diff --git a/examples/12-mc-iterative-ols/clean b/examples/12-mc-iterative-ols/clean new file mode 100755 index 0000000000000000000000000000000000000000..bdc7da19ab956a4a155e5fc8cbdf9a11ebbebff0 --- /dev/null +++ b/examples/12-mc-iterative-ols/clean @@ -0,0 +1,6 @@ +#!/bin/sh + +rm -rf example +rm -rf +example +rm -f example.log +rm -f *.mat \ No newline at end of file diff --git a/examples/12-mc-iterative-ols/example.mod b/examples/12-mc-iterative-ols/example.mod new file mode 100644 index 0000000000000000000000000000000000000000..32e0597706c3376a0cc35ed0b02bd969e4f03b59 --- /dev/null +++ b/examples/12-mc-iterative-ols/example.mod @@ -0,0 +1,104 @@ +// --+ options: json=compute, stochastic +-- + +var x1 x2 x1bar x2bar z y; + +varexo ex1 ex2 ex1bar ex2bar ez ey; + +parameters + rho_1 rho_2 + a_x1_0 a_x1_1 a_x1_2 a_x1_x2_1 a_x1_x2_2 + a_x2_0 a_x2_1 a_x2_2 a_x2_x1_1 a_x2_x1_2 + e_c_m c_z_1 c_z_2 beta g; + +rho_1 = .9; +rho_2 = -.2; + +a_x1_0 = -.9; +a_x1_1 = .4; +a_x1_2 = .3; +a_x1_x2_1 = .1; +a_x1_x2_2 = .2; + +a_x2_0 = -.9; +a_x2_1 = .2; +a_x2_2 = -.1; +a_x2_x1_1 = -.1; +a_x2_x1_2 = .2; + +beta = .2; +e_c_m = .5; +c_z_1 = .2; +c_z_2 = -.1; + +g=.1; + +var_model(model_name=toto, eqtags=['eq:x1', 'eq:x2', 'eq:x1bar', 'eq:x2bar']); + +pac_model(var_model_name=toto, discount=beta, growth=g, model_name=pacman, undiff('eq:x1', 1), undiff('eq:x2', 1)); + +model; + +[name='eq:y'] +y = rho_1*y(-1) + rho_2*y(-2) + ey; + +[name='eq:x1', data_type='nonstationary'] +diff(x1) = a_x1_0*(x1(-1)-x1bar(-1)) + a_x1_1*diff(x1(-1)) + a_x1_2*diff(x1(-2)) + a_x1_x2_1*diff(x2(-1)) + a_x1_x2_2*diff(x2(-2)) + ex1; + +[name='eq:x2', data_type='nonstationary'] +diff(x2) = a_x2_0*(x2(-1)-x2bar(-1)) + a_x2_1*diff(x1(-1)) + a_x2_2*diff(x1(-2)) + a_x2_x1_1*diff(x2(-1)) + a_x2_x1_2*diff(x2(-2)) + ex2; + +[name='eq:x1bar', data_type='nonstationary'] +x1bar = x1bar(-1) + ex1bar; + +[name='eq:x2bar', data_type='nonstationary'] +x2bar = x2bar(-1) + ex2bar; + +[name='zpac'] +diff(z) = e_c_m*(x1(-1)-z(-1)) + c_z_1*diff(z(-1)) + c_z_2*diff(z(-2)) + pac_expectation(pacman) + ez; + +end; + +shocks; + var ex1 = 1.0; + var ex2 = 1.0; + var ex1bar = 1.0; + var ex2bar = 1.0; + var ez = 1.0; + var ey = 0.1; +end; + +// Build the companion matrix of the VAR model (toto). +get_companion_matrix('toto', 'pacman'); + +// Update the parameters of the PAC expectation model (h0 and h1 vectors). +pac.update.expectation('pacman'); + +// Set initial conditions to zero. Please use more sensible values if any... +initialconditions = dseries(zeros(10, M_.endo_nbr+M_.exo_nbr), 2000Q1, vertcat(M_.endo_names,M_.exo_names)); + +B = 20000; +X = zeros(3,B); + +set_dynare_seed('default'); +options_.bnlms.set_dynare_seed_to_default = false; + +for i=1:B + e_c_m = .5; + c_z_1 = .2; + c_z_2 = -.1; + // Simulate the model for 500 periods + TrueData = simul_backward_model(initialconditions, 300); + // Define a structure describing the parameters to be estimated (with initial conditions). + eparams.e_c_m = rand(); + eparams.c_z_1 = .5*randn(); + eparams.c_z_2 = .5*randn(); + //Â Define the dataset used for estimation + edata = TrueData; + edata.ez = dseries(NaN(TrueData.nobs, 1), 2000Q1, 'ez'); + pac.estimate.iterative_ols('zpac', eparams, edata, 2005Q1:2000Q1+200); + X(1,i) = M_.params(strmatch('e_c_m', M_.param_names, 'exact')); + X(2,i) = M_.params(strmatch('c_z_1', M_.param_names, 'exact')); + X(3,i) = M_.params(strmatch('c_z_2', M_.param_names, 'exact')); +end + +mean(X, 2) \ No newline at end of file diff --git a/examples/12-mc-nls/clean b/examples/12-mc-nls/clean new file mode 100755 index 0000000000000000000000000000000000000000..0d64aefdef6d2368cc070b20e575ca5e6ce127f4 --- /dev/null +++ b/examples/12-mc-nls/clean @@ -0,0 +1,7 @@ +#!/bin/sh + +rm -rf example +rm -rf +example +rm -f example.log +rm -f *.mat +rm *.m diff --git a/examples/12-mc-nls/example.mod b/examples/12-mc-nls/example.mod new file mode 100644 index 0000000000000000000000000000000000000000..7146a8e704063e726ddd25490737d7fed24f0dc7 --- /dev/null +++ b/examples/12-mc-nls/example.mod @@ -0,0 +1,100 @@ +// --+ options: json=compute, stochastic +-- + +var x1 x2 x1bar x2bar z y; + +varexo ex1 ex2 ex1bar ex2bar ez ey; + +parameters + rho_1 rho_2 + a_x1_0 a_x1_1 a_x1_2 a_x1_x2_1 a_x1_x2_2 + a_x2_0 a_x2_1 a_x2_2 a_x2_x1_1 a_x2_x1_2 + e_c_m c_z_1 c_z_2 beta ; + +rho_1 = .9; +rho_2 = -.2; + +a_x1_0 = -.9; +a_x1_1 = .4; +a_x1_2 = .3; +a_x1_x2_1 = .1; +a_x1_x2_2 = .2; + +a_x2_0 = -.9; +a_x2_1 = .2; +a_x2_2 = -.1; +a_x2_x1_1 = -.1; +a_x2_x1_2 = .2; + +beta = .2; +e_c_m = .5; +c_z_1 = .2; +c_z_2 = -.1; + +var_model(model_name=toto, eqtags=['eq:x1', 'eq:x2', 'eq:x1bar', 'eq:x2bar']); + +pac_model(var_model_name=toto, discount=beta, model_name=pacman, undiff('eq:x1', 1), undiff('eq:x2', 1)); + +model; + +[name='eq:y'] +y = rho_1*y(-1) + rho_2*y(-2) + ey; + +[name='eq:x1', data_type='nonstationary'] +diff(x1) = a_x1_0*(x1(-1)-x1bar(-1)) + a_x1_1*diff(x1(-1)) + a_x1_2*diff(x1(-2)) + a_x1_x2_1*diff(x2(-1)) + a_x1_x2_2*diff(x2(-2)) + ex1; + +[name='eq:x2', data_type='nonstationary'] +diff(x2) = a_x2_0*(x2(-1)-x2bar(-1)) + a_x2_1*diff(x1(-1)) + a_x2_2*diff(x1(-2)) + a_x2_x1_1*diff(x2(-1)) + a_x2_x1_2*diff(x2(-2)) + ex2; + +[name='eq:x1bar', data_type='nonstationary'] +x1bar = x1bar(-1) + ex1bar; + +[name='eq:x2bar', data_type='nonstationary'] +x2bar = x2bar(-1) + ex2bar; + +[name='zpac'] +diff(z) = e_c_m*(x1(-1)-z(-1)) + c_z_1*diff(z(-1)) + c_z_2*diff(z(-2)) + pac_expectation(pacman) + ez; + +end; + +shocks; + var ex1 = 1.0; + var ex2 = 1.0; + var ex1bar = 1.0; + var ex2bar = 1.0; + var ez = 1.0; + var ey = 0.1; +end; + +// Build the companion matrix of the VAR model (toto). +get_companion_matrix('toto', 'pacman'); + +// Update the parameters of the PAC expectation model (h0 and h1 vectors). +pac.update.expectation('pacman'); + +// Set initial conditions to zero. Please use more sensible values if any... +initialconditions = dseries(zeros(10, M_.endo_nbr+M_.exo_nbr), 2000Q1, vertcat(M_.endo_names,M_.exo_names)); + + +B = 20000; +X = zeros(3,B); +set_dynare_seed('default'); + +options_.bnlms.set_dynare_seed_to_default = false; + +for i=1:B + // Simulate the model for 500 periods + TrueData = simul_backward_model(initialconditions, 300); + // Define a structure describing the parameters to be estimated (with initial conditions). + eparams.e_c_m = rand(); + eparams.c_z_1 = .5*randn(); + eparams.c_z_2 = .5*randn(); + //Â Define the dataset used for estimation + edata = TrueData; + edata.ez = dseries(NaN(TrueData.nobs, 1), 200Q1, 'ez'); + pac.estimate.nls('zpac', eparams, edata, 2005Q1:2000Q1+200); + X(1,i) = M_.params(strmatch('e_c_m', M_.param_names, 'exact')); + X(2,i) = M_.params(strmatch('c_z_1', M_.param_names, 'exact')); + X(3,i) = M_.params(strmatch('c_z_2', M_.param_names, 'exact')); +end + +mean(X, 2) \ No newline at end of file