From e264d1da1537339c253e1d49c76a36a9f6398633 Mon Sep 17 00:00:00 2001
From: Houtan Bastani <houtan.bastani@ens.fr>
Date: Tue, 31 Jan 2012 10:21:15 +0100
Subject: [PATCH] remove files of the form *.bak

---
 MatlabFiles/Gibbsvar.bak | 74 ----------------------------------------
 1 file changed, 74 deletions(-)
 delete mode 100755 MatlabFiles/Gibbsvar.bak

diff --git a/MatlabFiles/Gibbsvar.bak b/MatlabFiles/Gibbsvar.bak
deleted file mode 100755
index fb5e8c6..0000000
--- a/MatlabFiles/Gibbsvar.bak
+++ /dev/null
@@ -1,74 +0,0 @@
-function A0gbs = gibbsvar(A0gbs,cT,vR,nvar,fss,kdf)
-% A0gbs = gibbsvar(A0gbs,cT,vR,nvar,fss,kdf)
-%    One-step Gibbs sampler for structural VARs -- simultaneous equations approach
-%    Ref.:  D.F. Waggoner and T.A. Zha: "Does Normalization Matter for Inference?"
-%    See Note Forecast (2) pp. 44-51
-%
-% A0gbs:  the last draw of A0 matrix
-% cT{i}: nvar-by-nvar where T'*T=Sbd{i} which is kind of covariance martrix
-%          divided by fss already
-% vR{i}: nvar-by-q{i} -- orthonormral basis for T*R, which is obtained through
-%          single value decomposition of Q*inv(T).  See gibbsglb.m
-% nvar:  rank of A0 or # of variables
-% fss:  effective sample size == nSample (T)-lags+# of dummy observations
-% kdf:  polynomial power in the Gamma or 1d Wishart distribution
-%------------------
-% A0bgs:  new draw of A0 matrix in this Gibbs step
-%
-% Written by Tao Zha; Copyright (c) 1999 by Waggoner and Zha
-
-
-%---------------- Local loop for Gibbs given last A0gbs ----------
-%* uR{i}: nvar-by-q{i} -- orthonormal with first q(i)-1 vectors lies in the
-%          span(T*a(j)|j~=i)
-%*** Constructing u(1),...,u(q{i}) at each Gibbs step
-%
-uR = cell(nvar,1);
-sw0 = zeros(nvar,1);
-for k=1:nvar            % given last A0gbs and general new A0bgs
-   X = cT{k}*A0gbs;    % given the latest updated A0gbs
-   X(:,k) = 0;    % want to find non-zero sw s.t., X'*sw=0
-   [jL,Ux,Px] = lu(X');
-   jIx0 = min(find(abs(diag(Ux))<eps)); % if isempty(jIx0), then something is wrong here
-   %
-   sw0(jIx0+1:end) = 0;
-   sw0(jIx0) = 1;
-   jA = Ux(1:jIx0-1,1:jIx0-1);
-   jb = Ux(1:jIx0-1,jIx0);
-   jy = -jA\jb;
-   sw0(1:jIx0-1) = jy;
-   sw = sw0/sqrt(sum(sw0.^2));
-   %
-   lenk = length(vR{k}(1,:));
-   gkb = zeros(lenk,1);  % greek beta's
-   uR{k} = zeros(nvar,lenk);
-   sx = zeros(nvar,lenk);
-   sx(:,1) = vR{k}(:,1);
-   for ki = 1:lenk-1
-      wxv = [sw'*sx(:,ki);sw'*vR{k}(:,ki+1)];  % w'*x and w'*v(+1)
-      dwxv = sqrt(sum(wxv.^2));
-      if (dwxv<eps)
-         uR{k}(:,ki)=sx(:,ki); sx(:,ki+1)=vR{k}(:,ki+1);
-      else
-         wxv = wxv/dwxv;
-         uR{k}(:,ki) = wxv(1)*vR{k}(:,ki+1) - wxv(2)*sx(:,ki);
-         sx(:,ki+1) = wxv(2)*vR{k}(:,ki+1) + wxv(1)*sx(:,ki);
-      end
-   end
-   uR{k}(:,lenk) = sx(:,lenk);  % uR now constructed
-   %
-   %--------- Gibbs loop ----------
-   %*** draw independently beta's that combine uR to form a's (columns of A0)
-   jcon = sqrt(1/fss);
-   gkb(1:lenk-1) = jcon*randn(lenk-1,1);
-   %* gamma or 1-d Wishart draw
-   jnk = jcon*randn(kdf+1,1);
-   if rand(1)<0.5
-      gkb(lenk) = sqrt(jnk'*jnk);
-   else
-      gkb(lenk) = -sqrt(jnk'*jnk);
-   end
-   %
-   %*** form new a(i) - ith column of A0
-   A0gbs(:,k) = (cT{k}\uR{k})*gkb;
-end
-- 
GitLab