherwise - error(['Unsupported extension for datafile: ' extension]) -end - -options_.initval_file = true; -oo_.endo_simul = []; -oo_.exo_simul = []; - -for i_=1:length(M_.endo_names) - if series_ == 1 - x_ = eval(M_.endo_names{i_}); - if size(x_,2)>size(x_,1) %oo_.endo_simul must be collection of row vectors - oo_.endo_simul = [oo_.endo_simul; x_]; - else %transpose if column vector - oo_.endo_simul = [oo_.endo_simul; x_']; - end - else - k_ = strmatch(M_.endo_names{i_}, names_v_, 'exact'); - if isempty(k_) - error(['INITVAL_FILE: ' M_.endo_names{i_} ' not found']) - end - x_ = data_(:,k_); - oo_.endo_simul = [oo_.endo_simul; x_']; - end -end - -for i_=1:length(M_.exo_names) - if series_ == 1 - x_ = eval(M_.exo_names{i_}); - if size(x_,2)>size(x_,1) %oo_.endo_simul must be collection of row vectors - oo_.exo_simul = [oo_.exo_simul x_']; - else %if column vector - oo_.exo_simul = [oo_.exo_simul x_]; - end - else - k_ = strmatch(M_.exo_names{i_}, names_v_, 'exact'); - if isempty(k_) - error(['INITVAL_FILE: ' M_.exo_names{i_} ' not found']) - end - x_ = data_(:,k_); - oo_.exo_simul = [oo_.exo_simul x_]; - end -end diff --git a/matlab/perfect-foresight-models/make_ex_.m b/matlab/perfect-foresight-models/make_ex_.m index 4f72590484..909ba238db 100644 --- a/matlab/perfect-foresight-models/make_ex_.m +++ b/matlab/perfect-foresight-models/make_ex_.m @@ -41,17 +41,33 @@ if M_.exo_det_nbr > 1 && isempty(oo_.exo_det_steady_state) end % Initialize oo_.exo_simul -if isempty(M_.exo_histval) - if isempty(ex0_) - oo_.exo_simul = repmat(oo_.exo_steady_state',M_.maximum_lag+options_.periods+M_.maximum_lead,1); +if isempty(oo_.initval_series) + if isempty(M_.exo_histval) + if isempty(ex0_) + oo_.exo_simul = repmat(oo_.exo_steady_state',M_.maximum_lag+options_.periods+M_.maximum_lead,1); + else + oo_.exo_simul = [ repmat(ex0_',M_.maximum_lag,1) ; repmat(oo_.exo_steady_state',options_.periods+M_.maximum_lead,1) ]; + end else - oo_.exo_simul = [ repmat(ex0_',M_.maximum_lag,1) ; repmat(oo_.exo_steady_state',options_.periods+M_.maximum_lead,1) ]; + if isempty(ex0_) + oo_.exo_simul = [M_.exo_histval'; repmat(oo_.exo_steady_state',options_.periods+M_.maximum_lead,1)]; + else + error('histval and endval cannot be used simultaneously') + end end -else - if isempty(ex0_) - oo_.exo_simul = [M_.exo_histval'; repmat(oo_.exo_steady_state',options_.periods+M_.maximum_lead,1)]; - else - error('histval and endval cannot be used simultaneously') +elseif M_.exo_nbr > 0 + x = oo_.initval_series{M_.exo_names{:}}.data; + oo_.exo_simul = x(1:M_.maximum_lag + options_.periods + M_.maximum_lead,:); + if ~isempty(M_.exo_histval) + oo_.exo_simul(1:M_.maximum_lag, :) ... + = M_.exo_histval(:, 1:M_.maximum_lag)'; + end +elseif M_.exo_det_nbr > 0 + x_det = oo_.initval_series{M_.exo_det_names{:}}.data; + oo_.exo_det_simul = x_det(1:M_.maximum_lag + options_.periods + M_.maximum_lead,:); + if ~isempty(M_.exo_det_histval) + oo_.exo_det_simul(1:M_.maximum_lag, :) ... + = M_.exo_det_histval(:, 1:M_.maximum_lag)'; end end diff --git a/matlab/perfect-foresight-models/make_y_.m b/matlab/perfect-foresight-models/make_y_.m index abd48a84f3..d36dd746ca 100644 --- a/matlab/perfect-foresight-models/make_y_.m +++ b/matlab/perfect-foresight-models/make_y_.m @@ -45,18 +45,31 @@ if isempty(oo_.steady_state) oo_.steady_state = zeros(M_.endo_nbr,1); end -if isempty(M_.endo_histval) - if isempty(ys0_) - oo_.endo_simul = repmat(oo_.steady_state, 1, M_.maximum_lag+options_.periods+M_.maximum_lead); +if isempty(oo_.initval_series) + if isempty(M_.endo_histval) + if isempty(ys0_) + oo_.endo_simul = repmat(oo_.steady_state, 1, M_.maximum_lag+options_.periods+M_.maximum_lead); + else + oo_.endo_simul = [repmat(ys0_, 1, M_.maximum_lag) repmat(oo_.steady_state, 1,options_.periods+M_.maximum_lead)]; + end else - oo_.endo_simul = [repmat(ys0_, 1, M_.maximum_lag) repmat(oo_.steady_state, 1,options_.periods+M_.maximum_lead)]; + if ~isempty(ys0_) + error('histval and endval cannot be used simultaneously') + end + % the first NaNs take care of the case where there are lags > 1 on + % exogenous variables + oo_.endo_simul = [M_.endo_histval ... + repmat(oo_.steady_state, 1, options_.periods+M_.maximum_lead)]; end else - if ~isempty(ys0_) - error('histval and endval cannot be used simultaneously') + y = oo_.initval_series{M_.endo_names{:}}.data; + oo_.endo_simul = y(1:M_.maximum_lag + options_.periods + ... + M_.maximum_lead, :)'; + if ~isempty(M_.endo_histval) + if ~isempty(ys0_) + error('histval and endval cannot be used simultaneously') + end + oo_.endo_simul(:,1:M_.maximum_lag) ... + = M_.endo_histval(:, 1:M_.maximum_lag); end - % the first NaNs take care of the case where there are lags > 1 on - % exogenous variables - oo_.endo_simul = [M_.endo_histval ... - repmat(oo_.steady_state, 1, options_.periods+M_.maximum_lead)]; -end +end \ No newline at end of file diff --git a/matlab/perfect-foresight-models/perfect_foresight_setup.m b/matlab/perfect-foresight-models/perfect_foresight_setup.m index 45f6f2789d..98d8e12fc2 100644 --- a/matlab/perfect-foresight-models/perfect_foresight_setup.m +++ b/matlab/perfect-foresight-models/perfect_foresight_setup.m @@ -64,7 +64,6 @@ if ~isempty(M_.det_shocks) && options_.periods<max([M_.det_shocks.periods]) error('PERFECT_FORESIGHT_SETUP: Please check the declaration of the shocks or increase the value of the periods option.') end -if ~options_.initval_file - oo_ = make_ex_(M_,options_,oo_); - oo_ = make_y_(M_,options_,oo_); -end +oo_ = make_ex_(M_,options_,oo_); +oo_ = make_y_(M_,options_,oo_); + diff --git a/matlab/perfect-foresight-models/sim1.m b/matlab/perfect-foresight-models/sim1.m index 3bd956c914..d37afbf7e2 100644 --- a/matlab/perfect-foresight-models/sim1.m +++ b/matlab/perfect-foresight-models/sim1.m @@ -119,7 +119,9 @@ if options.endogenous_terminal_period end if stop - if any(any(isnan(endogenousvariables))) || any(any(isinf(endogenousvariables))) + % initial or terminal observations may contain + % harmless NaN or Inf. We test only values computed above + if any(any(isnan(y))) || any(any(isinf(y))) info.status = false;% NaN or Inf occurred info.error = err; info.iterations = iter; diff --git a/matlab/smoother2histval.m b/matlab/smoother2histval.m index 6e1eb2c437..3ef7e438ea 100644 --- a/matlab/smoother2histval.m +++ b/matlab/smoother2histval.m @@ -163,13 +163,15 @@ end % Initialize outputs if ~isfield(opts, 'outfile') % Output to M_.endo_histval - M_.endo_histval = repmat(oo_.steady_state, 1, M_.maximum_endo_lag); + M_.endo_histval = repmat(oo_.steady_state, 1, M_.maximum_lag); else % Output to a file - o = struct(); + o = dseries(); end % Handle all endogenous variables to be copied +data = zeros(M_.orig_maximum_endo_lag, length(invars)); +k = M_.orig_maximum_endo_lag - M_.maximum_endo_lag + 1: M_.orig_maximum_lag for i = 1:length(invars) if isempty(strmatch(invars{i}, M_.endo_names)) % Skip exogenous @@ -177,61 +179,68 @@ for i = 1:length(invars) end s = smoothedvars.(invars{i}); j = strmatch(invars{i}, M_.endo_names, 'exact'); - v = s((period-M_.maximum_endo_lag+1):period);% + steady_state(j); + v = s((period-M_.orig_maximum_endo_lag+1):period);% + steady_state(j); if ~isfield(opts, 'outfile') j = strmatch(outvars{i}, M_.endo_names, 'exact'); if isempty(j) error(['smoother2histval: output variable ' outvars{i} ' does not exist.']) else - M_.endo_histval(j, :) = v; + M_.endo_histval(j, :) = v(k); end else - % When saving to a file, x(-1) is in the variable called "x_" - o.([ outvars{i} '_' ]) = v; + data(:, i) = v'; end end - -% Handle auxiliary variables for lags (both on endogenous and exogenous) -for i = 1:length(M_.aux_vars) - if ~ ismember(M_.endo_names{M_.aux_vars(i).endo_index},invars) - if M_.aux_vars(i).type ~= 1 && M_.aux_vars(i).type ~= 3 - continue - end - if M_.aux_vars(i).type == 1 - % Endogenous - orig_var = M_.endo_names{M_.aux_vars(i).orig_index}; - else - % Exogenous - orig_var = M_.exo_names{M_.aux_vars(i).orig_index}; - end - [m, k] = ismember(orig_var, outvars); - if m - if ~isempty(strmatch(invars{k}, M_.endo_names)) - s = smoothedvars.(invars{k}); - else - s = smoothedshocks.(invars{k}); - end - l = M_.aux_vars(i).orig_lead_lag; - if period-M_.maximum_endo_lag+1+l < 1 - error('The period that you indicated is too small to construct initial conditions') - end - j = M_.aux_vars(i).endo_index; - v = s((period-M_.maximum_endo_lag+1+l):(period+l)); %+steady_state(j); - if ~isfield(opts, 'outfile') - M_.endo_histval(j, :) = v; - else - % When saving to a file, x(-2) is in the variable called "x_l2" - lead_lag = num2str(l); - lead_lag = regexprep(lead_lag, '-', 'l'); - o.([ orig_var '_' lead_lag ]) = v; - end - end - end +if isfield(opts, 'outfile') + o = dseries(data, '1Y', invars); end +% $$$ % Handle auxiliary variables for lags (both on endogenous and exogenous) +% $$$ for i = 1:length(M_.aux_vars) +% $$$ if ~ ismember(M_.endo_names{M_.aux_vars(i).endo_index},invars) +% $$$ if M_.aux_vars(i).type ~= 1 && M_.aux_vars(i).type ~= 3 +% $$$ continue +% $$$ end +% $$$ if M_.aux_vars(i).type == 1 +% $$$ % Endogenous +% $$$ orig_var = M_.endo_names{M_.aux_vars(i).orig_index}; +% $$$ else +% $$$ % Exogenous +% $$$ orig_var = M_.exo_names{M_.aux_vars(i).orig_index}; +% $$$ end +% $$$ [m, k] = ismember(orig_var, outvars); +% $$$ if m +% $$$ if ~isempty(strmatch(invars{k}, M_.endo_names)) +% $$$ s = smoothedvars.(invars{k}); +% $$$ else +% $$$ s = smoothedshocks.(invars{k}); +% $$$ end +% $$$ l = M_.aux_vars(i).orig_lead_lag; +% $$$ if period-M_.maximum_endo_lag+1+l < 1 +% $$$ error('The period that you indicated is too small to construct initial conditions') +% $$$ end +% $$$ j = M_.aux_vars(i).endo_index; +% $$$ v = s((period-M_.maximum_endo_lag+1+l):(period+l)); %+steady_state(j); +% $$$ if ~isfield(opts, 'outfile') +% $$$ M_.endo_histval(j, :) = v; +% $$$ else +% $$$ % When saving to a file, x(-2) is in the variable called "x_l2" +% $$$ lead_lag = num2str(l); +% $$$ lead_lag = regexprep(lead_lag, '-', 'l'); +% $$$ o.([ orig_var '_' lead_lag ]) = v; +% $$$ end +% $$$ end +% $$$ end +% $$$ end + % Finalize output if isfield(opts, 'outfile') - save(opts.outfile, '-struct', 'o') + [dir, fname, ext] = fileparts(opts.outfile); + if ~strcmp(ext,'.mat') && ~isempty(ext) + error(['smoother2hisvtval: if outfile has an extension, it must ' ... + 'be .mat']) + end + o.save([dir fname]); end end diff --git a/preprocessor b/preprocessor index a2bea00fee..d05ffde63e 160000 --- a/preprocessor +++ b/preprocessor @@ -1 +1 @@ -Subproject commit a2bea00fee97dd4cdc2db32690e0d492fda2edfb +Subproject commit d05ffde63ece3fa94882be784e0fdf9aa4ec8982 diff --git a/tests/.gitignore b/tests/.gitignore index 35ff3c844a..501fbc71d0 100644 --- a/tests/.gitignore +++ b/tests/.gitignore @@ -25,6 +25,9 @@ wsOct /run_test_matlab_output.txt /block_bytecode/ls2003_tmp.mod +/histval_initval_file/data.csv +/histval_initval_file/data.xls +/histval_initval_file/data.xlsx /partial_information/PItest3aHc0PCLsimModPiYrVarobsAll_PCL* /partial_information/PItest3aHc0PCLsimModPiYrVarobsCNR_PCL* @@ -67,10 +70,11 @@ wsOct !/gsa/ls2003scr_mode.mat !/gsa/ls2003scr_results.mat !/gsa/morris/nk_est_data.m +!/histval_initval_file/histval_initval_file_unit_tests.m +!/histval_initval_file/ramst_initval_file_data.m !/identification/as2007/as2007_steadystate.m !/identification/as2007/G_QT.mat !/identification/kim/kim2_steadystate.m -!/initval_file/ramst_initval_file_data.m !/internals/tests.m !/k_order_perturbation/run_fs2000kplusplus.m !/kalman/likelihood/compare_kalman_routines.m diff --git a/tests/Makefile.am b/tests/Makefile.am index 39caeb54d2..6cda691222 100644 --- a/tests/Makefile.am +++ b/tests/Makefile.am @@ -104,9 +104,12 @@ MODFILES = \ discretionary_policy/dennis_1.mod \ discretionary_policy/dennis_1_estim.mod \ discretionary_policy/Gali_discretion.mod \ - initval_file/ramst_initval_file.mod \ - initval_file/ramst_datafile.mod \ - ramst_normcdf_and_friends.mod \ + histval_initval_file/ramst_initval_file.mod \ + histval_initval_file/ramst_data.mod \ + histval_initval_file/ramst_datafile.mod \ + histval_initval_file/sim_exo_lead_lag.mod \ + histval_initval_file/sim_exo_lead_lag_initvalf.mod \ + ramst_normcdf_and_friends.mod \ ramst_vec.mod \ example1_varexo_det.mod \ predetermined_variables.mod \ @@ -405,7 +408,8 @@ XFAIL_MODFILES = ramst_xfail.mod \ estimation/tune_mh_jscale/fs2000_1_xfail.mod \ estimation/tune_mh_jscale/fs2000_2_xfail.mod -MFILES = initval_file/ramst_initval_file_data.m +MFILES = histval_initval_file/ramst_initval_file_data.m \ + histval_initval_file_unit_tests.m # Dependencies example1_use_dll.m.trs: example1.m.trs @@ -503,10 +507,15 @@ deterministic_simulations/rbc_det_stack_solve_algo_7_exo_lead.o.trs: determinist deterministic_simulations/rbc_det_stack_solve_algo_7_exo_lag.m.trs: deterministic_simulations/rbc_det.m.trs deterministic_simulations/rbc_det_stack_solve_algo_7_exo_lag.o.trs: deterministic_simulations/rbc_det.o.trs -initval_file/ramst_initval_file.m.trs: initval_file/ramst_initval_file_data.m.tls -initval_file/ramst_initval_file.o.trs: initval_file/ramst_initval_file_data.o.tls -initval_file/ramst_datafile.m.trs: initval_file/ramst_initval_file_data.m.tls -initval_file/ramst_datafile.o.trs: initval_file/ramst_initval_file_data.o.tls +histval_initval_file/ramst_initval_file.m.trs: histval_initval_file/ramst_initval_file_data.m.tls histval_initval_file/ramst_data.m.trs +histval_initval_file/ramst_initval_file.o.trs: histval_initval_file/ramst_initval_file_data.o.tls histval_initval_file/ramst_data.o.trs +histval_initval_file/ramst_datafile.m.trs: histval_initval_file/ramst_initval_file_data.m.tls +histval_initval_file/ramst_datafile.o.trs: histval_initval_file/ramst_initval_file_data.o.tls +histval_initval_file/sim_exo_lead_lag_initvalf.m.trs: histval_initval_file/sim_exo_lead_lag.m.trs +histval_initval_file/sim_exo_lead_lag_initvalf.o.trs: histval_initval_file/sim_exo_lead_lag.o.trs +histval_initval_file_unit_tests.m.trs: histval_initval_file/ramst_data.m.trs +histval_initval_file_unit_tests.o.trs: histval_initval_file/ramst_data.o.trs + identification/rbc_ident/rbc_ident_varexo_only.m.trs: identification/rbc_ident/rbc_ident_std_as_structural_par.m.trs identification/rbc_ident/rbc_ident_varexo_only.o.trs: identification/rbc_ident/rbc_ident_std_as_structural_par.o.trs @@ -782,12 +791,20 @@ o/particle: $(patsubst %.mod, %.o.trs, $(PARTICLEFILES)) # Matlab TRS Files M_TRS_FILES = $(patsubst %.mod, %.m.trs, $(MODFILES)) -M_TRS_FILES += run_block_byte_tests_matlab.m.trs run_reporting_test_matlab.m.trs run_all_unitary_tests.m.trs +M_TRS_FILES += run_block_byte_tests_matlab.m.trs \ + run_reporting_test_matlab.m.trs \ + run_all_unitary_tests.m.trs \ + histval_initval_file_unit_tests.m.trs + M_XFAIL_TRS_FILES = $(patsubst %.mod, %.m.trs, $(XFAIL_MODFILES)) # Octave TRS Files O_TRS_FILES = $(patsubst %.mod, %.o.trs, $(MODFILES)) -O_TRS_FILES += run_block_byte_tests_octave.o.trs run_reporting_test_octave.o.trs run_all_unitary_tests.o.trs +O_TRS_FILES += run_block_byte_tests_octave.o.trs \ + run_reporting_test_octave.o.trs \ + run_all_unitary_tests.o.trs \ + histval_initval_file_unit_tests.o.trs + O_XFAIL_TRS_FILES = $(patsubst %.mod, %.o.trs, $(XFAIL_MODFILES)) # Matlab TLS Files @@ -920,8 +937,12 @@ EXTRA_DIST = \ k_order_perturbation/fs2000k++.mod \ lmmcp/sw-common-header.inc \ lmmcp/sw-common-footer.inc \ - estimation/tune_mh_jscale/fs2000.inc - + estimation/tune_mh_jscale/fs2000.inc \ + histval_initval_file_unit_tests.m \ + histval_initval_file/my_assert.m \ + histval_initval_file/ramst_data.xls \ + histval_initval_file/ramst_data.xlsx \ + histval_initval_file/ramst_initval_file_data.m if ENABLE_MATLAB check-local: check-matlab @@ -1073,7 +1094,7 @@ clean-local: rm -f estimation/test_matrix.mat - rm -f initval_file/ramst_initval_file_data_col_vec_mat.mat initval_file/ramst_initval_file_data_row_vec_mat.mat initval_file/ramst_initval_file_excel.xls + rm -f histval_initval_file/ramst_initval_file_data_col_vec_mat.mat histval_initval_file/ramst_initval_file_data_row_vec_mat.mat histval_initval_file/ramst_initval_file_excel.xls rm -f loglinear/results_exp_histval.mat loglinear/results_exp.mat diff --git a/tests/histval_initval_file/my_assert.m b/tests/histval_initval_file/my_assert.m new file mode 100644 index 0000000000..2ac132e12d --- /dev/null +++ b/tests/histval_initval_file/my_assert.m @@ -0,0 +1,4 @@ +function failed_tests = my_assert(failed_tests, success, test_name) +if ~success + failed_tests = cat(1, test_failed, test_name); +end \ No newline at end of file diff --git a/tests/histval_initval_file/ramst_data.mod b/tests/histval_initval_file/ramst_data.mod new file mode 100644 index 0000000000..c65b9fc816 --- /dev/null +++ b/tests/histval_initval_file/ramst_data.mod @@ -0,0 +1,68 @@ +/* Verify that the “datafile†option of “perfect_foresight_setup†behaves as + “initval_file†(see #1663) */ + +var c k; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + + +model; +c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); +c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); +end; + +initval; +x = 1; +k = ((delt+bet)/(1.0*aa*alph))^(1/(alph-1)); +c = aa*k^alph-delt*k; +end; + +steady; + +shocks; + var x; + periods 2; + values 1.1; +end; + +perfect_foresight_setup(periods=200); +perfect_foresight_solver; + +fh = fopen('ramst_data.m', 'w'); +fprintf(fh, 'INIT__ = ''1Y'';\n'); +fprintf(fh, 'NAMES__ = {''c'', ''k'', ''x''};\n'); +fprintf(fh, 'TEX__ = {''c'', ''k'', ''x''};\n'); +fprintf(fh, 'c = ['); +fprintf(fh, '%f ', oo_.endo_simul(1,:)); +fprintf(fh, '];\n'); +fprintf(fh, 'k = ['); +fprintf(fh, '%f ', oo_.endo_simul(2,:)); +fprintf(fh, '];\n'); +fprintf(fh, 'x = ['); +fprintf(fh, '%f ', oo_.exo_simul); +fprintf(fh, '];\n'); +fclose(fh); + +INIT__ = '1Y'; +NAMES__ = {'c', 'k', 'x'}; +TEX__ = {'c', 'k', 'x'}; +eval('c = oo_.endo_simul(1,:);'); +eval('k = oo_.endo_simul(2,:);'); +eval('x = oo_.exo_simul'';'); +save('ramst_data.mat', 'INIT__', 'NAMES__', ... + 'TEX__', 'c', 'k', 'x'); + +fh = fopen('ramst_data.csv', 'w'); +fprintf(fh, 'c,k,x\n'); +for i = 1:size(oo_.endo_simul, 2); + fprintf(fh, '%f, ', oo_.endo_simul(:, i)); + fprintf(fh, '%f\n', oo_.exo_simul(i)); +end; +fclose(fh); + diff --git a/tests/histval_initval_file/ramst_data.xls b/tests/histval_initval_file/ramst_data.xls new file mode 100644 index 0000000000000000000000000000000000000000..050e2166c0db666245d60a99028e4452c68a394d GIT binary patch literal 19968 zcmeI)33yG{+6VBJNMt}(M5AhqDTXBGc?@C}BGjBF5fPDzh^d4SK_Un-iwJ_m92#>f zsIf)sqpC$|dt20PLs9p(>b~z<>m+&4URv$f=X;*sug9}a&iSA7J8Pf4*LwHLiR8me zWp8iDsd$H(UD~n|?3WjItYop=0&dqb-FIZH2HeK%mlrQym}0p3_vJ6N2cD~KEddA6 z3Ys-EJmxmgY@yjfvxim+T4`uypgBO}&|nC#ve2BMm4o&gG-qh#p}h{R0<<@vRfJXv zT4iWepjCxd4VnwI>d<ifm|AUh|1Y!)|I(Z4%c9_43>=HDEE2v(v#D?dUj0%YMojS? z@G7!+y?B-9|JHN<?!Rac{MNq0$BXZOJ6o8=C9T<!G9TcS7jyp(vt)a$j>9!$UqBnd z#$j#f5*Qxj@_%*dEVd!g0=FR_PBQJ`mIX_L)Pe05=}~drUQ{1=k|%R%1z+%t^w`2v zZ2LlST|-<uz_kTCAk3#CX$*DgEIj|k%oKQijI1p>!T1klfh?SvJql0wvmUK#RhngD zeeE6`85|uLep}SdO!nl33-n^T<hx*w8z%C{ua@K9(mnrWIlijy`TxCnChSuee0%C* z+RtusKNOhf^<I*@za+2!lHAUar&_|CieoSEt7BXV@wIGRN%7Sw&PseO7iS~Bz7}Ww zB0!AY1Q_qJc%p{0a&%zCgc$!(fiZ!}Fh4Ee-*F3DXp9Y9Xu-Z^!|*I!;49uz$pSnZ z<21&xfa9uoYsyL$;92|_obzqjEDJd6+vdY8Vz!>F>O(xw!+GBp&i}S>Ubp=bPW?Z_ zSsvF6*x;3d;8k71@M_8n*fLw@1wG+<A;{Jl8r)D9Tp!@Y5*HP+_&Ac{QyMmK6l^$7 z*Ro<`9pUAE&VG2=d!$cCf04&QV!G7E-3Z$-3m!RcRbL1<aXni+_cd6uR%gt$i))R6 zp%K9oT>1u2cJYmh2#j?14Gx(Y9vEH2wQ&>IPR^_zbN$Wd`2>apySVzqiw@?9YggEq zrs8t1W1V8R>%#4Lk56WMd{WS{Ua{L7SPgh<qoCox+05O--NNKeUoF_1@Y=R4R_sH@ zez3*$78CbTJ+LdfZwb#VXH|3`j)+BKDS4k+;#!Td_r*0HD_cuEn&P<O0D$Lmk>MSb z#WNf!<{7?*d4>nTJi~RQd4}ss^9)Zq<{2Jb^9<La<{1tl^9<Li<{6Gd^9<Lq<{9oQ z^9=W+d4_w?Ji~Rcd4@B}Ji~Red4}s|^9<*Sd4}t1^9<M7<{8d(^9<MF<{7Tb%`;r5 zn`gLgH_vb#Z=T`0-aNx~e(~(N_-;ae|G=2MX93e42cEoVDJDNC7`vEqw(XjSWl-$1 zjxxb#U+KC3aN6v8o-?3~Sitz_V%>s|<Cx{lKJH=Zif>DSg@m&+SNyJ9$4h}Trbxin z!M%L@f}3AokfMYT%V$S6482m%6JNE25NlTB<)PRP9P^x=4C=UG^I55|0&_OiWp9si zmt;Ryq#v9SoGt9UbZFj5DXfLqTEqEt`SVg(6M^%Evx`1A9=aZrqNEUh3(99ioRXp> z5jdMT>+4?NeDkmrHbRViHh-1VaVczwz`4fR%?EthXZxkF6{2m0oPI1%3R@y@CUWN0 z$e}@%eNxy7@vK>$hD{DhVMhecQ_gxV%iEl`TM9gCoZX#Q_Qa-KDeQ^BSq$%d+oh|6 zc1Tf5h+(}}r26cYq7)H0$2rSbFgLk-wiKm>7~`4uM)TcL;HjnPxMKz2Z2j5P%&;v| zlo2AkU-Ufh9a5AbLVn-7?T4&q$2LiUBb2ii?ectAWJ`e~u&58L9-J+$Wjok&gA_Q@ zIU7GIY<20aQsAksNMLQ@%roTjmiy^aILba!8noD%DTN~uSa~>G=6&eIku)jF3Q_M~ z;FyUUrN9$uQ6E^BI2#)pnXqS#6iz}!9-F>*WQG(@L}1l|(SG>hcV|~gQBDZ#B061) zaztQF<1F}d=i@I{NP(+a&f;%$U9~Yyir0w1ipQDnwNHN<xLgWnA!@g6Vfk>46wX9o zJ>+cMuE4pcQ>7>`#G%AtYlg3uqC62;En$>A9p1M8QYl^+;=zX49k*9X@j4M$OF8>u z_qmEsQlzLLME%GcBWJ9Tq5=_EX*qKWAMs+>VkzDbBIv-S`c0Qh@dgoChdHa2lX)X{ zkrWk$nA2^~_~)roR3rkcG-r<1O}7Lrl%kRlo%hDs-B>C`B_gnfb9VNhEBg&fmZGu{ z3r?=~zpzA#%0ys==d9Dipbz{ONKr+Ifh;-X!xSm15P|g{j(MenB_<|GQB?>B#}7XG za<LRuiNLc1XLTRdy0<1#ifTeU44Ja8q!QH%1+HCOKomcpU{+m|)zD-$HCZi9hMz&1 z_W?^oLsmzV)zxJ6G+BL3=BCNqHJOJdYoN&*YO+R}tg$9*qRE<SvSymBxh89&$y#bM z{2tzX-?!FeZ8TY1P1a76wbx`FG+9Tp3|9g!ka3nYaohAu^W}(j5hM2dh1FTBMRJV0 z6pmOFI666tbGx2XR*C9Dys#OvebPcHsuO`@m$M(LU5@gfC;Pzf7&u$m=Ipn}lcm5< zHHs=aj%?1p^j*IH;9Mzc3ehmB>az+;)FcAOJ!d}e)tFmFiCRK*7;a-TZGr5g77;ir zIBWQC`^(7*vX9zAv~z0M@0%nkY7>EThO;p&YL=A}u0qs$<k!nj30ER;Msa4>|J{s) zIkJyBLWKK!HoTE2`=~<%&Nt4iq7!R!CF%;n*QHMmQlc&qI2$?ZcQ4@i`gqw#Jt1tq z^IZ36zU-qO5ja;lySLw~K`SNd3z0G>wr!#k_>E`L@xYl3)i&T%_Q$hjA8ta_IK>iO zmB4ROiv-Sd&hCHxMbtDU+=ZBy-)_|Td2*}ViNGqrncvCM3+pK1A;f_5VYOqF@E`(f z1ZO|bd;Hn8S#qly2vHArpArp-zzV|I$Ghx87b?+Eh*lY!-9DKsx2ho#SYJ5%re&XI zJ(Or9#E}n2Y+a&6BO<W+aORrbr?HI^jfIHbV)t1;B^ncfwFy>LmZbvD$I186M2JD7 zVmzIcXhH;5F3#M&=H)L@qNxyHxy@SkNrHSIO^Lv|#@XYD<Gy}MG!vrg^M=<pD$$Gx zta_Z?vhHQ?u0(Soj<_8O7^g&YBCsZcSd#PU&okxwXd%SUTlV;NQlbSBSTQ*(UGmzE zkCbRBL_o^pP-i7t5`py;=6U32KV~V>N{AX2Z+3bxN51n`L}0b$>;MjSC0Yx?-n?<} zloG9pz*-Dz*2GKe0+eVY#7~}&E^bhw4G~zW;k&r*w|Pe;+6v+AII&us5^agVIu3O= zrsGx@CE5wmX78i-1C(e-1Xg*@`c!i0T|$ZWLL3fl+P8}m?TNs10Ib9IAF;VRLmrO~ zLiBeYaIcOM9f-g)1ZU;C_PBXbiH>rszS-K!L5Yrq0@o^@Ak5EioitfzP1Z$|d1<n) znyi~9>#oUqXtJJ~td}P1t;zamGH*@RSCjSAWImd#zb5n5WCJwWKuz|hCL5&525Yh* znrx^h8>Y#IYqAlV%ukcOrOEuwGF**#LdKaxU$0~P)rj>JBer?LrixG1=OdnlBNhdY zPR^?Ju68&>iB3Yyu6A|L=Sp-U0>>_A-P&EhkgP;!A<|b=J9u7+&P3qI<}A`9_0AL} zx(Ly8^b>~zN^~It$317eoZKBkl<<;UwP;XorV?I6;H=>6+4yGN2Px522wRuj#8f4^ z5`lAuGw<FzlDjF<O^DTQ@nhqa=tcz2DA=m>)LSi;=q|+MjJ{K2l;}<b&Nt2~hTm^j zUx^+<RLl4&dbAQfh``y%+1%Eh)>c-crw~i(Ck-B|L{B1cuEMJ7r%6s_mFOkJ0-tbe zZzXyWfis!2<fA(ht(E94gpWm|^iE3jCIaU<ypL!7%lxE1sp})e@V5@#YN13QBCrZ@ z_Rh}H>mDlMEyVYOR@`-0!kY-J5%B3&&@_*`O7s;XvGn#SHI?W~1Xd7OjZ{d<yQM@w zA@HM*ic0h&0_zKBt4_p^zNUna5KE@lPH|GghX|}bob?Ew%s*73zYwuQqORC0(Vqyc zO)wIj!w#NR!dHl#+cWY@DB(*4Rxa3AtuIELP-1`(SuI+XeXc$S9Y6%uHTZ1AuW`+z zN(>ZY)UdUupDHns2&{UrMuG)Vt`ctw@m24v+XYJCPbG@htXLD_`;@97YxXEHNQk<n z{QbXGVh|BnF*!SYwDpMXN(>gF@v38;zgA)}5m--QBwm?Tf2$Hhg!tvrxuiQv3?Txm zEoc4@@}6x}VyF<__^GH8Ly5pz%vlpFb|zhkVM4fgHTmijC591!l^VY5sN8w^8YPAc zF|kd`lPgLLCj#p@e2%p9hp3fGjF4N!?R$Ns#0Vm=%EK`~)x1Nh5`IEtomhY8f)aj2 z;5h)+#e-qIEAf^Pa|iZ6dR~dQh`=)hXVc*abc>Ym7h=oRl!IrKz#qBEV~*>W01)Qu zmq1N6Qj-N~vQe5WSd)#`WFeYtj3x`!WMeg1m?jI?WD%MyQj<k#vT>Shye5m*WD_)5 zj3%3?$tG#C$(n46CY!3s-qvK(G}&}b7OTl-XtJ4R8LmbGAmeP<lS7{-sSz6>Mr@Df z4}N@4jo5&~5sLyxCugnZh2_puB2WmoIai0AP$G~B9J`#kq$Z~&C^1q9pA&sPJEp`) zB5-8GPo389jE`3$NQh^*KF`QgB8Uha_wfDYwu@tDDS<x`hR>$qw0}g2QAFUZ;Oxf! z@B7bGB3Ov`pH`1Lq(m?gIA=IJeZsMItP-PzXnE(Y)d!RqO$5#;sLwq%xKCFiM2JoA zuRWQoL<kW$-#E)0c%t0fN{kU=>9WU--ce!<5jY#+4Ew3C%~T~qg_z~%oxWFzP$F=y zayI+x3ExdpVyqB3&doe>lo(3{&ScIeg<E|wQHd}iYUX9#+^s|y5jf8|3wyNeYK#)$ zLVP@6`|e#zgcE^PfU|%pwa-mZB0`A7`#WdtR3d^1tPz|I{3Z8jv=Wg*%ox{U;tnMu ziNFd1YYY5AfD%zcOn7>6%yuQBh`{>7SqJ-To5m?IPKfNVf5vW8VjK}zec<eu60$N% ziSa^we!Em^wi4rsz}f_#*pz>k6sbhC5YB_@XJsi7O$1ghDkcb#eE8#ATa}nV1lBdq zDy7Yz5uy5s5u&R@*_I{|Lj+bm_?bwJH=@Ipm?*?AfxQ=RQGHA#0&5}_lY}^soAAwM zB_<Jp6%)?;S=qs1s*lM+jI+z{XcCi&z<Nr>6d}g;nSUr#^)ZDAthSu}%cITEv8s=$ zLX2AM)6^uU5`ndtinoREzg%JGCe_E=L|~=n?7MyE`-G}KrU|juDyoM`Od|s8I2F@{ z__)QXFE^?_rW1ixo{Cr@oI)$jG>KRu@EibZq}Ibd$EdBEAw=J`<13oP3?lFhLB&iV zk}jOd-JrH=W}(3KOB@LE^~)?xHd~X$YqB|-EJ2ga)nxND*?diwsL7Hv*#b?LtjQK? zvPGI~u_jB=WJ@&JQcaes$(Cud<(h1TCR?e=R%x=;nrw|GTdT>^G}$^$mafUxn`O8f ziGz%e*f=p_ZNA?gZ5pw0g(DUPj!w?59s9Ovh?*6%gy>w|(!nHV5rJcuirGTscmDc( zhME<#iNKLfMZ6I0;b#vf5l;k;dn)D#aX4X@mr2Ya0%rwhA9S5wXS8}B2|`R+;ZoBi z5{SS#L&aPno*uBey<WYKxkTWMqGFy96RzJ)Gl_Xb;C!QEz7UP?51VEZ^NGOONJXL$ z1^@nFs7WLefpZo9htd0`D+Q}}o+Ly><(%>+kwgT}WGWU2;qFoMNxFLH3y8pZPDQd1 z_uDW3ACpKX0;>QO3x&w;YqQrR77~Fqf{H~#g!oTQF^NS)U<ILKu@J7~zKt}A#YA9z zp&~_yf5gG^P`&dMBCz^Uu|$YXOD?&Y#1bN~Hc_$EAeIt=m5a07{_7k@sUw&w#K?`E z>`i^75`lG%ie*B$?Av#Doq8Y3h`_2x#d3pKP6XCODpm;b`N`U6Ons~%0xKpJD-B{L z5m-;DSS7@|D=Rmf`dCE-R$D4o8^mfNuohFXMu-vru$yD*V+|2lsi|0N5NnCRI!;BJ z5S5-z8)@nzjR>srRID?IbwuDffQod3NGAf%5LB!e;(AH=VYC`0>k9?0Uot?LuU|H3 zvW=Q-lP1g5WSceF7EQKQlVxeLY)!UJlWo^zJ2cr&O}0yu?bc*_G+B-&+pEd;X|i`T zS*|AAugMN*vV)rJkS05<$&P5Uqna#FlfA3Sj+te+8p(i+j@S&th|MS*u_$nKQnA4x zHV}bhmx_%Bv5^QI*;H&2V%6&b)lBnf6A?J>smL^lOd@brP_fw{HWPt!hKel)v4sen zQB-U-h^<86e4`>uh(UEPKR5jk=`12}Hd2vo5ZOfFT%}^0L2M%eXEObN+uIFdI}td~ zsn}r<JBYw4K*dgj*hvJ|2r70N#4aMRf>5#BAa)ah^@WN(LO8efx?wsVdx*g5Lq(23 z<Pd?iiHf}jv6l#}TvY5ch<!w0U8CY1gLsDsta?=B8bmG;SQDw(ZxH*5z=}!50fRU| z1lCh34jRNkBCy(0amXMJ5rMUsio*tRm<X)YR2(sgBSc^wr{btV93=v)JQaBckw*lc z1E_e{Al@Yc&k$4`Gl*k_0@pA3Ak5b<$2HjrO?Fa~y{E}eX|mIr?2INmtI5u3vh!vc zp6T)-qkALYus8Ax_XY}l=Tsawh~q@yexc%oL7X50_Zk%^4dNsbxKF8g&mi6-0{1u- zrwrm05qLbPIBgK8iNK>p#TkP*Lj)d6D$W|jSt9UAQ*q89&Jls*fQs`%6#osS^M&F8 z^MPku7W4oGzt&h_3tugu;qPT~R-&L0+=Ney3+js8uD}r=GrL$ad*RSn!($yRo!I`8 z_#{ufQkN?Ddh)jD0B(lBFK>omkLqH{Eb#Zn@t(aY`}^zvvps-=!}PZ|U_glxh4*b# zUi6m*{=W6!xCboY=$C-$kMGUV)>4fAd~waXRf4bHp+V766QV}PxOANo6ddl-x~0d! zz>&e>;lbipE<1;g9^Fbl{f}M4_>-OfF%Dag71a0=IIeFetbg>ceq$WBFR^8Ab@pAy z>N*`77E62_H{1@ICp4^peV~<sHUwH}XrrK&fi?~r_HggH{M$8n8(+&4n(5+cx&dEb zcDvY93U9t_`>_wps~4`OHK^p6x)QeE{a?GhAhR~hMnF~p8onQFc*a1B+xoH`9xlB6 znScL9^lvtX3Og!xqbA<QjfBf!`0F##ER2m5e}^VahQH(530??a3TqdR;a8#feESaa znHH=I^c(@lxF2l8*jM4?IoLm*XR&X*kOzO|PEYli1@s%vf`8?izy6Rt^e=ms*T4R3 z`6#~s*VGfO*#I^X-hTxAKN<YnKRw~E0F4&M1d|x}Yba5Wy!=vE^^Yr&SAGAuzwrBg uyjU|Y=pjgKL$LS@M89u)TK$3dkMlo9^#12u{oegw{O|Al8C&qb>Hj|us4Tbu literal 0 HcmV?d00001 diff --git a/tests/histval_initval_file/ramst_data.xlsx b/tests/histval_initval_file/ramst_data.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..849953eacbb225829a8e34b0440042e1e9f7d238 GIT binary patch literal 8575 zcmaJ`2|U#8_E(a9%QCW-Y*`wSBuWt?TQtVLn`GY^Ymy~<){#(%%oy7w+c0GfV<}q_ zvTxa!vHSl<_r7)C`@ioqpU;?c<~iH<oagbIbF}Y~o?<4Upr9a;)ezMt`D0N7pUvEC z9NfW|i0|lxE;Z824B^WGk@0@s?^*6xV`?M1)9(g6M&J)Eq|?ODdItD~P#6}xA&*lH zT<?%pd@+0mwi)?SB~sZLX($pMyU*sAlSM~Z;Hb5Sc3kMxQ{$tzYD4xmI&7Rva5_=O zA^z3)e!afw^>OnzoK@l0!`6OJ9Zk$gkF006A_}%fY)AHD^uh^GQ%edKl*7FzO;0Mz zd>)5p$BPk!l);i%My;+px{z1wnl%n!?;Sr)3ZZ_Z(jO778I=z((FmNUTvfPRhCI{E z)1pInnMw-fxI=7$#$3B?--pkFw(=y}_sA(=$R`y)fUspxk^uDo0)`RTVeM?C?dI&_ z4z_Z3v$^Es=-~LgL$g7g;pwuR(xl(`DZZ!Ke96~bvd`!gH1>TR>TL=ttI*inx<)Cb zH2Gd~5ALvh6@}3or1X#Pf0rw)mJmFqcekg)dhakn{<-Km$tM@>U-5$|tow$gzW06i z^;z!^R-rr}bz7kKd%1PoteqO^Xb9|e#M5UT8JjOGlIrqfSHb<HwcvIY<cT!%PqS=@ znxwmdykuI>muCBz&s`%UW2ZT7$ii}9!-%DeBG2ojE#Noh6wMxhWp~{caA6Cx^g(oQ zA4Ucino0LS-5)jIcRgov!KdSf_`5p$S#(7C;}5kSY$`XUkJ#>uz;>-(YLN?!ItlO@ zOiZ#+SH{YIQ)TE%MU?(fYHv`D^;>LvcGnHd%PCL)!L?5QnSRb4GE9Kj(PH)9X(GyE z?a@hsCrC)7{}E+|KT)=DaUp`75wB(6AWqY?yvO`;<Hc9%^GV~C4$&D@L+3eaSi1BK z>5m%p)OHtV9J{x$>6w|^s=od;*NigG*)Z+jTH;U^UJ<sPpeKcMWGzS)NT?ORq2)g9 z7N-7wJQkP7aQ=0$G0T%KQW@T6+BXJVA6vgO4}l(1wW^9raM>aRa(-NVI~c6;O`=~{ zp8<Q?q=h<upHW(HAN+uP)7>nPr>k`36wgN`5yn&b18y`zi?*B;dfz}Fc`V;4tBO90 z$k<U|S*v-nr7=*FXR;Wbm3q)pJxVa~lq>;*{eu<0mG(_I6c!n2I$OLn)nytb!t|Bv z*~T0If-eBo|1L&aV26(b*xdu}VB=22Xi;BFYe<~4c3D@yE{>0%8S&*@bMK>6${61B z8nTE+RndLHG85bFjXfF7o~QK!p5ZJ7f<s^&VSnxCTd%~Z<R7!o?HZC^j?D@+MzpC< zsi#Q#*C2xA8b0asy4NS?N`BW40e_)?R!W;M&GLpd_{kMXV*{fgs*{P32Mq4HcEV$- zuiu?x4XdV6M_+7>xj@OSUhl$AQO~EzRK@IWLEF}=V_5Q8@ssqZ8%h3UWz!|KDf20j z<OfW#Ay+7`2Vc3E^nJGRE9oQ4%+D9b&Yh`tQ$4jgajyfbaQoCm47ngWS8(YTJt1u5 z>Luo8I8WOtzjGRPmSTNwbfmqTAPw49HGMm9PyfN2>fYRE0)nIpLm#jNwV9Igu=e@$ zNs>Cks@sk?8py`N#<_R1Gbh>AnKY@X>t7@%+oO@Bf|lqr-3IR8drhmBKWv<x+HYR$ zsj*z&Iv-IKxfsAdbiyHMrgp*ijnl397t-!icM46v&~1NDiGFpjQ|;nxRJ}b~w8LR9 zt=#2Byytmj60GaoB5TRd_vL%SV(pxhqo51-pj+W(ji|@@f*SK=j{_pqrxzPn@DE<J zhKIhu9A0jGK)A{P9VG1-5D-Zr_0&FF7zt7hO@Enf;y&+RM`K4ppJ?bDLa>6liLZyH zW#G^uY5#ti;2T@^HtwBO@tYDD5s^*|aC1M*>NwRfQ6rD1?_B*{)UpjJUG$%w;X&g< zBm=sYWGc^XmTIn&C@mpn8b*gR(&-aw%p{!BHge3<UEVxBx3D{Fedk(W;^V+DobMNp zJ1^?g4DB>*`Zr$oFbW<rJ-jk77~#FkzWidIrvFv`%Q&IK`5H>5)9E;sFUQpztrf-` z0vvEF;I{nV)l2`YdcB?9>@A(0?TPgpquc5<B+gJv5IHsCC}wKMkwOZMjVBpq$Zsuu zmHWKu1uvN!wtN=neaGNY<W_eGUuV6vGb}SjddARKMO@F81>?ddPXC~Y`nA{Py)^_K z43GH)`S?bU0Yk0th4ID6J;HRo8}ain8$>`NI_e3Irnfs5wWVJP>DcMI^Y#4nA7c9v ziY6&Z31mK{i<?#`rL(X&Bv(v*^T{G-U6GbbmVq?kLTN>^t*DXMz4K!Q_Mav+)}IgD zksXtGcsL)r^>D&QZj|RmQkj*W+oNE1^v0a-7Oh)uY-JK&<eI`Y`sRQ(9tQS{iEZ&1 zPdUnKgQKhc9ueN(B9;x$rw)C$y=WCS?SfXmbAR$E(qZWKjWzsM=Q>6^^k!4Eo(J6X zX4M2ns3e<AQw8I?Ttixl5{F@2xG&Sgx4P+sVTq56lI!(7lsKvKHDhmW8b-0NnR!ln z^#|RUI&J6UxGEA8Ug6OiWTx$z&yu@xU;nwPr6cQ;lhbt(oObj|Vl(eZgUyBHKa(q6 zsZU7_UJJQIVX0v|u-*QoXzMhe8}D_RCncewl64icbx<i)jTsy>zY^?KPkbWNI-PRk z&z7M_S2SQfwhZWo&*x~I1w*`ZR;}Yl@-EVX2l>`F1XbH#Uz%0DzROB`AV{z61b#Q- zE{G}5nbg%Ic;WX=Sx{!gYww(bkKsOW<++jmQ{gcG>)NxmaI>-2^>BOS^ziuhi;25U zRWHtbhmgs;Uz;Z!aW~=8DXmxJ6mtWo)3Xp+thKfG8NA2c5Ym#-cFPtFOt7uzS42Uy z6nr3AEf8(~ghd_M$0nVJ;dkGT1=FC@E>82>CFv`gseMyzEow1`GcxITc3vhoLgGQK z7jqUXRYWb~QF()(%x?s{xaMYC&|2~Zakw6RRxXvEzfn42ZDLZy6%AJq*KD;+@@JG6 zay_803A$`xmL^CH)k1n7Qvd|Q^p7_@`>#-cJ&OH#Qhq&_J=Y-qOAK2+U{NMCsgheo zU#pG2U3{>8qWS)KcjMKB{_>;1OB_a2Hb1))y9d_m?rzRsiJ6aRRHQkL%sv(RvB`^~ zHuzv^aqO&KNA}1MTmHBbo--&c)7Qr!Rj?su{hGlg%ldd(liXG{&4Pi}>X60z;Py4u zo|h*&Sai`wr0<+Wv}@e!k4mftXz9#y{IbM9(NcD}aX***tP^MXLj){AzTvntbz@4N zm+R|=w&IX1ovYrIeP%H3WnXG%$|1CN;Lm-&^|gvLC3Nw~u>VOSGFmG;zF&a2`Ty|| zf$bMEL`>XmZEQT;!N-3t6R(ll3={XEPvuIZ%f;q%=e4TNXioU?ibypYkE$k1X0pqs zA+eu%txLmr*%-<s*B5$dXGH?GG|P1gCdh}f-;;=voC2|b=%3;_a;-26m}}{Ax`vfW zT>t6N$5Rx(xU{m<F=%$P?qGD<!Slt{@I{zB=dSca+*UqD-t?erYQSQD%43Mo)28*q z#n;_SR-?uF(k0D-ii6>4kDHu(AxE7Z;v<d%M^oE7;~t!Q9bSj8YYsx&%jU<OFtRVj zbhlyZY0WO~n3^RVN73@~Zo@lu>z{=5R`B7Rm$zJoiAksXwyW{*&n;c~L-^O-rn<qO zTD3<buIp7t-C991ougSd>Ew4o+_(T&Px$Ie12lCgBTG?V1XYTIyKkZWd#Xg~(`42L zOpZ1;#*a`viz}OGvoCuG(;L@5?lc|ocn^8kC@!02H1CCjg4pZ48V>z%H}{c2J2AM; ziIt7|%02&u)K!xp$r~DO-~4yGm-iM5M(g&g2!x)IuE~aC@2s$co>T7+I;I2VLzPxA z9L+5QxNZJGcP|PNuVq0Q&IZxyKpg$6hp2`4gT$;r$V+q}M_3L0Kzgm2MuH8v?$F|J zb-S-bVbn2@YiXu$ZDqKm!k<0Ntp1)wwZT_)NhSS{EgD}j+$rM@<*UVkb6Kg=I}1}P z(0rV{L&A(0tHA!+QC#};B6fK@=AcAi-*6jVk>PaU)(THc)zK^RH`EG5`HzNsF5wnC z4>FI^N7>_w<qD513_dUKf)7S!X2^VZUSu`Yd#{42T|DQY^N$W?3r7y7eW*BAEV2g( z`Hw37^vi6RhL_$C9g;kh?OJzQr^h87jt*NK60RJuU%jtC*lzt|{XK=qEKXL1Ag)3_ z{WY^<Z8Xd3P`rf`UwW-;9xkY_w}frR4XLN2+FiG+*=JZVc<(_vEsXC-<7Wxcxgbo( z%%I41dM+5qYoO=liackml37t%dlcB>1kV}!jQAi8kLzQZXF!<?l$~cAszB6U`mDpa z@G>>yMv5m(*h}|Xv#rS!5K_{x4n~xHx~&!Zwv)0WhF5`1HQJCZhn1onZ``L`cy4yz zsLmECVX2hJ_wLPQ$7i-td5*{k)>Ahe^|s|1#qL`6w;{@(6nYL{VHBa*ZF&@SJ*q+! z;C@4thZRB~O@Iba{zVZ_my@daZ)}*W@qH+De~**5ao0RE%2&O}04_V`eSG=bNI6R~ zfSW9TQ>m4X?=s4|e>eX2H>}rcDH}g&QE#^Y$vc$ARhK9yJvB@kvFGMMpLjZY!|5Z> znA(S&d8-}TJ})sHO4r96gX-JTND(T1FBHrUxw|x;BcXQMbf(whtP*8$xf-QM0WWGi zgoSE%sud*>nC~s5=7Kg+d!;_*XoTvZc0{%|$!u<E^j|F9x)`jGTv3%kle9rSDGXAP zW#-5BYw~L&*YccL!0&|xA>2a}MC-+8g!HOL9p+b}JJjZld5RMH)Cz~yUKvk$nluS2 z3Z3<Fhc<hKW?S#q8y0i+qP{!7(|>vY3s}3K6~aYt!MBi%=@%j2Y~w-q9!4hwS2#>) z&C>zC?vSu>zeYw%+%$b{{bQ4SmQ8xF=w-Qyj4c$NTo7lL<T2wpl%l!V+3Gb_xY%~P zrmg*3!HK(Xp`Jz%ILo@gvD)y>Hfoh<>P4heZCazsLuUTUey^z#lVk(5&uf#u!w2%Z z>HpH|01f5NR8;L6dY8sNbnAY-y(5%v2y$P|fddEtB@oxes-3iAIF#Jr1$o<rkWxE6 zlC7sQV_nsTo)T_xgIKSg9bpI3WZx^5XkF2U9u{tKN|rY8FN#Yz0hK71&Jh|b_d;>j zKuntzTkVrJu!j?GBTUW^!z8;U3Jna>OC>2a4wYZk<|0B`)mCae)rQs<|DjhDBkzAd z>4#wrBz9Oh4(x-zFaCoS-AH~Mj8n2zg_{Oy3-(jb)3iYHHZeuVyz**?rwPFWESJ1Q z{^BK%WR)8AogArabxJlOs%vAJSD*qS!C&-NzV8+lR&LCqUu10B3~JN<vaW}YBENl| zDC`9>uW>7ih=T%1q|3#{bqT5Ypcj!Jyr%f{8i`0$znvg}iEh^jmzY$Ea%UOjSpPsH zuX7_60U!h8Sl){~>YHH%c9tb?x1A&ItQ9UXRn<i<Mjar9P2@zoUjz7Tp-%24_pYY9 z#Q;?xw7DuXSWIP)6D~1pQo|}&-AYGs;S}#H0Er=cFH+F!C?h1Zj=a}+j2F?cYQd7# zt=10<?B(#pDdf8p)S33=r1=Lt{11&i74L;-KOHbEQWJ&hyrsX8M1wuNR^;>7wn>fs zEv4493Wlb1QRtg;<7E9JJ}4+w+iki-;@_-0MaCR)CO|262z!>r0owLiy?CLAKc%Pn z-IA-+h8r_~i30ol%bjBq#$2P{Ln``+fu*1lJ|#C2G7Im!O{4kh-aRJzQmmE@O+a;- z6+&&&TPo^+bLfNKMDqD27Yxl44Ubp&hG!!x%C=CE+mJjbNyXL=LyZ+A9zv=vz&>8z z<R(%b`=pny?Ghsy_kq$}fGBMUw_6V1YE6^&Uah)$j54ysbjRDdunT}HvfAtEv0dRp zsDTlH{3f!{$kRs|$PgOJ(vK>HSS146`t5!aFNz)AC;G)@SG^*n)H<;?{(Q^C>R*6_ zZVKCvQ=0>J;hO=lUoO}CCQGdjD-n4nat=epfcsHY3y{3b6{U}7p}pObk(S@TeJiqa zfEqB#=VO&yKNyv3_`m;!f*s&Z&S@(E8OL6ekzX1G%Bf?n%jHbsjZhrLzYJ?^AfIIw z8W4F+&}YY2kuQX)7TGt;2RQg<TB9HJ&9K-m8(QvbcY^=nh(g9e_OT-`W+7;0cK}cb zz1S<hk5bDP=e(xm^{k97p~+E%r^Jh<+@!CusQ0pWOagVWQ|8_GD5A5L(DLfa#|e_f zjaG|7&s;g|YwRLS`T$(1I^WHYEdz2z<;GHXisrX>Ke6+JMz)cUew7$IFW`d!8GmYC zK5rm_=tK%C>=OjtOw6j|cuV5(nR4qBuhP+a^lGvm)$B$Lu^pl~iL{&0G6P^t_VywI zF@-$u1}WJ4cHeCb5@1T?EF#Z)K?*+7CK>xAJH8SclX9-+1sJ?H0U?otopc9iOu30v zW0A0wUN{hpZ!U+@WoID0VxLiJJ1oRZqIPQ&4v@f6OWB6JX=4Rcqb+d?Kn*NH#TIBF zw9G<PE6v^~Jc!l~ko<v=f`@^?rkK85;!y@Rt)kSVoL)`hQ9N$M(g8T@D4oSFd@)rY zA_S<fZ^eew(94YgB&MP1g-~?4X}NlFZ@-Nfq)|`@IIG40kZC3b9F#!DA%t#XpdB@L z(o9(F_9SX_1VaF<X9WCpN8qt+`YdO%XB7%L>a<fXr$ZxQ>ZQFoA>!5IC`NCD4Su>j z`)rS>ln`|eHKtmH9Cj81FSl)eaBmn!o<r@<ip#J7qz0m3>J`0cRq^YRvYvIPFwuip zt1DJ*EYkOiEIce?!>O+mHQmTL+f!88WlswT`l}6o6t%j#%-(_UE2#MZ?9z+lKjv_B zARf<k;7{QT{AA5j&Zk3TVfc@?nq(5iK|zI{;`b1XM#HXXKXbhs)s+JQu-NBjJqu1| zKRZQ5xigF#W}k3+(|d}yBRa%rDr(4Kn{&|%!=#wEb(7GInjsK&B8>2%P&m=G$<Mr> zbt^K~doRKJ`x-Z5(^>2lYhFYT7rt&LgSmF0MPNX@dVfuDF{AjcZ^g2&pv`i8nhfHK zZ<nUG_+Fj2&h}E;#F#x>fO-F(S9QpscU|Hag8I=_E;bWHAKO*D1k9cCLK7gPig<g- zh2Y0e4=*dUjY@jjoE89CLk{UMG=s+VcaLNhU~~fW^D=k|>pim)#URz!*K0p;tpv*i zmY_onnjMzRbIG|SB*_!EPwJ5axPJe57leJNm;WG_=B7C6g1#>Y7BTRVdM+d!-&;>r z>zr?dfD2;db$mXlixq0;?97#~SdLJGbJ<2DQSJ}F(C{EOU1f*s@ik+iNezlHJB#^V znOZJW{K8o1MuVcYutgR7!M)-L(0Z)TdH&T*1KQ{DDcc_kZz8|=jW=P1Oz-N-S?96m z1wJPyhDdwCaWy{84pF^I4HU+~^7UNyytIO_IkThGk+b0GH>(PU6Ow)M@4`Nl!#rv3 zfn!1I(>~|>j%9@9f`RyoEOO<!C3I<{!c}C6HNviZee%3ypLoEaK&_G~-hMK4<C7u` zX|Y?T;hTs>KwGKj5(s#^YgtLH<gn0}MHbVJYYOv|j1qH+gipvgcEF9Qu;*&<PwG<Y zeUIyb5*rZL5upd1Dku{EWdJ!vGyowX1>ig!(A1^v!9QqtV8iz-AeMDvK->~{!D*oN z6!>|mW7>D0`<G@UQ8SHrzC8jyijA+|QHKZ?T5JRx$f){GVG-V))E6_t0d;q1&*l<3 zqu{I9_-S~fI&$W`yDtHYNbRD2logKu-oWfu9hOGuqQ3Yl{F5<}3QdD{Q_lfZZ+$Q3 z!EyaYZ*&tA^jHQ+7iu=t<MVO4QfWT`K~;!<Q2~MqJu&S;Em@ok`l3pt=Jw=zjOLoK zDW-S9H>~qmPa}H7@Yoloccp(*nWlH;Z&<>}HZu)k*m9x0QE-*o_yk{|Tz*BRRU4lT zP{bJh5O8R1NttgW{)W0Fkus|-sXwM-!rnmpqu>u~OTPU6*15K1{5R!YTe9|>3aTwR z>GzkO@Y<3y$5f0{KH+N={CRDOfZqo^@+YIaZ)z<fb&%Q~qXM9G#l1Q_4fKuL{$24n z<APMQ&a?-;B)A;ZZx@HC3V(D=y$AI>{H7{E{Z7BBN>IPcUzBqdNY9-}6`&I4ln9n1 z9^k@x?#u4<J@`3p*oYUnaOp3~6b>$2=N8BG`!&8a^#f1W66zzD86^qg9WR$GriTgj zZNI4lLOs>WU*B<U*Q@=eZfq+=t(^F`oXNIA`)?{>TY-A@#JY%_Xzdv@yzFXd$~fsX z)JNY}tPVjKrxt4_#}}`ZY}ol<UTy{%#uleNlD%oJS=<6z5A=Ucw)1$0g*(OcIe40D zN8#SuFFgWgc)zt!)~R25Aaw}uDQdCyUwWzmJ?$Vv1U<rR%wjHi$8sbM{O$^mIIh0o zi{E+^_L`Zk`%Uw}(C{~@Gf{BAy6#>75BpT~_rTqt_0s{bS$2;Nj$|+6jW)O(KSS~2 zY6#%!H}XT|i0uM3+F<_w6KQ_>`?-vGWjrW<s4lDS_=o01rL6jL9MH~qsaJ6TtC97; zd1K6<8~DMWNse86P3XyL-Yba=b0rM9Ag=Be$*Ui1)70#KiR)Q144SC#f&(3fb=W?3 zU2=pV9cVWQAAZ{II8mm?gL@g4GkR*qU~WENKG5BtT>y9Z+54oj{7tPNFt$99nLK`o z^g9o<rK6Nb{%7FA!PEW7^(gj35FLYb&FYnd*%0~fqXAU%m&VHHCRWy+WQT7C?NpL) z7dKds#;s#38U`9#h7MOoicjE-qGfR>uUd%VWMt_kt~hxms(f`W3fkE!IoR=%-qc!f zkacp(B)nY+#4U%_$R4c+ig1R71T7x+;$l)SjWCaLc{_Kmk*rnHW|~!T$JUf+@E1ne zIM!wie738psahSH6YuB=GR<vC9d)iaB24XQxOmDqRE%~pRqhT?FKvfA9qxGt;dt`o z{l5=y=J(Mb4D@L=3{S7@W$ktm_Bty4-8-M9AMI?djl(4@BHQctAL`O9SW6upwZO~h zd#bTMt#i2j>(My;atJEuxY-roe~8FGLqZbS@=qO4CZO46r0DGAVdLas_5ki;<8E@? z=SpfP&K;Eq2a%tQm}_i;8PvX!#qmGLE`0t>@Y$pN_{Eg1<+Fk;NMv_-gucNRzV;#P zCttebgT%s*@JAk+0v_sTx<eUtpfYeHxi=NoSGjDW&}3QWMO!ijiY4CBJK3k3Zb-3S zQC6E^rmys5!C>{*sJ?Fc_%~4Hkj}=3&EC!%Bu(<~dphYF(!vFr;;UL-;}sVC{!N)x z&K%Jsw9qGGyU#dg7!@-A#l(g=*)g{G%_bDbR9HkuqSMql4#$o6DByBwUrm#>EapD8 z?lke4regZ)_w(uJ;JvvEl)CtgQtslW6E|*dU%<ZA6k`vjKGS(2dvofRZb})+hW^DQ z?T8T8bDh@C?9&bJPaHigsi3P|k-DW#yQr=ekBc@6WW#X2;DRD6d-JasSCOu=a|Yr= z=*>s>?r;rHjAS(j$!!diy(9DMzmympzA}MBStXTjsmL50k1ER&VuKBV?ktpyn3@wO znMr=n%Ksb|6KCcBx&D}(|6TCU`6qFf{Ck}RO#Rnn`S0R?&IO4>(%&lx=$8H^{;!eg z-=+VY%MfRWzgHg6aQ}}<;@?I8?93AfH@}zl>0{A9o6~<6{<GIjY~KG~85F<l{=Jp| zcMX5`go!=z-z$RhSi}G5kpErJpT~{ZLH@n6ss0M%zxv64*Yam&5Rc~X7031e9#rjn TWB^JeB$U8Q9!Qih50Uym#*y`^ literal 0 HcmV?d00001 diff --git a/tests/initval_file/ramst_datafile.mod b/tests/histval_initval_file/ramst_datafile.mod similarity index 100% rename from tests/initval_file/ramst_datafile.mod rename to tests/histval_initval_file/ramst_datafile.mod diff --git a/tests/histval_initval_file/ramst_histval_file.mod b/tests/histval_initval_file/ramst_histval_file.mod new file mode 100644 index 0000000000..8971ba04e0 --- /dev/null +++ b/tests/histval_initval_file/ramst_histval_file.mod @@ -0,0 +1,96 @@ +/* Test for the histval_file() command. This file needs ramst_histval_data.m. */ + +var c k; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + + +model; +c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); +c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); +end; + +initval; +x = 1; +k = ((delt+bet)/(1.0*aa*alph))^(1/(alph-1)); +c = aa*k^alph-delt*k; +end; + +steady; + +histval_file(datafile = 'ramst_histval_data.m'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(filename = ramst_initval_file_data_row_vec_mat); +perfect_foresight_setup(periods=200); +if oo_.exo_simul(2) ~= 1.2 + error('initval_file problem with exogenous variable'); +end +if oo_.endo_simul(2, 2) ~= 13 + error('initval_file option problem with endogenous variable'); +end +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end + +initval_file(datafile = 'ramst_data.m'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(datafile = 'ramst_data.mat'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(datafile = 'ramst_data.csv'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(datafile = 'ramst_data.xlsx'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +if ispc; + initval_file(datafile = 'ramst_data.cls'); + perfect_foresight_setup(periods = 200); + perfect_foresight_solver; + oo_.exo_simul = []; + oo_.endo_simul = []; + + if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') + end; +end; + diff --git a/tests/histval_initval_file/ramst_initval_file.mod b/tests/histval_initval_file/ramst_initval_file.mod new file mode 100644 index 0000000000..8e72fe7504 --- /dev/null +++ b/tests/histval_initval_file/ramst_initval_file.mod @@ -0,0 +1,113 @@ +/* Test for the initval_file() command. This file needs ramst_initval_file_data.m. It should give results similar to those of ramst.mod */ + +var c k; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + + +model; +c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); +c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); +end; + +initval; +x = 1; +k = ((delt+bet)/(1.0*aa*alph))^(1/(alph-1)); +c = aa*k^alph-delt*k; +end; + +steady; + +initval_file(filename = ramst_initval_file_data_row_vec_mat); +perfect_foresight_setup(periods=200); +if oo_.exo_simul(2) ~= 1.2 + error('initval_file problem with exogenous variable'); +end +if oo_.endo_simul(2, 2) ~= 13 + error('initval_file option problem with endogenous variable'); +end +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end + +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(filename = ramst_initval_file_data_col_vec_mat); + +perfect_foresight_setup(periods=200); +if oo_.exo_simul(2) ~= 1.2 + error('initval_file problem with exogenous variable'); +end +if oo_.endo_simul(2, 2) ~= 13 + error('initval_file problem with endogenous variable'); +end +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end + +if ispc() + initval_file(filename = ramst_initval_file_excel); + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed'); + end; +end + +initval_file(datafile = 'ramst_data.m'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(datafile = 'ramst_data.mat'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(datafile = 'ramst_data.csv'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(datafile = 'ramst_data.xlsx'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +if ispc; + initval_file(datafile = 'ramst_data.cls'); + perfect_foresight_setup(periods = 200); + perfect_foresight_solver; + oo_.exo_simul = []; + oo_.endo_simul = []; + + if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') + end; +end; + diff --git a/tests/histval_initval_file/ramst_initval_file_data.m b/tests/histval_initval_file/ramst_initval_file_data.m new file mode 100644 index 0000000000..cc1914ca12 --- /dev/null +++ b/tests/histval_initval_file/ramst_initval_file_data.m @@ -0,0 +1,14 @@ +x = vertcat([ 1; 1.2 ], repmat(1, 200, 1)); +k = repmat(13, 202, 1); +c = repmat(1.5, 202, 1); +save('ramst_initval_file_data_col_vec_mat.mat','c','k','x'); + +if ispc() + xlswrite('ramst_initval_file_excel',[x k c],1,'A2'); + xlswrite('ramst_initval_file_excel',{'x' 'k' 'c'},1,'A1'); +end + +c=c'; +k=k'; +x=x'; +save('ramst_initval_file_data_row_vec_mat.mat','c','k','x'); diff --git a/tests/histval_initval_file/sim_exo_lead_lag.mod b/tests/histval_initval_file/sim_exo_lead_lag.mod new file mode 100644 index 0000000000..5a06c1c5cb --- /dev/null +++ b/tests/histval_initval_file/sim_exo_lead_lag.mod @@ -0,0 +1,43 @@ +// Uses autonomous system from sim_base.mod, but adds separate system where exogenous variables have several leads and lags +// Lags and leads on exogenous variables are substituted out by auxiliary variables + +var c cmav k z_backward z_forward; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + +model; + c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); + c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); + z_backward=0.1*1+0.9*z_backward(-1) + (x(-4) - 1); + z_forward=0.2*1+0.8*z_forward(+1) + (x(+4) - 1); + cmav = 0.2*(c(-2) + c(-1) + c + c(+1) + c(+2)); +end; + +initval; + c = 1.2; + cmav = 1.2; + k = 12; + x = 1; //set x(0), x(-1), x(-2), x(-3) + z_backward = 1; + z_forward = 1; +end; + +shocks; +var x; //sets x(+2) +periods 2; +values 0.9; +end; + +simul(periods=200); + +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end + + diff --git a/tests/histval_initval_file/sim_exo_lead_lag_histvalf.mod b/tests/histval_initval_file/sim_exo_lead_lag_histvalf.mod new file mode 100644 index 0000000000..3d9ae12bbc --- /dev/null +++ b/tests/histval_initval_file/sim_exo_lead_lag_histvalf.mod @@ -0,0 +1,76 @@ +// Uses autonomous system from sim_base.mod, but adds separate system where exogenous variables have several leads and lags +// Lags and leads on exogenous variables are substituted out by auxiliary variables + +var c cmav k z_backward z_forward; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + +model; + c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); + c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); + z_backward=0.1*1+0.9*z_backward(-1) + (x(-4) - 1); + z_forward=0.2*1+0.8*z_forward(+1) + (x(+4) - 1); + cmav = 0.2*(c(-2) + c(-1) + c + c(+1) + c(+2)); +end; + +initval; + x = 1; +end; + +steady_state_model; + k = ((bet + delt)/(aa*alph*x))^(1/(alph - 1)); + c = aa*x*k^alph - delt*k; + z_backward = x; + z_forward = x; + cmav = c; +end; + +steady; + +shocks; + var x; + periods 2; + values 0.9; +end; + +perfect_foresight_setup(periods=200); +perfect_foresight_solver; + +reference = oo_.endo_simul; + +data1 = repmat([oo_.steady_state' 1], 4, 1); +ds = dseries(data1, '1Y', [M_.endo_names; M_.exo_names]); + +histval_file(series = ds); +perfect_foresight_setup(periods=200); +perfect_foresight_solver; + +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed'); +end + +if max(max(abs(reference(1:5,5:end) - oo_.endo_simul(1:5,5:end)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the one with auxiliary variables') +end + +data1 = repmat([oo_.steady_state' 1], 6, 1); +ds1 = dseries(data1, '1Y', [M_.endo_names; M_.exo_names]); + +histval_file(series = ds1, first_obs = 3, last_obs = 6, nobs = 4); + +perfect_foresight_setup(periods=200); +perfect_foresight_solver; + +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed'); +end + +if max(max(abs(reference(1:5,:) - oo_.endo_simul(1:5,:)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the one with auxiliary variables') +end diff --git a/tests/histval_initval_file/sim_exo_lead_lag_initvalf.mod b/tests/histval_initval_file/sim_exo_lead_lag_initvalf.mod new file mode 100644 index 0000000000..e74b6c9b27 --- /dev/null +++ b/tests/histval_initval_file/sim_exo_lead_lag_initvalf.mod @@ -0,0 +1,56 @@ +// Uses autonomous system from sim_base.mod, but adds separate system where exogenous variables have several leads and lags +// Lags and leads on exogenous variables are substituted out by auxiliary variables + +data1 = repmat([1.2, 1.2, 12, 1, 1, 1], 208, 1); +data1(6, 6) = 0.9; //shock to x in period 2 +ds = dseries(data1, '1Y', {'c', 'cmav', 'k', 'z_backward', 'z_forward', 'x'}); + +var c cmav k z_backward z_forward; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + +model; + c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); + c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); + z_backward=0.1*1+0.9*z_backward(-1) + (x(-4) - 1); + z_forward=0.2*1+0.8*z_forward(+1) + (x(+4) - 1); + cmav = 0.2*(c(-2) + c(-1) + c + c(+1) + c(+2)); +end; + +initval_file(series = ds); + +perfect_foresight_setup(periods=200); +perfect_foresight_solver(maxit=100); + +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed'); +end + +base_results=load('sim_exo_lead_lag_results.mat'); +if max(max(abs(base_results.oo_.endo_simul(1:5,:) - oo_.endo_simul(1:5,:)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the one with auxiliary variables') +end + +data1 = repmat([1.2, 1.2, 12, 1, 1, 1], 212, 1); +data1(8, 6) = 0.9; //shock to x in period 2 +ds1 = dseries(data1, '1Y', {'c', 'cmav', 'k', 'z_backward', 'z_forward', 'x'}); + +initval_file(series = ds1, first_obs = 3, last_obs = 210, nobs = 208); + +perfect_foresight_setup(periods=200); +perfect_foresight_solver(maxit=100); + +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed'); +end + +base_results=load('sim_exo_lead_lag_results.mat'); +if max(max(abs(base_results.oo_.endo_simul(1:5,:) - oo_.endo_simul(1:5,:)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the one with auxiliary variables') +end diff --git a/tests/histval_initval_file/sim_histvalf_stoch_simul.mod b/tests/histval_initval_file/sim_histvalf_stoch_simul.mod new file mode 100644 index 0000000000..924a5f0029 --- /dev/null +++ b/tests/histval_initval_file/sim_histvalf_stoch_simul.mod @@ -0,0 +1,86 @@ +// Uses autonomous system from sim_base.mod, but adds separate system where exogenous variables have several leads and lags +// Lags and leads on exogenous variables are substituted out by auxiliary variables + +var c cmav k z_backward z_forward; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + +model; + c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); + c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); + z_backward=0.1*1+0.9*z_backward(-1) + (x(-4) - 1); + z_forward=0.2*1+0.8*z_forward(+1) + (x(+4) - 1); + cmav = 0.2*(c(-2) + c(-1) + c + c(+1) + c(+2)); +end; + +initval; + x = 1; +end; + +steady_state_model; + k = ((bet + delt)/(aa*alph*x))^(1/(alph - 1)); + c = aa*x*k^alph - delt*k; + z_backward = x; + z_forward = x; + cmav = c; +end; + +steady; + +shocks; + var x; + stderr 0.01; +end; + +s = rng; +stoch_simul(periods=20, drop=0, irf=0); + +reference = oo_.endo_simul; + +data1 = repmat([oo_.steady_state' 1], 4, 1); +ds = dseries(data1, '1Y', [M_.endo_names; M_.exo_names]); + +histval_file(series = ds); + +rng(s); +stoch_simul(periods=20, drop=0, irf=0); + +if max(max(abs(reference(1:5,5:end) - oo_.endo_simul(1:5,5:end)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the reference') +end + +data1 = repmat([oo_.steady_state' 1], 6, 1); +ds1 = dseries(data1, '1Y', [M_.endo_names; M_.exo_names]); + +histval_file(series = ds1, first_obs = 6, last_obs = 6, nobs = 1); + +rng(s); +stoch_simul(periods=20, drop=0, irf=0); + +if max(max(abs(reference(1:5,:) - oo_.endo_simul(1:5,:)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the reference') +end + +histval_file(series = ds1, first_simulation_period = 7); + +rng(s); +stoch_simul(periods=20, drop=0, irf=0); + +if max(max(abs(reference(1:5,:) - oo_.endo_simul(1:5,:)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the reference') +end + +histval_file(series = ds1, first_simulation_period = 7Y); + +rng(s); +stoch_simul(periods=20, drop=0, irf=0); + +if max(max(abs(reference(1:5,:) - oo_.endo_simul(1:5,:)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the reference') +end diff --git a/tests/histval_initval_file_unit_tests.m b/tests/histval_initval_file_unit_tests.m new file mode 100644 index 0000000000..4b81f71de5 --- /dev/null +++ b/tests/histval_initval_file_unit_tests.m @@ -0,0 +1,220 @@ +top_test_dir = getenv('TOP_TEST_DIR'); +addpath([top_test_dir filesep '..' filesep 'matlab/']); +dynare_config; + +cd('histval_initval_file'); +num_tests = 0; +failed_tests = {}; + +ds = dseries(randn(10,4)); + +M = struct(); +M.fname = ''; +M.endo_nbr = 3; +M.orig_endo_nbr = 3; +M.endo_names = {'Variable_1','Variable_2','Variable_3'}; +M.exo_nbr = 1; +M.exo_names = {'Variable_4'}; +M.exo_det_nbr = 0; + +caller = 'INITVAL'; + +options = struct(); +options.series = ds; +ds1 = histvalf_initvalf(caller, M, options); + +failed_tests = my_assert(failed_tests, all(all(ds1 == ds)), 'basic test'); +num_tests = num_tests + 1; + +options = struct(); +options.series = ds; +options.first_obs = 2; +ds1 = histvalf_initvalf(caller, M, options); +failed_tests = my_assert(failed_tests, ds1.init == dates('2Y'), ... + 'init test 1'); +num_tests = num_tests + 1; + +options = struct(); +options.series = ds; +options.first_obs = 2; +options.last_obs = 9; +ds1 = histvalf_initvalf(caller, M, options); +failed_tests = my_assert(failed_tests, ds1.init == dates('2Y'), ... + 'first_obs last_obs test 1'); +failed_tests = my_assert(failed_tests, ds1.last == dates('9Y'), ... + 'first_obs last_obs test 2'); +num_tests = num_tests + 2; + +options = struct(); +options.series = ds; +options.last_obs = 9; +ds1 = histvalf_initvalf(caller, M, options); +failed_tests = my_assert(failed_tests, ds1.init == dates('1Y'), ... + 'last_obs test 1'); +failed_tests = my_assert(failed_tests, ds1.last == dates('9Y'), ... + 'last_obs test 2'); +num_tests = num_tests + 2; + +options = struct(); +options.series = ds; +options.first_obs = 2; +options.last_obs = 9; +options.nobs = 8; +ds1 = histvalf_initvalf(caller, M, options); +failed_tests = my_assert(failed_tests, ds1.init == dates('2Y'), ... + 'first_obs, last_obs, nobs test 1'); +failed_tests = my_assert(failed_tests, ds1.last == dates('9Y'), ... + 'first_obs, last_obs, nobs test 2'); +num_tests = num_tests + 2; + +options = struct(); +options.series = ds; +options.last_obs = 9; +options.nobs = 8; +ds1 = histvalf_initvalf(caller, M, options); +failed_tests = my_assert(failed_tests, ds1.init == dates('2Y'), ... + 'last_obs, nobs test 1'); +failed_tests = my_assert(failed_tests, ds1.last == dates('9Y'), ... + 'last_obs, nobs test 2'); +num_tests = num_tests + 2; + +options = struct(); +options.series = ds; +options.first_obs = 2; +options.last_obs = 9; +options.nobs = 7; + +try + ds1 = histvalf_initvalf(caller, M, options); + error('This test didn''t catch the error') +catch me + if strcmp(me.message, ['INITVAL_FILE: FIST_OBS, LAST_OBS and NOBS contain', ... + ' inconsistent information. Use only two of these', ... + ' options.']) == false + failed_tests = cat(1, failed_tests, 'Wrong nobs error message' ); + end +end +num_tests = num_tests + 1; + +options = struct(); +options.series = ds; +options.first_obs = -1; + +try + ds1 = histvalf_initvalf(caller, M, options); + error('This test didn''t catch the error') +catch me + if strcmp(me.message, [caller, '_FILE: the first requested period is', ... + ' before available data.']) == false + failed_tests = cat(1, failed_tests, ... + 'Wrong first period error message'); + end +end +num_tests = num_tests + 1; + +options = struct(); +options.series = ds; +options.last_obs = 11; + +try + ds1 = histvalf_initvalf(caller, M, options); + error('This test didn''t catch the error') +catch me + if strcmp(me.message, [caller, '_FILE: the last requested period is', ... + ' after available data.']) == false + failed_tests = cat(1, failed_tests, ... + 'Wrong last period error message'); + end +end +num_tests = num_tests + 1; + +fh = fopen('data.m', 'w'); +init__ = 'INIT__ = ''1Y'';'; +fprintf(fh, [init__ '\n']); +eval(init__); +names__ = 'NAMES__ = {''x'', ''y''};'; +fprintf(fh, [names__ '\n']); +eval(names__); +tex__ = 'TEX__ = {''x'', ''y''};'; +fprintf(fh, [tex__ '\n']); +eval(tex__); +x = randn(10, 1); +fprintf(fh, 'x = ['); +fprintf(fh, '%f ', x); +fprintf(fh, '];\n'); +y = randn(10, 1); +fprintf(fh, 'y = ['); +fprintf(fh, '%f ', y); +fprintf(fh, '];\n'); +fclose(fh); + +M.endo_nbr = 1; +M.orig_endo_nbr = 1; +M.endo_names = {'y'}; +M.exo_nbr = 1; +M.exo_names = {'x'}; +M.exo_det_nbr = 0; + +options = struct(); +options.datafile = 'data.m'; +series = histvalf_initvalf('INITVAL_FILE', M, options); +failed_tests = my_assert(failed_tests, series.init == dates('1Y'), ... + '*.m file first_obs test'); +failed_tests = my_assert(failed_tests, series.nobs == 10, ... + '*.m file nobs test'); + +save('data.mat', 'INIT__', 'NAMES__', 'TEX__', 'x', 'y'); +options = struct(); +options.datafile = 'data.mat'; +series = histvalf_initvalf('INITVAL_FILE', M, options); +failed_tests = my_assert(failed_tests, series.init == dates('1Y'), ... + '*.mat file first_obs test'); +failed_tests = my_assert(failed_tests, series.nobs == 10, ... + '*.mat file nobs test'); + +fh = fopen('data.csv', 'w'); +fprintf(fh, 'x,y\n'); +for i = 1:size(x,1) + fprintf(fh, '%f,%f\n', x(i), y(i)); +end +fclose(fh); + +if ~verLessThan('matlab', '8.2') + writetable(table(x,y), 'data.xlsx') + options = struct(); + options.datafile = 'data.xlsx'; + series = histvalf_initvalf('INITVAL_FILE', M, options); + failed_tests = my_assert(failed_tests, series.init == dates('1Y'), ... + '*.xlsx file first_obs test'); + failed_tests = my_assert(failed_tests, series.nobs == 10, ... + '*.xlsx file nobs test'); + num_tests = num_tests + 2; + + if ispc + writetable(table(x,y), 'data.xls') + options = struct(); + options.datafile = 'data.xls'; + series = histvalf_initvalf('INITVAL_FILE', M, options); + failed_tests = my_assert(failed_tests, series.init == dates('1Y'), ... + '*.xls file first_obs test'); + failed_tests = my_assert(failed_tests, series.nobs == 10, ... + '*.xls file nobs test'); + num_tests = num_tests + 2; + end +end + +cd(getenv('TOP_TEST_DIR')); +fid = fopen('histval_initval_file_unit_tests.m.trs', 'w+'); +num_failed_tests = length(failed_tests) +if num_failed_tests > 0 + fprintf(fid,':test-result: FAIL\n'); + fprintf(fid,':number-tests: %d\n', num_tests); + fprintf(fid,':number-failed-tests: %d\n', num_failed_tests); + fprintf(fid,':list-of-failed-tests: %s\n', failed_tests{:}); +else + fprintf(fid,':test-result: PASS\n'); + fprintf(fid,':number-tests: %d\n', num_tests); + fprintf(fid,':number-failed-tests: 0\n'); +end +fclose(fid); +exit; diff --git a/tests/initval_file/ramst_initval_file.mod b/tests/initval_file/ramst_initval_file.mod deleted file mode 100644 index 2cc8f91ed9..0000000000 --- a/tests/initval_file/ramst_initval_file.mod +++ /dev/null @@ -1,55 +0,0 @@ -/* Test for the initval_file() command. This file needs ramst_initval_file_data.m. It should give results similar to those of ramst.mod */ - -var c k; -varexo x; - -parameters alph gam delt bet aa; -alph=0.5; -gam=0.5; -delt=0.02; -bet=0.05; -aa=0.5; - - -model; -c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); -c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); -end; - -initval; -x = 1; -k = ((delt+bet)/(1.0*aa*alph))^(1/(alph-1)); -c = aa*k^alph-delt*k; -end; - -steady; - -initval_file(filename = ramst_initval_file_data_row_vec_mat); -if oo_.exo_simul(2) ~= 1.2 - error('initval_file problem with exogenous variable'); -end -if oo_.endo_simul(2, 2) ~= 13 - error('initval_file option problem with endogenous variable'); -end -perfect_foresight_setup(periods=200); -perfect_foresight_solver; - -oo_.exo_simul = []; -oo_.endo_simul = []; - -initval_file(filename = ramst_initval_file_data_col_vec_mat); -if oo_.exo_simul(2) ~= 1.2 - error('initval_file problem with exogenous variable'); -end -if oo_.endo_simul(2, 2) ~= 13 - error('initval_file problem with endogenous variable'); -end - -perfect_foresight_setup(periods=200); -perfect_foresight_solver; - -if ispc() - initval_file(filename = ramst_initval_file_excel); - perfect_foresight_setup(periods=200); - perfect_foresight_solver; -end diff --git a/tests/smoother2histval/fs2000_simul.mod b/tests/smoother2histval/fs2000_simul.mod index eb65974e1d..a682c76c04 100644 --- a/tests/smoother2histval/fs2000_simul.mod +++ b/tests/smoother2histval/fs2000_simul.mod @@ -66,6 +66,10 @@ results_estimation=load('fs2000_smooth_results'); M_.params=results_estimation.M_.params; steady; +OO = load('fs2000_smooth_results.mat'); +M_.params = OO.M_.params; + histval_file(filename = 'fs2000_histval.mat'); -simul(periods = 30); +perfect_foresight_setup(periods = 100); +perfect_foresight_solver; diff --git a/tests/smoother2histval/fs2000_smooth.mod b/tests/smoother2histval/fs2000_smooth.mod index 89447eb571..65bb15b68b 100644 --- a/tests/smoother2histval/fs2000_smooth.mod +++ b/tests/smoother2histval/fs2000_smooth.mod @@ -82,6 +82,6 @@ varobs gp_obs gy_obs; options_.solve_tolf = 1e-12; -estimation(order=1,datafile=fsdat_simul,nobs=192,mh_replic=1500,mh_nblocks=1,mh_jscale=0.8,smoother,consider_all_endogenous); +estimation(order=1,datafile=fsdat_simul,mh_replic=1500,mh_nblocks=1,mh_jscale=0.8,smoother,consider_all_endogenous); smoother2histval(period = 5, outfile = 'fs2000_histval.mat'); -- GitLab