diff --git a/matlab/ep/extended_path.m b/matlab/ep/extended_path.m
index 23c6a36d86cd45876390c8146c02cc7d2ad5a972..f3525cbda0849d7da9090fa385a86353d9fa7f37 100644
--- a/matlab/ep/extended_path.m
+++ b/matlab/ep/extended_path.m
@@ -65,6 +65,12 @@ pfm.verbose = options_.ep.verbosity;
 pfm.maxit_ = options_.maxit_;
 pfm.tolerance = options_.dynatol.f;
 
+exo_nbr = M_.exo_nbr;
+periods = options_.periods;
+ep = options_.ep;
+steady_state = oo_.steady_state;
+dynatol = options_.dynatol;
+
 % Set default initial conditions.
 if isempty(initial_conditions)
     initial_conditions = oo_.steady_state;
@@ -74,7 +80,7 @@ end
 options_.maxit_ = options_.ep.maxit;
 
 % Set the number of periods for the perfect foresight model
-options_.periods = options_.ep.periods;
+periods = options_.ep.periods;
 pfm.periods = options_.ep.periods;
 pfm.i_upd = pfm.ny+(1:pfm.periods*pfm.ny);
 
@@ -90,6 +96,7 @@ do_not_check_stability_flag = ~options_.ep.check_stability;
 % REMARK. It is assumed that the user did run the same mod file with stoch_simul(order=1) and save
 % all the globals in a mat file called linear_reduced_form.mat;
 
+dr = struct();
 if options_.ep.init
     options_.order = 1;
     [dr,Info,M_,options_,oo_] = resol(1,M_,options_,oo_);
@@ -201,29 +208,35 @@ while (t<sample_size)
     shocks = oo_.ep.shocks(t,:);
     % Put it in oo_.exo_simul (second line).
     oo_.exo_simul(2,positive_var_indx) = shocks;
-    for s = 1:nnn
-        switch options_.ep.stochastic.ortpol
+    parfor s = 1:nnn
+        periods1 = periods;
+        exo_simul_1 = zeros(periods1+2,exo_nbr);
+        pfm1 = pfm;
+        info_convergence = 0;
+        switch ep.stochastic.ortpol
           case 'hermite'
-            for u=1:options_.ep.stochastic.order
-                oo_.exo_simul(2+u,positive_var_indx) = rrr(s,(((u-1)*effective_number_of_shocks)+1):(u*effective_number_of_shocks))*covariance_matrix_upper_cholesky;
+            for u=1:ep.stochastic.order
+                exo_simul_1(2+u,positive_var_indx) = rrr(s,(((u-1)*effective_number_of_shocks)+1):(u*effective_number_of_shocks))*covariance_matrix_upper_cholesky;
             end
           otherwise
             error('extended_path:: Unknown orthogonal polynomial option!')
         end
-        if options_.ep.stochastic.order && options_.ep.stochastic.scramble
-            oo_.exo_simul(2+options_.ep.stochastic.order+1:2+options_.ep.stochastic.order+options_.ep.stochastic.scramble,positive_var_indx) = ...
-                randn(options_.ep.stochastic.scramble,effective_number_of_shocks)*covariance_matrix_upper_cholesky;
+        if ep.stochastic.order && ep.stochastic.scramble
+            exo_simul_1(2+ep.stochastic.order+1:2+ep.stochastic.order+ep.stochastic.scramble,positive_var_indx) = ...
+                randn(ep.stochastic.scramble,effective_number_of_shocks)*covariance_matrix_upper_cholesky;
         end
-        if options_.ep.init% Compute first order solution (Perturbation)...
-            ex = zeros(size(oo_.endo_simul,2),size(oo_.exo_simul,2));
-            ex(1:size(oo_.exo_simul,1),:) = oo_.exo_simul;
-            oo_.exo_simul = ex;
-            initial_path = simult_(initial_conditions,dr,oo_.exo_simul(2:end,:),1);
-            oo_.endo_simul(:,1:end-1) = initial_path(:,1:end-1)*options_.ep.init+oo_.endo_simul(:,1:end-1)*(1-options_.ep.init);
+        if ep.init% Compute first order solution (Perturbation)...
+            ex = zeros(size(endo_simul_1,2),size(exo_simul_1,2));
+            ex(1:size(exo_simul_1,1),:) = exo_simul_1;
+            exo_simul_1 = ex;
+            initial_path = simult_(initial_conditions,dr,exo_simul_1(2:end,:),1);
+            endo_simul_1(:,1:end-1) = initial_path(:,1:end-1)*ep.init+endo_simul_1(:,1:end-1)*(1-ep.init);
+        else 
+            endo_simul_1 = repmat(steady_state,1,periods1+2);
         end
         % Solve a perfect foresight model.
         increase_periods = 0;
-        endo_simul = oo_.endo_simul;
+        endo_simul = endo_simul_1;
         while 1
             if ~increase_periods
                 if bytecode_flag
@@ -232,12 +245,12 @@ while (t<sample_size)
                     flag = 1;
                 end
                 if flag
-                    [flag,tmp] = solve_perfect_foresight_model(oo_.endo_simul,oo_.exo_simul,pfm);
+                    [flag,tmp] = solve_perfect_foresight_model(endo_simul_1,exo_simul_1,pfm1);
                 end
-                info.convergence = ~flag;
+                info_convergence = ~flag;
             end
             if verbosity
-                if info.convergence
+                if info_convergence
                     if t<10
                         disp(['Time:    ' int2str(t)  '. Convergence of the perfect foresight model solver!'])
                     elseif t<100
@@ -261,33 +274,33 @@ while (t<sample_size)
             end
             if do_not_check_stability_flag
                 % Exit from the while loop.
-                oo_.endo_simul = tmp;
+                endo_simul_1 = tmp;
                 break
             else
                 % Test if periods is big enough.
                 % Increase the number of periods.
-                options_.periods = options_.periods + options_.ep.step;
-                pfm.periods = options_.periods;
-                pfm.i_upd = pfm.ny+(1:pfm.periods*pfm.ny);
+                periods1 = periods1 + ep.step;
+                pfm1.periods = periods1;
+                pfm1.i_upd = pfm1.ny+(1:pfm1.periods*pfm1.ny);
                 % Increment the counter.
                 increase_periods = increase_periods + 1;
                 if verbosity
                     if t<10
-                        disp(['Time:    ' int2str(t)  '. I increase the number of periods to ' int2str(options_.periods) '.'])
+                        disp(['Time:    ' int2str(t)  '. I increase the number of periods to ' int2str(periods1) '.'])
                     elseif t<100
-                        disp(['Time:   ' int2str(t) '. I increase the number of periods to ' int2str(options_.periods) '.'])
+                        disp(['Time:   ' int2str(t) '. I increase the number of periods to ' int2str(periods1) '.'])
                     elseif t<1000
-                        disp(['Time:  ' int2str(t)  '. I increase the number of periods to ' int2str(options_.periods) '.'])
+                        disp(['Time:  ' int2str(t)  '. I increase the number of periods to ' int2str(periods1) '.'])
                     else
-                        disp(['Time: ' int2str(t)  '. I increase the number of periods to ' int2str(options_.periods) '.'])
+                        disp(['Time: ' int2str(t)  '. I increase the number of periods to ' int2str(periods1) '.'])
                     end
                 end
-                if info.convergence
+                if info_convergence
                     % If the previous call to the perfect foresight model solver exited
-                    % announcing that the routine converged, adapt the size of oo_.endo_simul
-                    % and oo_.exo_simul.
-                    oo_.endo_simul = [ tmp , repmat(oo_.steady_state,1,options_.ep.step) ];
-                    oo_.exo_simul  = [ oo_.exo_simul ; zeros(options_.ep.step,size(shocks,2)) ];
+                    % announcing that the routine converged, adapt the size of endo_simul_1
+                    % and exo_simul_1.
+                    endo_simul_1 = [ tmp , repmat(steady_state,1,ep.step) ];
+                    exo_simul_1  = [ exo_simul_1 ; zeros(ep.step,size(shocks,2)) ];
                     tmp_old = tmp;
                 else
                     % If the previous call to the perfect foresight model solver exited
@@ -295,8 +308,8 @@ while (t<sample_size)
                     % should change that, because in some circonstances it may usefull
                     % to know where the routine did stop, even if convergence was not
                     % achieved.
-                    oo_.endo_simul = [ oo_.endo_simul , repmat(oo_.steady_state,1,options_.ep.step) ];
-                    oo_.exo_simul  = [ oo_.exo_simul ; zeros(options_.ep.step,size(shocks,2)) ];
+                    endo_simul_1 = [ endo_simul_1 , repmat(steady_state,1,ep.step) ];
+                    exo_simul_1  = [ exo_simul_1 ; zeros(ep.step,size(shocks,2)) ];
                 end
                 % Solve the perfect foresight model with an increased number of periods.
                 if bytecode_flag
@@ -305,25 +318,25 @@ while (t<sample_size)
                     flag = 1;
                 end
                 if flag
-                    [flag,tmp] = solve_perfect_foresight_model(oo_.endo_simul,oo_.exo_simul,pfm);
+                    [flag,tmp] = solve_perfect_foresight_model(endo_simul_1,exo_simul_1,pfm1);
                 end
-                info.convergence = ~flag;
-                if info.convergence
+                info_convergence = ~flag;
+                if info_convergence
                     % If the solver achieved convergence, check that simulated paths did not
                     % change during the first periods.
                     % Compute the maximum deviation between old path and new path over the
                     % first periods
-                    delta = max(max(abs(tmp(:,2:options_.ep.fp)-tmp_old(:,2:options_.ep.fp))));
-                    if delta<options_.dynatol.x
+                    delta = max(max(abs(tmp(:,2:ep.fp)-tmp_old(:,2:ep.fp))));
+                    if delta < dynatol.x
                         % If the maximum deviation is close enough to zero, reset the number
                         % of periods to ep.periods
-                        options_.periods = options_.ep.periods;
-                        pfm.periods = options_.periods;
-                        pfm.i_upd = pfm.ny+(1:pfm.periods*pfm.ny);
-                        % Cut oo_.exo_simul and oo_.endo_simul consistently with the resetted
+                        periods1 = ep.periods;
+                        pfm1.periods = periods1;
+                        pfm1.i_upd = pfm1.ny+(1:pfm1.periods*pfm1.ny);
+                        % Cut exo_simul_1 and endo_simul_1 consistently with the resetted
                         % number of periods and exit from the while loop.
-                        oo_.exo_simul = oo_.exo_simul(1:(options_.periods+2),:);
-                        oo_.endo_simul = oo_.endo_simul(:,1:(options_.periods+2));
+                        exo_simul_1 = exo_simul_1(1:(periods1+2),:);
+                        endo_simul_1 = endo_simul_1(:,1:(periods1+2));
                         break
                     end
                 else
@@ -333,50 +346,51 @@ while (t<sample_size)
                     if increase_periods==10;
                         if verbosity
                             if t<10
-                                disp(['Time:    ' int2str(t)  '. Even with ' int2str(options_.periods) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
+                                disp(['Time:    ' int2str(t)  '. Even with ' int2str(periods1) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
                             elseif t<100
-                                disp(['Time:   ' int2str(t)  '. Even with ' int2str(options_.periods) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
+                                disp(['Time:   ' int2str(t)  '. Even with ' int2str(periods1) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
                             elseif t<1000
-                                disp(['Time:  ' int2str(t)  '. Even with ' int2str(options_.periods) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
+                                disp(['Time:  ' int2str(t)  '. Even with ' int2str(periods1) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
                             else
-                                disp(['Time: ' int2str(t)  '. Even with ' int2str(options_.periods) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
+                                disp(['Time: ' int2str(t)  '. Even with ' int2str(periods1) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
                             end
                         end
                         % Exit from the while loop.
                         break
                     end
-                end% if info.convergence
+                end% if info_convergence
             end
         end% while
-        if ~info.convergence% If exited from the while loop without achieving convergence, use an homotopic approach
-            [INFO,tmp] = homotopic_steps(.5,.01,pfm);
-            if (~isstruct(INFO) && isnan(INFO)) || ~INFO.convergence
-                [INFO,tmp] = homotopic_steps(0,.01,pfm);
-                if ~INFO.convergence
+        if ~info_convergence% If exited from the while loop without achieving convergence, use an homotopic approach
+            [INFO,tmp] = homotopic_steps(.5,.01,pfm1);
+            if (~isstruct(INFO) && isnan(INFO)) || ~info_convergence
+                [INFO,tmp] = homotopic_steps(0,.01,pfm1);
+                if ~info_convergence
                     disp('Homotopy:: No convergence of the perfect foresight model solver!')
                     error('I am not able to simulate this model!');
                 else
-                    info.convergence = 1;
-                    oo_.endo_simul = tmp;
-                    if verbosity && info.convergence
+                    info_convergence = 1;
+                    endo_simul_1 = tmp;
+                    if verbosity && info_convergence
                         disp('Homotopy:: Convergence of the perfect foresight model solver!')
                     end
                 end
             else
-                info.convergence = 1;
-                oo_.endo_simul = tmp;
-                if verbosity && info.convergence
+                info_convergence = 1;
+                endo_simul_1 = tmp;
+                if verbosity && info_convergence
                     disp('Homotopy:: Convergence of the perfect foresight model solver!')
                 end
             end
         end
         % Save results of the perfect foresight model solver.
-        if options_.ep.memory
-            mArray1(:,:,s,t) = oo_.endo_simul(:,1:100);
-            mArrat2(:,:,s,t) = transpose(oo_.exo_simul(1:100,:));
+        if ep.memory
+            mArray1(:,:,s,t) = endo_simul_1(:,1:100);
+            mArrat2(:,:,s,t) = transpose(exo_simul_1(1:100,:));
         end
-        time_series(:,t) = time_series(:,t)+ www(s)*oo_.endo_simul(:,2);
+        results(:,s) = www(s)*endo_simul_1(:,2);
     end
+    time_series(:,t) = sum(results,2);
     oo_.endo_simul(:,1:end-1) = oo_.endo_simul(:,2:end);
     oo_.endo_simul(:,1) = time_series(:,t);
     oo_.endo_simul(:,end) = oo_.steady_state;
@@ -386,6 +400,6 @@ dyn_waitbar_close(hh);
 
 oo_.endo_simul = oo_.steady_state;
 
-if options_.ep.memory
+if ep.memory
     save([M_.fname '_memory'],'mArray1','mArray2','www');
-end
\ No newline at end of file
+end
diff --git a/matlab/ep/extended_path_parfor.m b/matlab/ep/extended_path_parfor.m
new file mode 100644
index 0000000000000000000000000000000000000000..f3525cbda0849d7da9090fa385a86353d9fa7f37
--- /dev/null
+++ b/matlab/ep/extended_path_parfor.m
@@ -0,0 +1,405 @@
+function time_series = extended_path(initial_conditions,sample_size)
+% Stochastic simulation of a non linear DSGE model using the Extended Path method (Fair and Taylor 1983). A time
+% series of size T  is obtained by solving T perfect foresight models.
+%
+% INPUTS
+%  o initial_conditions     [double]    m*nlags array, where m is the number of endogenous variables in the model and
+%                                       nlags is the maximum number of lags.
+%  o sample_size            [integer]   scalar, size of the sample to be simulated.
+%
+% OUTPUTS
+%  o time_series            [double]    m*sample_size array, the simulations.
+%
+% ALGORITHM
+%
+% SPECIAL REQUIREMENTS
+
+% Copyright (C) 2009, 2010, 2011 Dynare Team
+%
+% This file is part of Dynare.
+%
+% Dynare is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% Dynare is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
+global M_ options_ oo_
+
+options_.verbosity = options_.ep.verbosity;
+verbosity = options_.ep.verbosity+options_.ep.debug;
+
+% Prepare a structure needed by the matlab implementation of the perfect foresight model solver
+pfm.lead_lag_incidence = M_.lead_lag_incidence;
+pfm.ny = M_.endo_nbr;
+pfm.max_lag = M_.maximum_endo_lag;
+pfm.nyp = nnz(pfm.lead_lag_incidence(1,:));
+pfm.iyp = find(pfm.lead_lag_incidence(1,:)>0);
+pfm.ny0 = nnz(pfm.lead_lag_incidence(2,:));
+pfm.iy0 = find(pfm.lead_lag_incidence(2,:)>0);
+pfm.nyf = nnz(pfm.lead_lag_incidence(3,:));
+pfm.iyf = find(pfm.lead_lag_incidence(3,:)>0);
+pfm.nd = pfm.nyp+pfm.ny0+pfm.nyf;
+pfm.nrc = pfm.nyf+1;
+pfm.isp = [1:pfm.nyp];
+pfm.is = [pfm.nyp+1:pfm.ny+pfm.nyp];
+pfm.isf = pfm.iyf+pfm.nyp;
+pfm.isf1 = [pfm.nyp+pfm.ny+1:pfm.nyf+pfm.nyp+pfm.ny+1];
+pfm.iz = [1:pfm.ny+pfm.nyp+pfm.nyf];
+pfm.periods = options_.ep.periods;
+pfm.steady_state = oo_.steady_state;
+pfm.params = M_.params;
+pfm.i_cols_1 = nonzeros(pfm.lead_lag_incidence(2:3,:)');
+pfm.i_cols_A1 = find(pfm.lead_lag_incidence(2:3,:)');
+pfm.i_cols_T = nonzeros(pfm.lead_lag_incidence(1:2,:)');
+pfm.i_cols_j = 1:pfm.nd;
+pfm.i_upd = pfm.ny+(1:pfm.periods*pfm.ny);
+pfm.dynamic_model = str2func([M_.fname,'_dynamic']);
+pfm.verbose = options_.ep.verbosity;
+pfm.maxit_ = options_.maxit_;
+pfm.tolerance = options_.dynatol.f;
+
+exo_nbr = M_.exo_nbr;
+periods = options_.periods;
+ep = options_.ep;
+steady_state = oo_.steady_state;
+dynatol = options_.dynatol;
+
+% Set default initial conditions.
+if isempty(initial_conditions)
+    initial_conditions = oo_.steady_state;
+end
+
+% Set maximum number of iterations for the deterministic solver.
+options_.maxit_ = options_.ep.maxit;
+
+% Set the number of periods for the perfect foresight model
+periods = options_.ep.periods;
+pfm.periods = options_.ep.periods;
+pfm.i_upd = pfm.ny+(1:pfm.periods*pfm.ny);
+
+% Set the algorithm for the perfect foresight solver
+options_.stack_solve_algo = options_.ep.stack_solve_algo;
+
+% Set check_stability flag
+do_not_check_stability_flag = ~options_.ep.check_stability;
+
+
+% Compute the first order reduced form if needed.
+%
+% REMARK. It is assumed that the user did run the same mod file with stoch_simul(order=1) and save
+% all the globals in a mat file called linear_reduced_form.mat;
+
+dr = struct();
+if options_.ep.init
+    options_.order = 1;
+    [dr,Info,M_,options_,oo_] = resol(1,M_,options_,oo_);
+end
+
+% Do not use a minimal number of perdiods for the perfect foresight solver (with bytecode and blocks)
+options_.minimal_solving_period = 100;%options_.ep.periods;
+
+% Initialize the exogenous variables.
+make_ex_;
+
+% Initialize the endogenous variables.
+make_y_;
+
+% Initialize the output array.
+time_series = zeros(M_.endo_nbr,sample_size);
+
+% Set the covariance matrix of the structural innovations.
+variances = diag(M_.Sigma_e);
+positive_var_indx = find(variances>0);
+effective_number_of_shocks = length(positive_var_indx);
+stdd = sqrt(variances(positive_var_indx));
+covariance_matrix = M_.Sigma_e(positive_var_indx,positive_var_indx);
+covariance_matrix_upper_cholesky = chol(covariance_matrix);
+
+% Set seed.
+if options_.ep.set_dynare_seed_to_default
+    set_dynare_seed('default');
+end
+
+% Set bytecode flag
+bytecode_flag = options_.ep.use_bytecode;
+
+% Simulate shocks.
+switch options_.ep.innovation_distribution
+  case 'gaussian'
+      oo_.ep.shocks = randn(sample_size,effective_number_of_shocks)*covariance_matrix_upper_cholesky;
+  otherwise
+    error(['extended_path:: ' options_.ep.innovation_distribution ' distribution for the structural innovations is not (yet) implemented!'])
+end
+
+% Set future shocks (Stochastic Extended Path approach)
+if options_.ep.stochastic.status
+    switch options_.ep.stochastic.method
+      case 'tensor'
+        switch options_.ep.stochastic.ortpol
+          case 'hermite'
+            [r,w] = gauss_hermite_weights_and_nodes(options_.ep.stochastic.nodes);
+          otherwise
+            error('extended_path:: Unknown orthogonal polynomial option!')
+        end
+        if options_.ep.stochastic.order*M_.exo_nbr>1
+            for i=1:options_.ep.stochastic.order*M_.exo_nbr
+                rr(i) = {r};
+                ww(i) = {w};
+            end
+            rrr = cartesian_product_of_sets(rr{:});
+            www = cartesian_product_of_sets(ww{:});
+        else
+            rrr = r;
+            www = w;
+        end
+        www = prod(www,2);
+        number_of_nodes = length(www);
+        relative_weights = www/max(www);
+        switch options_.ep.stochastic.pruned.status
+          case 1
+            jdx = find(relative_weights>options_.ep.stochastic.pruned.relative);
+            www = www(jdx);
+            www = www/sum(www);
+            rrr = rrr(jdx,:);
+          case 2
+            jdx = find(weights>options_.ep.stochastic.pruned.level);
+            www = www(jdx);
+            www = www/sum(www);
+            rrr = rrr(jdx,:);
+          otherwise
+            % Nothing to be done!
+        end
+        nnn = length(www);
+      otherwise
+        error('extended_path:: Unknown stochastic_method option!')
+    end
+else
+    rrr = zeros(1,effective_number_of_shocks);
+    www = 1;
+    nnn = 1;
+end
+
+% Initializes some variables.
+t  = 0;
+
+% Set waitbar (graphic or text  mode)
+hh = dyn_waitbar(0,'Please wait. Extended Path simulations...');
+set(hh,'Name','EP simulations.');
+
+if options_.ep.memory
+    mArray1 = zeros(M_.endo_nbr,100,nnn,sample_size);
+    mArray2 = zeros(M_.exo_nbr,100,nnn,sample_size);
+end
+
+% Main loop.
+while (t<sample_size)
+    if ~mod(t,10)
+        dyn_waitbar(t/sample_size,hh,'Please wait. Extended Path simulations...');
+    end
+    % Set period index.
+    t = t+1;
+    shocks = oo_.ep.shocks(t,:);
+    % Put it in oo_.exo_simul (second line).
+    oo_.exo_simul(2,positive_var_indx) = shocks;
+    parfor s = 1:nnn
+        periods1 = periods;
+        exo_simul_1 = zeros(periods1+2,exo_nbr);
+        pfm1 = pfm;
+        info_convergence = 0;
+        switch ep.stochastic.ortpol
+          case 'hermite'
+            for u=1:ep.stochastic.order
+                exo_simul_1(2+u,positive_var_indx) = rrr(s,(((u-1)*effective_number_of_shocks)+1):(u*effective_number_of_shocks))*covariance_matrix_upper_cholesky;
+            end
+          otherwise
+            error('extended_path:: Unknown orthogonal polynomial option!')
+        end
+        if ep.stochastic.order && ep.stochastic.scramble
+            exo_simul_1(2+ep.stochastic.order+1:2+ep.stochastic.order+ep.stochastic.scramble,positive_var_indx) = ...
+                randn(ep.stochastic.scramble,effective_number_of_shocks)*covariance_matrix_upper_cholesky;
+        end
+        if ep.init% Compute first order solution (Perturbation)...
+            ex = zeros(size(endo_simul_1,2),size(exo_simul_1,2));
+            ex(1:size(exo_simul_1,1),:) = exo_simul_1;
+            exo_simul_1 = ex;
+            initial_path = simult_(initial_conditions,dr,exo_simul_1(2:end,:),1);
+            endo_simul_1(:,1:end-1) = initial_path(:,1:end-1)*ep.init+endo_simul_1(:,1:end-1)*(1-ep.init);
+        else 
+            endo_simul_1 = repmat(steady_state,1,periods1+2);
+        end
+        % Solve a perfect foresight model.
+        increase_periods = 0;
+        endo_simul = endo_simul_1;
+        while 1
+            if ~increase_periods
+                if bytecode_flag
+                    [flag,tmp] = bytecode('dynamic');
+                else
+                    flag = 1;
+                end
+                if flag
+                    [flag,tmp] = solve_perfect_foresight_model(endo_simul_1,exo_simul_1,pfm1);
+                end
+                info_convergence = ~flag;
+            end
+            if verbosity
+                if info_convergence
+                    if t<10
+                        disp(['Time:    ' int2str(t)  '. Convergence of the perfect foresight model solver!'])
+                    elseif t<100
+                        disp(['Time:   ' int2str(t)  '. Convergence of the perfect foresight model solver!'])
+                    elseif t<1000
+                        disp(['Time:  ' int2str(t)  '. Convergence of the perfect foresight model solver!'])
+                    else
+                        disp(['Time: ' int2str(t)  '. Convergence of the perfect foresight model solver!'])
+                    end
+                else
+                    if t<10
+                        disp(['Time:    ' int2str(t)  '. No convergence of the perfect foresight model solver!'])
+                    elseif t<100
+                        disp(['Time:   ' int2str(t)  '. No convergence of the perfect foresight model solver!'])
+                    elseif t<1000
+                        disp(['Time:  ' int2str(t)  '. No convergence of the perfect foresight model solver!'])
+                    else
+                        disp(['Time: ' int2str(t)  '. No convergence of the perfect foresight model solver!'])
+                    end
+                end
+            end
+            if do_not_check_stability_flag
+                % Exit from the while loop.
+                endo_simul_1 = tmp;
+                break
+            else
+                % Test if periods is big enough.
+                % Increase the number of periods.
+                periods1 = periods1 + ep.step;
+                pfm1.periods = periods1;
+                pfm1.i_upd = pfm1.ny+(1:pfm1.periods*pfm1.ny);
+                % Increment the counter.
+                increase_periods = increase_periods + 1;
+                if verbosity
+                    if t<10
+                        disp(['Time:    ' int2str(t)  '. I increase the number of periods to ' int2str(periods1) '.'])
+                    elseif t<100
+                        disp(['Time:   ' int2str(t) '. I increase the number of periods to ' int2str(periods1) '.'])
+                    elseif t<1000
+                        disp(['Time:  ' int2str(t)  '. I increase the number of periods to ' int2str(periods1) '.'])
+                    else
+                        disp(['Time: ' int2str(t)  '. I increase the number of periods to ' int2str(periods1) '.'])
+                    end
+                end
+                if info_convergence
+                    % If the previous call to the perfect foresight model solver exited
+                    % announcing that the routine converged, adapt the size of endo_simul_1
+                    % and exo_simul_1.
+                    endo_simul_1 = [ tmp , repmat(steady_state,1,ep.step) ];
+                    exo_simul_1  = [ exo_simul_1 ; zeros(ep.step,size(shocks,2)) ];
+                    tmp_old = tmp;
+                else
+                    % If the previous call to the perfect foresight model solver exited
+                    % announcing that the routine did not converge, then tmp=1... Maybe
+                    % should change that, because in some circonstances it may usefull
+                    % to know where the routine did stop, even if convergence was not
+                    % achieved.
+                    endo_simul_1 = [ endo_simul_1 , repmat(steady_state,1,ep.step) ];
+                    exo_simul_1  = [ exo_simul_1 ; zeros(ep.step,size(shocks,2)) ];
+                end
+                % Solve the perfect foresight model with an increased number of periods.
+                if bytecode_flag
+                    [flag,tmp] = bytecode('dynamic');
+                else
+                    flag = 1;
+                end
+                if flag
+                    [flag,tmp] = solve_perfect_foresight_model(endo_simul_1,exo_simul_1,pfm1);
+                end
+                info_convergence = ~flag;
+                if info_convergence
+                    % If the solver achieved convergence, check that simulated paths did not
+                    % change during the first periods.
+                    % Compute the maximum deviation between old path and new path over the
+                    % first periods
+                    delta = max(max(abs(tmp(:,2:ep.fp)-tmp_old(:,2:ep.fp))));
+                    if delta < dynatol.x
+                        % If the maximum deviation is close enough to zero, reset the number
+                        % of periods to ep.periods
+                        periods1 = ep.periods;
+                        pfm1.periods = periods1;
+                        pfm1.i_upd = pfm1.ny+(1:pfm1.periods*pfm1.ny);
+                        % Cut exo_simul_1 and endo_simul_1 consistently with the resetted
+                        % number of periods and exit from the while loop.
+                        exo_simul_1 = exo_simul_1(1:(periods1+2),:);
+                        endo_simul_1 = endo_simul_1(:,1:(periods1+2));
+                        break
+                    end
+                else
+                    % The solver did not converge... Try to solve the model again with a bigger
+                    % number of periods, except if the number of periods has been increased more
+                    % than 10 times.
+                    if increase_periods==10;
+                        if verbosity
+                            if t<10
+                                disp(['Time:    ' int2str(t)  '. Even with ' int2str(periods1) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
+                            elseif t<100
+                                disp(['Time:   ' int2str(t)  '. Even with ' int2str(periods1) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
+                            elseif t<1000
+                                disp(['Time:  ' int2str(t)  '. Even with ' int2str(periods1) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
+                            else
+                                disp(['Time: ' int2str(t)  '. Even with ' int2str(periods1) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
+                            end
+                        end
+                        % Exit from the while loop.
+                        break
+                    end
+                end% if info_convergence
+            end
+        end% while
+        if ~info_convergence% If exited from the while loop without achieving convergence, use an homotopic approach
+            [INFO,tmp] = homotopic_steps(.5,.01,pfm1);
+            if (~isstruct(INFO) && isnan(INFO)) || ~info_convergence
+                [INFO,tmp] = homotopic_steps(0,.01,pfm1);
+                if ~info_convergence
+                    disp('Homotopy:: No convergence of the perfect foresight model solver!')
+                    error('I am not able to simulate this model!');
+                else
+                    info_convergence = 1;
+                    endo_simul_1 = tmp;
+                    if verbosity && info_convergence
+                        disp('Homotopy:: Convergence of the perfect foresight model solver!')
+                    end
+                end
+            else
+                info_convergence = 1;
+                endo_simul_1 = tmp;
+                if verbosity && info_convergence
+                    disp('Homotopy:: Convergence of the perfect foresight model solver!')
+                end
+            end
+        end
+        % Save results of the perfect foresight model solver.
+        if ep.memory
+            mArray1(:,:,s,t) = endo_simul_1(:,1:100);
+            mArrat2(:,:,s,t) = transpose(exo_simul_1(1:100,:));
+        end
+        results(:,s) = www(s)*endo_simul_1(:,2);
+    end
+    time_series(:,t) = sum(results,2);
+    oo_.endo_simul(:,1:end-1) = oo_.endo_simul(:,2:end);
+    oo_.endo_simul(:,1) = time_series(:,t);
+    oo_.endo_simul(:,end) = oo_.steady_state;
+end% (while) loop over t
+
+dyn_waitbar_close(hh);
+
+oo_.endo_simul = oo_.steady_state;
+
+if ep.memory
+    save([M_.fname '_memory'],'mArray1','mArray2','www');
+end