From b70d99d1b4af4e6799858902868300a246e3b492 Mon Sep 17 00:00:00 2001 From: Michel Juillard <michel.juillard@mjui.fr> Date: Fri, 27 Dec 2019 18:58:32 +0100 Subject: [PATCH] Refactoring of initval_file and histval_file initval_file and hisvfal_file are now more flexible and have functionalities similar to option datafile in estimation. Closes: #1671 --- doc/manual/source/the-model-file.rst | 531 +++++++++++++++++- matlab/global_initialization.m | 1 + matlab/histvalf.m | 97 ++-- matlab/histvalf_initvalf.m | 223 ++++++++ matlab/initvalf.m | 94 +--- matlab/perfect-foresight-models/make_ex_.m | 34 +- matlab/perfect-foresight-models/make_y_.m | 35 +- .../perfect_foresight_setup.m | 7 +- matlab/perfect-foresight-models/sim1.m | 4 +- matlab/smoother2histval.m | 97 ++-- preprocessor | 2 +- tests/.gitignore | 6 +- tests/Makefile.am | 47 +- tests/histval_initval_file/my_assert.m | 4 + tests/histval_initval_file/ramst_data.mod | 68 +++ tests/histval_initval_file/ramst_data.xls | Bin 0 -> 19968 bytes tests/histval_initval_file/ramst_data.xlsx | Bin 0 -> 8575 bytes .../ramst_datafile.mod | 0 .../ramst_histval_file.mod | 96 ++++ .../ramst_initval_file.mod | 113 ++++ .../ramst_initval_file_data.m | 14 + .../histval_initval_file/sim_exo_lead_lag.mod | 43 ++ .../sim_exo_lead_lag_histvalf.mod | 76 +++ .../sim_exo_lead_lag_initvalf.mod | 56 ++ .../sim_histvalf_stoch_simul.mod | 86 +++ tests/histval_initval_file_unit_tests.m | 220 ++++++++ tests/initval_file/ramst_initval_file.mod | 55 -- tests/smoother2histval/fs2000_simul.mod | 6 +- tests/smoother2histval/fs2000_smooth.mod | 2 +- 29 files changed, 1712 insertions(+), 305 deletions(-) create mode 100644 matlab/histvalf_initvalf.m create mode 100644 tests/histval_initval_file/my_assert.m create mode 100644 tests/histval_initval_file/ramst_data.mod create mode 100644 tests/histval_initval_file/ramst_data.xls create mode 100644 tests/histval_initval_file/ramst_data.xlsx rename tests/{initval_file => histval_initval_file}/ramst_datafile.mod (100%) create mode 100644 tests/histval_initval_file/ramst_histval_file.mod create mode 100644 tests/histval_initval_file/ramst_initval_file.mod create mode 100644 tests/histval_initval_file/ramst_initval_file_data.m create mode 100644 tests/histval_initval_file/sim_exo_lead_lag.mod create mode 100644 tests/histval_initval_file/sim_exo_lead_lag_histvalf.mod create mode 100644 tests/histval_initval_file/sim_exo_lead_lag_initvalf.mod create mode 100644 tests/histval_initval_file/sim_histvalf_stoch_simul.mod create mode 100644 tests/histval_initval_file_unit_tests.m delete mode 100644 tests/initval_file/ramst_initval_file.mod diff --git a/doc/manual/source/the-model-file.rst b/doc/manual/source/the-model-file.rst index 07101fdb6..fb077a848 100644 --- a/doc/manual/source/the-model-file.rst +++ b/doc/manual/source/the-model-file.rst @@ -1769,7 +1769,7 @@ in this case ``initval`` is used to specify the terminal conditions. in the last ``initval`` or ``endval`` block (or the steady state file if you provided one, see :ref:`st-st`). -.. command:: initval_file (filename = FILENAME); +.. command:: initval_file (OPTIONS...); |br| In a deterministic setup, this command is used to specify a path for all endogenous and exogenous variables. The length of @@ -1786,33 +1786,534 @@ in this case ``initval`` is used to specify the terminal conditions. by the path for endogenous variables for the simulation periods (excluding initial and terminal conditions) - The command accepts three file formats: + In perfect foresight and stochastic contexts, ``steady`` uses the + first observation loaded by ``initval_file`` as guess value to + solve for the steady state of the model. This first observation is + determined by the ``first_obs`` option when it is used. + + Don’t mix ``initval_file`` with ``initval`` statements. However, + after ``initval_file``, you can modify the historical initial + values with ``histval`` or ``histval_file`` statement. + + There can be several ``initval_file`` statements in a model + file. Each statement resets ``oo_.initval_series``. + + *Options* + + .. option:: datafile = FILENAME + filename = FILENAME (deprecated) + + The name of the file containing the data. It must be included in quotes if the filename + contains a path or an extension. The command accepts the following file formats: * M-file (extension ``.m``): for each endogenous and exogenous variable, the file must contain a row or column vector of - the same name. Their length must be ``periods + - M_.maximum_lag + M_.maximum_lead`` + the same name. * MAT-file (extension ``.mat``): same as for M-files. * Excel file (extension ``.xls`` or ``.xlsx``): for each - endogenous and exogenous, the file must contain a column of - the same name. NB: Octave only supports the ``.xlsx`` file - extension and must have the `io`_ package installed (easily - done via octave by typing ‘``pkg install -forge io``’). + endogenous and exogenous variable, the file must contain a + column of the same name. NB: Octave only supports the + ``.xlsx`` file extension and must have the `io`_ package + installed (easily done via octave by typing ‘``pkg + install -forge io``’). The first column may contain the date + of each observation. + * CSV files (extension ``.csv``): for each endogenous and + exogenous variable, the file must contain a column of the + same name. The first column may contain the date of each + observation. + + .. option:: first_obs = {INTEGER | DATE} + + The observation number or the date (see + :ref:`dates-members`) of the first observation to be used in the file + + .. option:: first_simulation_period = {INTEGER | DATE} + + The observation number in the file or the date (see + :ref:`dates <dates-members>`) at which the simulation (or the forecast) is + starting. This option avoids to have to compute the maximum + number of lags in the model. The observation corresponding to + the first period of simulation doesn’t need to exist in the + file as the only dates necessary for initialization are before + that date. + + .. option:: last_obs = {INTEGER | DATE} + + The observaton number or the date (see + :ref:`dates-members`) of the last observation to be used in + the file. + + .. option:: nobs = INTEGER + + The number of observations to be used in the file (starting + with first of ``first_obs`` observation). + + .. option:: series = DSERIES NAME + + The name of a DSERIES containing the data (see :ref:`dseries-members`) + + *Example 1* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + + The initial and terminal values are taken from file + ``mydata.csv`` (nothing guarantees that these vales are the + steady state of the model). The guess value for the + trajectories are also taken from the file. The file must + contain at least 203 observations of variables ``c``, ``x`` + and ``e``. If there are more than 203 observations available + in the file, the first 203 are used by + ``perfect_foresight_setup(periods=200)``. + Note that the values for the auxiliary variable corresponding + to ``x(-2)`` are automatically computed by ``initval_file``. + + *Example 2* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv, + first_obs=10); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + + The initial and terminal values are taken from file + ``mydata.csv`` starting with the 10th observation in the + file. There must be at least 212 observations in the file. + + *Example 3* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + ds = dseries(mydata.csv); + lds = log(ds); + + initval_file(series=lds, + first_obs=2010Q1); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; - .. warning:: The extension must be omitted in the command - argument. Dynare will automatically figure out the - extension and select the appropriate file type. If - there are several files with the same name but different - extensions, then the order of precedence is as follows: - first ``.m``, then ``.mat``, ``.xls`` and finally ``.xlsx``. + The initial and terminal values are taken from dseries + ``lds``. All observations are loaded starting with the 1st quarter of + 2010 until the end of the file. There must be data available + at least until 2050Q3. + + *Example 4* + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; -.. command:: histval_file (filename = FILENAME); + initval_file(datafile=mydata.csv, + first_simulation_period=2010Q1); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + + The initial and terminal values are taken from file + ``mydata.csv``. The observations in the file must have + dates. All observations are loaded from the 3rd quarter of + 2009 until the end of the file. There must be data available + in the file at least until 2050Q1. + + *Example 5* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv, + last_obs = 212); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + + The initial and terminal values are taken from file + ``mydata.csv``. The first 212 observations are loaded and the + first 203 observations will be used by + ``perfect_foresight_setup(periods=200)``. + + *Example 6* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv, + first_obs = 10, + nobs = 203); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + + The initial and terminal values are taken from file + ``mydata.csv``. Observations 10 to 212 are loaded. + + *Example 7* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv, + first_obs = 10); + + steady; + + The values of the 10th observation of ``mydata.csv`` are used + as guess value to compute the steady state. The exogenous + variables are set to values found in the file or zero if these + variables aren't present. + +.. command:: histval_file (OPTIONS...); |br| This command is equivalent to ``histval``, except that it reads its input from a file, and is typically used in conjunction with ``smoother2histval``. + *Options* + + .. option:: datafile = FILENAME + filename = FILENAME (deprecated) + + The name of the file containing the data. The command accepts + the following file formats: + + * M-file (extension ``.m``): for each endogenous and exogenous + variable, the file must contain a row or column vector of + the same name. + * MAT-file (extension ``.mat``): same as for M-files. + * Excel file (extension ``.xls`` or ``.xlsx``): for each + endogenous and exogenous variable, the file must contain a + column of the same name. NB: Octave only supports the + ``.xlsx`` file extension and must have the `io`_ package + installed (easily done via octave by typing ‘``pkg + install -forge io``’). The first column may contain the + date of each observation. + * CSV files (extension ``.csv``): for each endogenous and + exogenous variable, the file must contain a column of the + same name. The first column may contain the date of each + observation. + + .. option:: first_obs = {INTEGER | DATE} + + The observation number or the date (see :ref:`dates-members`) of + the first observation to be used in the file + + .. option:: first_simulation_period = {INTEGER | DATE} + + The observation number in the file or the date (see + :ref:`dates-members`) at which the simulation (or the forecast) is + starting. This option avoids to have to compute the maximum + number of lags in the model. The observation corresponding to + the first period of simulation doesn’t need to exist in the + file as the only dates necessary for initialization are before + that date. + + .. option:: last_obs = {INTEGER | DATE} + + The observation number or the date (see :ref:`dates-members`) of the + last observation to be used in the file. + + .. option:: nobs = INTEGER + + The number of observations to be used in the file (starting + with first of ``first_obs`` observation). + + .. option:: series = DSERIES NAME + + The name of a DSERIES containing the data (see :ref:`dseries-members`) + + *Example 1* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + steady_state_model; + x = 0; + c = exp(c*x/(1 - d)); + end; + + histval_file(datafile=mydata.csv); + + stoch_simul(order=1,periods=100); + + The initial values for the stochastic simulation are taken + from the two first rows of file ``mydata.csv``. + + *Example 2* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + histval_file(datafile=mydata.csv, + first_obs=10); + + stoch_simul(order=1,periods=100); + + The initial values for the stochastic simulation are taken + from rows 10 and 11 of file ``mydata.csv``. + + + *Example 3* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + histval_file(datafile=mydata.csv, + first_obs=2010Q1); + + stoch_simul(order=1,periods=100); + + The initial values for the stochastic simulation are taken + from observations 2010Q1 and 2010Q2 of file ``mydata.csv``. + + *Example 4* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + histval_file(datafile=mydata.csv, + first_simulation_period=2010Q1) + + stoch_simul(order=1,periods=100); + + The initial values for the stochastic simulation are taken + from observations 2009Q3 and 2009Q4 of file ``mydata.csv``. + + *Example 5* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + histval_file(datafile=mydata.csv, + last_obs = 4); + + stoch_simul(order=1,periods=100); + + The initial values for the stochastic simulation are taken + from the two first rows of file ``mydata.csv``. + + *Example 6* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv, + first_obs = 10, + nobs = 4); + + stoch_simul(order=1,periods=100); + + The initial values for the stochastic simulation are taken + from rows 10 and 11 of file ``mydata.csv``. + + *Example 7* + + :: + + var c x; + varexo e; + parameters a b c d; + + a = 1.5; + b = -0,6; + c = 0.5; + d = 0.5; + + model; + x = a*x(-1) + b*x(-2) + e; + log(c) = c*x + d*log(c(+1)); + end; + + initval_file(datafile=mydata.csv, + first_obs=10); + + histval_file(datafile=myotherdata.csv); + + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + + Historical initial values for the simulation are taken from + the two first rows of file ``myotherdata.csv``. + + Terminal values and guess values for the simulation are taken + from file ``mydata.csv`` starting with the 12th observation in + the file. There must be at least 212 observations in the file. .. _shocks-exo: diff --git a/matlab/global_initialization.m b/matlab/global_initialization.m index 1b35a37e5..8f5f909d5 100644 --- a/matlab/global_initialization.m +++ b/matlab/global_initialization.m @@ -92,6 +92,7 @@ oo_.dr = []; oo_.exo_steady_state = []; oo_.exo_det_steady_state = []; oo_.exo_det_simul = []; +oo_.initval_series = dseries(); oo_.gui.ran_estimation = false; oo_.gui.ran_stoch_simul = false; diff --git a/matlab/histvalf.m b/matlab/histvalf.m index f1f9fb098..f15e72511 100644 --- a/matlab/histvalf.m +++ b/matlab/histvalf.m @@ -1,5 +1,5 @@ -function histvalf(fname) -%function histvalf(fname) +function [endo_histval, exo_histval, exo_det_histval] = histvalf(M, options) +%function [endo_histval, exo_histval, exo_det_histval] = histvalf(M, options) % Sets initial values for simulation using values contained in `fname`, a % file possibly created by a call to `smoother2histval` % @@ -13,7 +13,7 @@ function histvalf(fname) % none -% Copyright (C) 2014-2019 Dynare Team +% Copyright (C) 2014-2020 Dynare Team % % This file is part of Dynare. % @@ -30,72 +30,41 @@ function histvalf(fname) % You should have received a copy of the GNU General Public License % along with Dynare. If not, see <http://www.gnu.org/licenses/>. -global M_ oo_ ex0_ - -if ~exist(fname, 'file') - error(['Can''t find datafile: ' fname ]); +if ~isfield(options, 'nobs') || isempty(options.nobs) + options.nobs = M.orig_maximum_lag; end -M_.endo_histval = repmat(oo_.steady_state, 1, M_.maximum_endo_lag); - -% Also fill in oo_.exo_simul: necessary if we are in deterministic context, -% since aux vars for lagged exo are not created in this case -if isempty(oo_.exo_simul) - if isempty(ex0_) - oo_.exo_simul = repmat(oo_.exo_steady_state',M_.maximum_lag,1); +if ~isfield(options, 'first_obs') || isempty(options.first_obs) + if isfield(options, 'first_simulation_period') + options.first_obs = options.first_simulation_period ... + - options.nobs; else - oo_.exo_simul = repmat(ex0_',M_.maximum_lag,1); + options.first_obs = 1; + end +elseif isfield(options, 'first_simulation_period') + nobs = options.first_simulation_period - opions_.first_obs; + if options.nobs ~= nobs + error(sprintf(['HISTVALF: first_obs = %d and', ... + ' first_simulation_period = %d', ... + ' don''t provide for the number of' ... + ' lags in the model.'], ... + options.first_obs, ... + options.first_simulation_period)) end end -S = load(fname); - -outvars = fieldnames(S); +series = histvalf_initvalf('HISTVAL', M, options); +% capture the difference between stochastic and +% perfect foresight setup +k = M.orig_maximum_lag - M.maximum_lag + 1; +endo_histval = series{M.endo_names{:}}.data(k:end, :)'; -for i = 1:length(outvars) - ov_ = outvars{i}; - if ov_(end) == '_' - ov = ov_(1:end-1); - j = strmatch(ov, M_.endo_names, 'exact'); - if isempty(j) - warning(['smoother2histval: output variable ' ov ' does not exist.']) - end - else - % Lagged endogenous or exogenous, search through aux vars - undidx = find(ov_ == '_', 1, 'last'); % Index of last underscore in name - ov = ov_(1:(undidx-1)); - lead_lag = ov_((undidx+1):end); - lead_lag = regexprep(lead_lag,'l','-'); - lead_lag = str2num(lead_lag); - j = []; - for i = 1:length(M_.aux_vars) - if M_.aux_vars(i).type ~= 1 && M_.aux_vars(i).type ~= 3 - continue - end - if M_.aux_vars(i).type == 1 - % Endogenous - orig_var = M_.endo_names{M_.aux_vars(i).orig_index}; - else - % Exogenous - orig_var = M_.exo_names{M_.aux_vars(i).orig_index}; - end - if strcmp(orig_var, ov) && M_.aux_vars(i).orig_lead_lag == lead_lag - j = M_.aux_vars(i).endo_index; - end - end - if isempty(j) - % There is no aux var corresponding to (orig_var, lead_lag). - % If this is an exogenous variable, then it means we should put - % the value in oo_.exo_simul (we are probably in deterministic - % context). - k = strmatch(ov, M_.exo_names); - if isempty(k) - warning(['smoother2histval: output variable ' ov '(' lead_lag ') does not exist.']) - else - oo_.exo_simul((M_.maximum_lag-M_.maximum_endo_lag+1):M_.maximum_lag, k) = S.(ov_); - end - continue - end - end - M_.endo_histval(j, :) = S.(ov_); +exo_histval = []; +if M.exo_nbr + exo_histval = series{M.exo_names{:}}.data(k:end, :)'; end +exo_det_histval = []; +if M.exo_det_nbr + exo_det_histval = series{M.exo_names{:}}.data(k:end, :)'; +end + diff --git a/matlab/histvalf_initvalf.m b/matlab/histvalf_initvalf.m new file mode 100644 index 000000000..e65779c49 --- /dev/null +++ b/matlab/histvalf_initvalf.m @@ -0,0 +1,223 @@ +function series = histvalf_initvalf(caller, M, options) +% function initvalf(M) +% +% handles options for histvalf_initvalf() and initvalf() +% +% INPUTS +% caller: string, name of calling function +% M: model structure +% options: options specific to initivalf +% +% OUTPUTS +% series: dseries containing selected data from a file or a dseries +% + +% Copyright (C) 2003-2020 Dynare Team +% +% This file is part of Dynare. +% +% Dynare is free software: you can redistribute it and/or modify +% it under the terms of the GNU General Public License as published by +% the Free Software Foundation, either version 3 of the License, or +% (at your option) any later version. +% +% Dynare is distributed in the hope that it will be useful, +% but WITHOUT ANY WARRANTY; without even the implied warranty of +% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% GNU General Public License for more details. +% +% You should have received a copy of the GNU General Public License +% along with Dynare. If not, see <http://www.gnu.org/licenses/>. + + +% dseries +if isfield(options, 'series') + series = options.series; + dseries_ispresent = true; +else + dseries_ispresent = false; +end + +% file +datafile = ''; +if isfield(options, 'filename') + warning([caller, '_FILE: option FILENAME is deprecated, please use', ... + ' option DATAFILE']) + if dseries_ispresent + error([caller, '_FILE: you can''t use option FILENAME and option SERIES', ... + ' at the same time']) + end + if isfield(options, 'datafile') + error([caller, '_FILE: you can''t use option DATAFILE and option FILENAME', ... + ' at the same time']) + end + datafile = options.filename; +end + +if isfield(options, 'datafile') + if dseries_ispresent + error([caller, '_FILE: you can''t use option DATAFILE and option SERIES', ... + ' at the same time']) + end + datafile = options.datafile; +end + +if datafile + [directory,basename,extension] = fileparts(datafile); + % Auto-detect extension if not provided + if isempty(extension) + if exist([basename '.m'],'file') + extension = '.m'; + elseif exist([basename '.mat'],'file') + extension = '.mat'; + elseif exist([basename '.xls'],'file') + extension = '.xls'; + elseif exist([basename '.xlsx'],'file') + extension = '.xlsx'; + else + error([caller, '_FILE: Can''t find datafile: ' basename '.{m,mat,xls,xlsx}']); + end + end + + fullname = [basename extension]; + series = dseries(fullname); +end + +% checking that all variable are present +error_flag = false; +for i = 1:M.orig_endo_nbr + if ~series.exist(M.endo_names{i}) + disp(sprintf('%s_FILE: endogenous variable %s is missing', ... + caller, M.endo_names{i})) + error_flag = true; + end +end + +for i = 1:M.exo_nbr + if ~series.exist(M.exo_names{i}) + disp(sprintf('%s_FILE: exogenous variable %s is missing', ... + caller, M.exo_names{i})) + error_flag = true; + end +end + +for i = 1:M.exo_det_nbr + if ~series.exist(M.exo_det_names{i}) + disp(sprintf('%s_FILE: exo_det variable %s is missing', ... + caller, M.exo_det_names{i})) + error_flag = true; + end +end + +if error_flag + error([caller, '_FILE: some variables are missing']) +end + +if exist(sprintf('+%s/dynamic_set_auxiliary_series', M.fname), 'file') + series = feval(sprintf('%s.dynamic_set_auxiliary_series', M.fname), series, M.params); +end + +% selecting observations +if isfield(options, 'nobs') + nobs = options.nobs; +else + nobs = 0; +end + +periods = series.dates; +nobs0 = series.nobs; + +first_obs_ispresent = false; +last_obs_ispresent = false; +if isfield(options, 'first_obs') + i = options.first_obs; + if i < 1 + error([caller, '_FILE: the first requested period is before available', ... + ' data.']) + elseif i > nobs0 + error([caller, '_FILE: the first requested period is after available', ... + ' data.']) + end + first_obs = periods(i); + if nobs > 0 + last_obs = first_obs + nobs - 1; + last_obs_ispresent = true; + end + first_obs_ispresent = true; +elseif isfield(options, 'firstobs') + first_obs = options.firstobs; + if nobs > 0 + last_obs = first_obs + nobs - 1; + last_obs_ispresent = true; + end + first_obs_ispresent = true; +end + +if last_obs_ispresent + if isfield(options, 'last_obs') + i = options.last_obs; + if i < 1 + error([caller, '_FILE: the last requested period is before available', ... + ' data.']) + elseif i > nobs0 + error([caller, '_FILE: the last requested period is after available', ... + ' data.']) + end + if last_obs ~= periods(i) + error([caller, '_FILE: FIST_OBS, LAST_OBS and NOBS contain', ... + ' inconsistent information. Use only two of these', ... + ' options.']) + end + elseif isfield(options, 'lastobs') + if last_obs ~= options.lastobs + error([caller, '_FILE: FIST_OBS, LAST_OBS and NOBS contain', ... + ' inconsistent information. Use only two of these', ... + ' options.']) + end + end +elseif isfield(options, 'last_obs') + i = options.last_obs; + if i < 1 + error([caller, '_FILE: the last requested period is before available', ... + ' data.']) + elseif i > nobs0 + error([caller, '_FILE: the last requested period is after available', ... + ' data.']) + end + last_obs = periods(i); + if nobs > 0 + first_obs = last_obs - nobs + 1; + first_obs_ispresent = true; + end + last_obs_ispresent = true; +elseif isfield(options, 'lastobs') + last_obs = options.lastobs; + if nobs > 0 + first_obs = last_obs - nobs + 1; + first_obs_ispresent = true; + end + last_obs_ispresent = true; +end + +if ~first_obs_ispresent + first_obs = periods(1); +end + +if ~last_obs_ispresent + if nobs > 0 + last_obs = first_obs + nobs - 1; + else + last_obs = periods(end); + end +end + +if first_obs < series.init + error([caller, '_FILE: the first requested period is before available', ... + ' data.']) +elseif last_obs > series.last + error([caller, '_FILE: the last requested period is after available', ... + ' data.']) +else + series = series(first_obs:last_obs); +end + diff --git a/matlab/initvalf.m b/matlab/initvalf.m index f301e045f..17a5ff54a 100644 --- a/matlab/initvalf.m +++ b/matlab/initvalf.m @@ -1,19 +1,18 @@ -function initvalf(fname_) -% function initvalf(fname_) +function series = initvalf(M, options) +% function initvalf(M) % -% Reads an initial path from the 'fname_' file for exogenous and endogenous variables +% handles options for histvalf() and initvalf() % % INPUTS -% fname_: name of the function or file containing the data +% caller: string, name of calling function +% M: model structure +% options: options specific to initivalf % % OUTPUTS -% none +% series: dseries containing selected data from a file or a dseries % -% SPECIAL REQUIREMENTS -% All variables local to this function have an underscore appended to -% their name, to minimize clashes with model variables loaded by this function. -% Copyright (C) 2003-2018 Dynare Team +% Copyright (C) 2003-2020 Dynare Team % % This file is part of Dynare. % @@ -30,81 +29,6 @@ function initvalf(fname_) % You should have received a copy of the GNU General Public License % along with Dynare. If not, see <http://www.gnu.org/licenses/>. -global M_ oo_ options_ +series = histvalf_initvalf('INITVALF', M, options); -series_ = 1; -[directory,basename,extension] = fileparts(fname_); - -% Auto-detect extension if not provided -if isempty(extension) - if exist([basename '.m'],'file') - extension = '.m'; - elseif exist([basename '.mat'],'file') - extension = '.mat'; - elseif exist([basename '.xls'],'file') - extension = '.xls'; - elseif exist([basename '.xlsx'],'file') - extension = '.xlsx'; - else - error(['Can''t find datafile: ' basename '.{m,mat,xls,xlsx}']); - end -end - -fullname = [basename extension]; - -if ~exist(fullname) - error(['Can''t find datafile: ' fullname ]); -end - -switch (extension) - case '.m' - eval(basename); - case '.mat' - load(basename); - case { '.xls', '.xlsx' } - [data_,names_v_]=xlsread(fullname); % Octave needs the extension explicitly - series_=0; - otherwise - error(['Unsupported extension for datafile: ' extension]) -end - -options_.initval_file = true; -oo_.endo_simul = []; -oo_.exo_simul = []; - -for i_=1:length(M_.endo_names) - if series_ == 1 - x_ = eval(M_.endo_names{i_}); - if size(x_,2)>size(x_,1) %oo_.endo_simul must be collection of row vectors - oo_.endo_simul = [oo_.endo_simul; x_]; - else %transpose if column vector - oo_.endo_simul = [oo_.endo_simul; x_']; - end - else - k_ = strmatch(M_.endo_names{i_}, names_v_, 'exact'); - if isempty(k_) - error(['INITVAL_FILE: ' M_.endo_names{i_} ' not found']) - end - x_ = data_(:,k_); - oo_.endo_simul = [oo_.endo_simul; x_']; - end -end - -for i_=1:length(M_.exo_names) - if series_ == 1 - x_ = eval(M_.exo_names{i_}); - if size(x_,2)>size(x_,1) %oo_.endo_simul must be collection of row vectors - oo_.exo_simul = [oo_.exo_simul x_']; - else %if column vector - oo_.exo_simul = [oo_.exo_simul x_]; - end - else - k_ = strmatch(M_.exo_names{i_}, names_v_, 'exact'); - if isempty(k_) - error(['INITVAL_FILE: ' M_.exo_names{i_} ' not found']) - end - x_ = data_(:,k_); - oo_.exo_simul = [oo_.exo_simul x_]; - end -end diff --git a/matlab/perfect-foresight-models/make_ex_.m b/matlab/perfect-foresight-models/make_ex_.m index 4f7259048..909ba238d 100644 --- a/matlab/perfect-foresight-models/make_ex_.m +++ b/matlab/perfect-foresight-models/make_ex_.m @@ -41,17 +41,33 @@ if M_.exo_det_nbr > 1 && isempty(oo_.exo_det_steady_state) end % Initialize oo_.exo_simul -if isempty(M_.exo_histval) - if isempty(ex0_) - oo_.exo_simul = repmat(oo_.exo_steady_state',M_.maximum_lag+options_.periods+M_.maximum_lead,1); +if isempty(oo_.initval_series) + if isempty(M_.exo_histval) + if isempty(ex0_) + oo_.exo_simul = repmat(oo_.exo_steady_state',M_.maximum_lag+options_.periods+M_.maximum_lead,1); + else + oo_.exo_simul = [ repmat(ex0_',M_.maximum_lag,1) ; repmat(oo_.exo_steady_state',options_.periods+M_.maximum_lead,1) ]; + end else - oo_.exo_simul = [ repmat(ex0_',M_.maximum_lag,1) ; repmat(oo_.exo_steady_state',options_.periods+M_.maximum_lead,1) ]; + if isempty(ex0_) + oo_.exo_simul = [M_.exo_histval'; repmat(oo_.exo_steady_state',options_.periods+M_.maximum_lead,1)]; + else + error('histval and endval cannot be used simultaneously') + end end -else - if isempty(ex0_) - oo_.exo_simul = [M_.exo_histval'; repmat(oo_.exo_steady_state',options_.periods+M_.maximum_lead,1)]; - else - error('histval and endval cannot be used simultaneously') +elseif M_.exo_nbr > 0 + x = oo_.initval_series{M_.exo_names{:}}.data; + oo_.exo_simul = x(1:M_.maximum_lag + options_.periods + M_.maximum_lead,:); + if ~isempty(M_.exo_histval) + oo_.exo_simul(1:M_.maximum_lag, :) ... + = M_.exo_histval(:, 1:M_.maximum_lag)'; + end +elseif M_.exo_det_nbr > 0 + x_det = oo_.initval_series{M_.exo_det_names{:}}.data; + oo_.exo_det_simul = x_det(1:M_.maximum_lag + options_.periods + M_.maximum_lead,:); + if ~isempty(M_.exo_det_histval) + oo_.exo_det_simul(1:M_.maximum_lag, :) ... + = M_.exo_det_histval(:, 1:M_.maximum_lag)'; end end diff --git a/matlab/perfect-foresight-models/make_y_.m b/matlab/perfect-foresight-models/make_y_.m index abd48a84f..d36dd746c 100644 --- a/matlab/perfect-foresight-models/make_y_.m +++ b/matlab/perfect-foresight-models/make_y_.m @@ -45,18 +45,31 @@ if isempty(oo_.steady_state) oo_.steady_state = zeros(M_.endo_nbr,1); end -if isempty(M_.endo_histval) - if isempty(ys0_) - oo_.endo_simul = repmat(oo_.steady_state, 1, M_.maximum_lag+options_.periods+M_.maximum_lead); +if isempty(oo_.initval_series) + if isempty(M_.endo_histval) + if isempty(ys0_) + oo_.endo_simul = repmat(oo_.steady_state, 1, M_.maximum_lag+options_.periods+M_.maximum_lead); + else + oo_.endo_simul = [repmat(ys0_, 1, M_.maximum_lag) repmat(oo_.steady_state, 1,options_.periods+M_.maximum_lead)]; + end else - oo_.endo_simul = [repmat(ys0_, 1, M_.maximum_lag) repmat(oo_.steady_state, 1,options_.periods+M_.maximum_lead)]; + if ~isempty(ys0_) + error('histval and endval cannot be used simultaneously') + end + % the first NaNs take care of the case where there are lags > 1 on + % exogenous variables + oo_.endo_simul = [M_.endo_histval ... + repmat(oo_.steady_state, 1, options_.periods+M_.maximum_lead)]; end else - if ~isempty(ys0_) - error('histval and endval cannot be used simultaneously') + y = oo_.initval_series{M_.endo_names{:}}.data; + oo_.endo_simul = y(1:M_.maximum_lag + options_.periods + ... + M_.maximum_lead, :)'; + if ~isempty(M_.endo_histval) + if ~isempty(ys0_) + error('histval and endval cannot be used simultaneously') + end + oo_.endo_simul(:,1:M_.maximum_lag) ... + = M_.endo_histval(:, 1:M_.maximum_lag); end - % the first NaNs take care of the case where there are lags > 1 on - % exogenous variables - oo_.endo_simul = [M_.endo_histval ... - repmat(oo_.steady_state, 1, options_.periods+M_.maximum_lead)]; -end +end \ No newline at end of file diff --git a/matlab/perfect-foresight-models/perfect_foresight_setup.m b/matlab/perfect-foresight-models/perfect_foresight_setup.m index 45f6f2789..98d8e12fc 100644 --- a/matlab/perfect-foresight-models/perfect_foresight_setup.m +++ b/matlab/perfect-foresight-models/perfect_foresight_setup.m @@ -64,7 +64,6 @@ if ~isempty(M_.det_shocks) && options_.periods<max([M_.det_shocks.periods]) error('PERFECT_FORESIGHT_SETUP: Please check the declaration of the shocks or increase the value of the periods option.') end -if ~options_.initval_file - oo_ = make_ex_(M_,options_,oo_); - oo_ = make_y_(M_,options_,oo_); -end +oo_ = make_ex_(M_,options_,oo_); +oo_ = make_y_(M_,options_,oo_); + diff --git a/matlab/perfect-foresight-models/sim1.m b/matlab/perfect-foresight-models/sim1.m index 3bd956c91..d37afbf7e 100644 --- a/matlab/perfect-foresight-models/sim1.m +++ b/matlab/perfect-foresight-models/sim1.m @@ -119,7 +119,9 @@ if options.endogenous_terminal_period end if stop - if any(any(isnan(endogenousvariables))) || any(any(isinf(endogenousvariables))) + % initial or terminal observations may contain + % harmless NaN or Inf. We test only values computed above + if any(any(isnan(y))) || any(any(isinf(y))) info.status = false;% NaN or Inf occurred info.error = err; info.iterations = iter; diff --git a/matlab/smoother2histval.m b/matlab/smoother2histval.m index 6e1eb2c43..3ef7e438e 100644 --- a/matlab/smoother2histval.m +++ b/matlab/smoother2histval.m @@ -163,13 +163,15 @@ end % Initialize outputs if ~isfield(opts, 'outfile') % Output to M_.endo_histval - M_.endo_histval = repmat(oo_.steady_state, 1, M_.maximum_endo_lag); + M_.endo_histval = repmat(oo_.steady_state, 1, M_.maximum_lag); else % Output to a file - o = struct(); + o = dseries(); end % Handle all endogenous variables to be copied +data = zeros(M_.orig_maximum_endo_lag, length(invars)); +k = M_.orig_maximum_endo_lag - M_.maximum_endo_lag + 1: M_.orig_maximum_lag for i = 1:length(invars) if isempty(strmatch(invars{i}, M_.endo_names)) % Skip exogenous @@ -177,61 +179,68 @@ for i = 1:length(invars) end s = smoothedvars.(invars{i}); j = strmatch(invars{i}, M_.endo_names, 'exact'); - v = s((period-M_.maximum_endo_lag+1):period);% + steady_state(j); + v = s((period-M_.orig_maximum_endo_lag+1):period);% + steady_state(j); if ~isfield(opts, 'outfile') j = strmatch(outvars{i}, M_.endo_names, 'exact'); if isempty(j) error(['smoother2histval: output variable ' outvars{i} ' does not exist.']) else - M_.endo_histval(j, :) = v; + M_.endo_histval(j, :) = v(k); end else - % When saving to a file, x(-1) is in the variable called "x_" - o.([ outvars{i} '_' ]) = v; + data(:, i) = v'; end end - -% Handle auxiliary variables for lags (both on endogenous and exogenous) -for i = 1:length(M_.aux_vars) - if ~ ismember(M_.endo_names{M_.aux_vars(i).endo_index},invars) - if M_.aux_vars(i).type ~= 1 && M_.aux_vars(i).type ~= 3 - continue - end - if M_.aux_vars(i).type == 1 - % Endogenous - orig_var = M_.endo_names{M_.aux_vars(i).orig_index}; - else - % Exogenous - orig_var = M_.exo_names{M_.aux_vars(i).orig_index}; - end - [m, k] = ismember(orig_var, outvars); - if m - if ~isempty(strmatch(invars{k}, M_.endo_names)) - s = smoothedvars.(invars{k}); - else - s = smoothedshocks.(invars{k}); - end - l = M_.aux_vars(i).orig_lead_lag; - if period-M_.maximum_endo_lag+1+l < 1 - error('The period that you indicated is too small to construct initial conditions') - end - j = M_.aux_vars(i).endo_index; - v = s((period-M_.maximum_endo_lag+1+l):(period+l)); %+steady_state(j); - if ~isfield(opts, 'outfile') - M_.endo_histval(j, :) = v; - else - % When saving to a file, x(-2) is in the variable called "x_l2" - lead_lag = num2str(l); - lead_lag = regexprep(lead_lag, '-', 'l'); - o.([ orig_var '_' lead_lag ]) = v; - end - end - end +if isfield(opts, 'outfile') + o = dseries(data, '1Y', invars); end +% $$$ % Handle auxiliary variables for lags (both on endogenous and exogenous) +% $$$ for i = 1:length(M_.aux_vars) +% $$$ if ~ ismember(M_.endo_names{M_.aux_vars(i).endo_index},invars) +% $$$ if M_.aux_vars(i).type ~= 1 && M_.aux_vars(i).type ~= 3 +% $$$ continue +% $$$ end +% $$$ if M_.aux_vars(i).type == 1 +% $$$ % Endogenous +% $$$ orig_var = M_.endo_names{M_.aux_vars(i).orig_index}; +% $$$ else +% $$$ % Exogenous +% $$$ orig_var = M_.exo_names{M_.aux_vars(i).orig_index}; +% $$$ end +% $$$ [m, k] = ismember(orig_var, outvars); +% $$$ if m +% $$$ if ~isempty(strmatch(invars{k}, M_.endo_names)) +% $$$ s = smoothedvars.(invars{k}); +% $$$ else +% $$$ s = smoothedshocks.(invars{k}); +% $$$ end +% $$$ l = M_.aux_vars(i).orig_lead_lag; +% $$$ if period-M_.maximum_endo_lag+1+l < 1 +% $$$ error('The period that you indicated is too small to construct initial conditions') +% $$$ end +% $$$ j = M_.aux_vars(i).endo_index; +% $$$ v = s((period-M_.maximum_endo_lag+1+l):(period+l)); %+steady_state(j); +% $$$ if ~isfield(opts, 'outfile') +% $$$ M_.endo_histval(j, :) = v; +% $$$ else +% $$$ % When saving to a file, x(-2) is in the variable called "x_l2" +% $$$ lead_lag = num2str(l); +% $$$ lead_lag = regexprep(lead_lag, '-', 'l'); +% $$$ o.([ orig_var '_' lead_lag ]) = v; +% $$$ end +% $$$ end +% $$$ end +% $$$ end + % Finalize output if isfield(opts, 'outfile') - save(opts.outfile, '-struct', 'o') + [dir, fname, ext] = fileparts(opts.outfile); + if ~strcmp(ext,'.mat') && ~isempty(ext) + error(['smoother2hisvtval: if outfile has an extension, it must ' ... + 'be .mat']) + end + o.save([dir fname]); end end diff --git a/preprocessor b/preprocessor index a2bea00fe..d05ffde63 160000 --- a/preprocessor +++ b/preprocessor @@ -1 +1 @@ -Subproject commit a2bea00fee97dd4cdc2db32690e0d492fda2edfb +Subproject commit d05ffde63ece3fa94882be784e0fdf9aa4ec8982 diff --git a/tests/.gitignore b/tests/.gitignore index 35ff3c844..501fbc71d 100644 --- a/tests/.gitignore +++ b/tests/.gitignore @@ -25,6 +25,9 @@ wsOct /run_test_matlab_output.txt /block_bytecode/ls2003_tmp.mod +/histval_initval_file/data.csv +/histval_initval_file/data.xls +/histval_initval_file/data.xlsx /partial_information/PItest3aHc0PCLsimModPiYrVarobsAll_PCL* /partial_information/PItest3aHc0PCLsimModPiYrVarobsCNR_PCL* @@ -67,10 +70,11 @@ wsOct !/gsa/ls2003scr_mode.mat !/gsa/ls2003scr_results.mat !/gsa/morris/nk_est_data.m +!/histval_initval_file/histval_initval_file_unit_tests.m +!/histval_initval_file/ramst_initval_file_data.m !/identification/as2007/as2007_steadystate.m !/identification/as2007/G_QT.mat !/identification/kim/kim2_steadystate.m -!/initval_file/ramst_initval_file_data.m !/internals/tests.m !/k_order_perturbation/run_fs2000kplusplus.m !/kalman/likelihood/compare_kalman_routines.m diff --git a/tests/Makefile.am b/tests/Makefile.am index 39caeb54d..6cda69122 100644 --- a/tests/Makefile.am +++ b/tests/Makefile.am @@ -104,9 +104,12 @@ MODFILES = \ discretionary_policy/dennis_1.mod \ discretionary_policy/dennis_1_estim.mod \ discretionary_policy/Gali_discretion.mod \ - initval_file/ramst_initval_file.mod \ - initval_file/ramst_datafile.mod \ - ramst_normcdf_and_friends.mod \ + histval_initval_file/ramst_initval_file.mod \ + histval_initval_file/ramst_data.mod \ + histval_initval_file/ramst_datafile.mod \ + histval_initval_file/sim_exo_lead_lag.mod \ + histval_initval_file/sim_exo_lead_lag_initvalf.mod \ + ramst_normcdf_and_friends.mod \ ramst_vec.mod \ example1_varexo_det.mod \ predetermined_variables.mod \ @@ -405,7 +408,8 @@ XFAIL_MODFILES = ramst_xfail.mod \ estimation/tune_mh_jscale/fs2000_1_xfail.mod \ estimation/tune_mh_jscale/fs2000_2_xfail.mod -MFILES = initval_file/ramst_initval_file_data.m +MFILES = histval_initval_file/ramst_initval_file_data.m \ + histval_initval_file_unit_tests.m # Dependencies example1_use_dll.m.trs: example1.m.trs @@ -503,10 +507,15 @@ deterministic_simulations/rbc_det_stack_solve_algo_7_exo_lead.o.trs: determinist deterministic_simulations/rbc_det_stack_solve_algo_7_exo_lag.m.trs: deterministic_simulations/rbc_det.m.trs deterministic_simulations/rbc_det_stack_solve_algo_7_exo_lag.o.trs: deterministic_simulations/rbc_det.o.trs -initval_file/ramst_initval_file.m.trs: initval_file/ramst_initval_file_data.m.tls -initval_file/ramst_initval_file.o.trs: initval_file/ramst_initval_file_data.o.tls -initval_file/ramst_datafile.m.trs: initval_file/ramst_initval_file_data.m.tls -initval_file/ramst_datafile.o.trs: initval_file/ramst_initval_file_data.o.tls +histval_initval_file/ramst_initval_file.m.trs: histval_initval_file/ramst_initval_file_data.m.tls histval_initval_file/ramst_data.m.trs +histval_initval_file/ramst_initval_file.o.trs: histval_initval_file/ramst_initval_file_data.o.tls histval_initval_file/ramst_data.o.trs +histval_initval_file/ramst_datafile.m.trs: histval_initval_file/ramst_initval_file_data.m.tls +histval_initval_file/ramst_datafile.o.trs: histval_initval_file/ramst_initval_file_data.o.tls +histval_initval_file/sim_exo_lead_lag_initvalf.m.trs: histval_initval_file/sim_exo_lead_lag.m.trs +histval_initval_file/sim_exo_lead_lag_initvalf.o.trs: histval_initval_file/sim_exo_lead_lag.o.trs +histval_initval_file_unit_tests.m.trs: histval_initval_file/ramst_data.m.trs +histval_initval_file_unit_tests.o.trs: histval_initval_file/ramst_data.o.trs + identification/rbc_ident/rbc_ident_varexo_only.m.trs: identification/rbc_ident/rbc_ident_std_as_structural_par.m.trs identification/rbc_ident/rbc_ident_varexo_only.o.trs: identification/rbc_ident/rbc_ident_std_as_structural_par.o.trs @@ -782,12 +791,20 @@ o/particle: $(patsubst %.mod, %.o.trs, $(PARTICLEFILES)) # Matlab TRS Files M_TRS_FILES = $(patsubst %.mod, %.m.trs, $(MODFILES)) -M_TRS_FILES += run_block_byte_tests_matlab.m.trs run_reporting_test_matlab.m.trs run_all_unitary_tests.m.trs +M_TRS_FILES += run_block_byte_tests_matlab.m.trs \ + run_reporting_test_matlab.m.trs \ + run_all_unitary_tests.m.trs \ + histval_initval_file_unit_tests.m.trs + M_XFAIL_TRS_FILES = $(patsubst %.mod, %.m.trs, $(XFAIL_MODFILES)) # Octave TRS Files O_TRS_FILES = $(patsubst %.mod, %.o.trs, $(MODFILES)) -O_TRS_FILES += run_block_byte_tests_octave.o.trs run_reporting_test_octave.o.trs run_all_unitary_tests.o.trs +O_TRS_FILES += run_block_byte_tests_octave.o.trs \ + run_reporting_test_octave.o.trs \ + run_all_unitary_tests.o.trs \ + histval_initval_file_unit_tests.o.trs + O_XFAIL_TRS_FILES = $(patsubst %.mod, %.o.trs, $(XFAIL_MODFILES)) # Matlab TLS Files @@ -920,8 +937,12 @@ EXTRA_DIST = \ k_order_perturbation/fs2000k++.mod \ lmmcp/sw-common-header.inc \ lmmcp/sw-common-footer.inc \ - estimation/tune_mh_jscale/fs2000.inc - + estimation/tune_mh_jscale/fs2000.inc \ + histval_initval_file_unit_tests.m \ + histval_initval_file/my_assert.m \ + histval_initval_file/ramst_data.xls \ + histval_initval_file/ramst_data.xlsx \ + histval_initval_file/ramst_initval_file_data.m if ENABLE_MATLAB check-local: check-matlab @@ -1073,7 +1094,7 @@ clean-local: rm -f estimation/test_matrix.mat - rm -f initval_file/ramst_initval_file_data_col_vec_mat.mat initval_file/ramst_initval_file_data_row_vec_mat.mat initval_file/ramst_initval_file_excel.xls + rm -f histval_initval_file/ramst_initval_file_data_col_vec_mat.mat histval_initval_file/ramst_initval_file_data_row_vec_mat.mat histval_initval_file/ramst_initval_file_excel.xls rm -f loglinear/results_exp_histval.mat loglinear/results_exp.mat diff --git a/tests/histval_initval_file/my_assert.m b/tests/histval_initval_file/my_assert.m new file mode 100644 index 000000000..2ac132e12 --- /dev/null +++ b/tests/histval_initval_file/my_assert.m @@ -0,0 +1,4 @@ +function failed_tests = my_assert(failed_tests, success, test_name) +if ~success + failed_tests = cat(1, test_failed, test_name); +end \ No newline at end of file diff --git a/tests/histval_initval_file/ramst_data.mod b/tests/histval_initval_file/ramst_data.mod new file mode 100644 index 000000000..c65b9fc81 --- /dev/null +++ b/tests/histval_initval_file/ramst_data.mod @@ -0,0 +1,68 @@ +/* Verify that the “datafile” option of “perfect_foresight_setup” behaves as + “initval_file” (see #1663) */ + +var c k; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + + +model; +c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); +c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); +end; + +initval; +x = 1; +k = ((delt+bet)/(1.0*aa*alph))^(1/(alph-1)); +c = aa*k^alph-delt*k; +end; + +steady; + +shocks; + var x; + periods 2; + values 1.1; +end; + +perfect_foresight_setup(periods=200); +perfect_foresight_solver; + +fh = fopen('ramst_data.m', 'w'); +fprintf(fh, 'INIT__ = ''1Y'';\n'); +fprintf(fh, 'NAMES__ = {''c'', ''k'', ''x''};\n'); +fprintf(fh, 'TEX__ = {''c'', ''k'', ''x''};\n'); +fprintf(fh, 'c = ['); +fprintf(fh, '%f ', oo_.endo_simul(1,:)); +fprintf(fh, '];\n'); +fprintf(fh, 'k = ['); +fprintf(fh, '%f ', oo_.endo_simul(2,:)); +fprintf(fh, '];\n'); +fprintf(fh, 'x = ['); +fprintf(fh, '%f ', oo_.exo_simul); +fprintf(fh, '];\n'); +fclose(fh); + +INIT__ = '1Y'; +NAMES__ = {'c', 'k', 'x'}; +TEX__ = {'c', 'k', 'x'}; +eval('c = oo_.endo_simul(1,:);'); +eval('k = oo_.endo_simul(2,:);'); +eval('x = oo_.exo_simul'';'); +save('ramst_data.mat', 'INIT__', 'NAMES__', ... + 'TEX__', 'c', 'k', 'x'); + +fh = fopen('ramst_data.csv', 'w'); +fprintf(fh, 'c,k,x\n'); +for i = 1:size(oo_.endo_simul, 2); + fprintf(fh, '%f, ', oo_.endo_simul(:, i)); + fprintf(fh, '%f\n', oo_.exo_simul(i)); +end; +fclose(fh); + diff --git a/tests/histval_initval_file/ramst_data.xls b/tests/histval_initval_file/ramst_data.xls new file mode 100644 index 0000000000000000000000000000000000000000..050e2166c0db666245d60a99028e4452c68a394d GIT binary patch literal 19968 zcmca`Uhu)fjZzO8(10}qGsD0CoD6J8;*1Oo3@R|b00V;(0|Ns{?BD<Y|6#)aN5PN^ zfxl4KGBYqRurM$%ure@!<D8v=fq{d8fq|2Ofq{#Gfq|QWfq{pCfq|ESfq{>Kfq|ca zfkA+QfkBXgfkB9YfkBvofkA|UfkBjkfkBLcfkB*sfkA?SfkBdifkBFafkB#qfkB3W zfkBpmfkBRefkB>ufkA<RfkBahfdQ0$U|1E(hdOJNqHzcWG2}DkGn6nWFt{@0F_bVA zF;v2`GEuY`11kfv6N%9Tifdxj5vyj@enbcm6K2Ta&&eUcz`(}Ju$%V`D9eNM{zC>P zh7BwS8JHLt7#=Y&FvKtvfXW8v#GGUWdI2Y}8xk2oZaBcmz+lVB#K6cfhk=QKk6}Gn zbPt%c1(!Yy3=9qo3Kn3`GctT(bO5`(7fdRFNj?UU{_S8rx4<HX3{ngy7#JA-*G~Xd zVoVGStc;EfMGTn?i3~XmXtJP^kxH_1EIbTL7}yyY+*9*XixP7lfXmG#3}63)%0sXh z7#J81D1gL44g-sSAx<0=TG-U%5(k-zP5tl{U&6o$u6IB_1YuY>YeT~S14s;nVd9!N z#C33pYvB;*#1Nm%#KOSP!0;bL3p6l;X~70IFfG);0;Yu<*uk_&1MB|;aN2EU5MrnW zRn!bz3`L2##U=46i6x0W3@i+c42%p1895jZGBPlP^fEHMW{3jS(jS6A-eF+-0IH2a z*%*`-K<Nq@8#8c!0M+9A88{d?7#bNl85lSYFgh?Wa5yl?eFW9>ybKH+JPZsR;tUKN z-x(ML{xFC!fZ7Zo%*eoy%*4Q;kPRX#{xfhfa4@*AK-vq*9HI=#poRq46_EA;h{*(M zR6q(J0hGdrhk=P9g@GTOT?N4zRe*tm;m^vCmwb}~?Bl`W4dA8;$QT9&RZuW8FfcYU zFfklt(E{tx29r%-wIU2Ephkw8vzk&!W^QV+f?sO6LQsBgVxCS=YI<o-Vv&-Xp^=)S zD1#=08Uq6XbpeU#sS0WV&0q^!z@!=j2ZJ#fytG$GVrwvPFf{AlXwtp$!Cn)Iy^ukP zfsr8v9AAtKO$<7WI*efL#xLz*G$TVO0}}%WLoK+?#lY~H1JvGP0P{id{Du?3XJTMt z5N1K}nHd-uJGmiz1}0Ejje+4bIIKW%#lZxMO$Jchff4`%10z2JNDRaQ=>#i;ih)uJ zx){g|bTLqJL>B|KBhke`eF=0iP^E(|21+jIVxV>?x)>-4p^Jgqspw*$b}PCVs2z(g z1_~>5F;F<7i-AHAT@2I?Mi&F+D0DGUI~iRJ)NV!>1GS^k#X#+9bTLpn8(j>P)6vC1 z?QnE4P`eym4Af3X7X!81(ZxXRcyuvPyB=K()Xqm1`wQ+(K>8013=ke813$PQ3E?q; zGd}|ZGZP<Jl%HYMbzP?9+8_215s>ODp4)cKY0`A4W8z|9WB};^r!6K>Ee|rAtKlP$ zR24)AsNUyiIDRGeCTlZ92PntzgIhWv6G17OpWy)4hr7?tLUb@Qfb5vsl&7D0MbiPI z24u&qnIP~H><&<x=Vv&aY~Q`~1Vk681m<U`RM_Mpd>&#C3yRA?If9>|*J)DZ-op?b ztYCYVD~TQxI|b3filPJLCw_)=0e3#C?T6@K1M7(G7F&>e6rzI-MF%K1@iX}8d=S06 z3!;M^tRv}1#|)u^5FP9&IzV}ipW*Hs{wcS&L3D6{by!Pm^k>)$(ZPYD1C$f_8C(qb z^kg?fbZ~-o{4i11H`)o&!HJ>+lu!8?yr%43I%hpZ2PoF~8D6vt9$LH=qJs-X2PhZw zGn`v>{%Y77hz@SB9Z_D>CI@VS=-@`t0m|e23=6v3dfZn+bnt+6WH{`VG+htT0jgRM z@eV2h_!;J(n7kx=8AJy!SjS5LqITak5FNZIc7VzUeuh<_SNzz&7@`A|LiriYZ1x6C zTM5wtN`VMFK&1yi!z2}saEFBu9iWuX&rn#FJ(FiSL<gv<L+AjNE&L1)>6ezhng`J# z0Cttx1U<90OCUM~P+SEndH5No`0hNkdk#d0AXtay%fyV*MGzgJiWFf7s9fS_$jZ!X z-7pKHLkO%RZ-33Eqy-QiLMV2CN-chd!@EAdJ23;ILl~?BWJS?Dhz?;C9iTFepCR?W z=)wQfAUZ_AI-2je&R8@DqC*5l2dKp3X9&7}>vzahhz?P(4pnP2rjN5AIz&-)fXYLD zhJtm8ZO0}<bclg<?Cgx16+IK8LkvX+sI=r~Snw^{I&cz1hd5Zrn}xM&9!!Vm5J%Ag zDognp9<4tq^>qS7hXh!MR^FYYx@iy{5-2)AB`rULP)^MMb^Q<>l3*Rl+s|tmPlf1^ zM9~2%hxr*)HZHkS+XvAh1=i8xwxRIvWQYza6dj;anx8>{)p%J#FGPnlSclW52F^Q^ zAUdQ`bb!imeufior~8NXKy=7}b#xz|8Gm*nM28HD4p0ft&*1nm`Alp#M29R`M+iet z`h^J)9kM7oK;=I_L#p%+=F%>R4mq$6K7lhAANNCa$f4)})eig&8lO~N&gz8dkO%Ad zm|n4&4XQ&Pt^?Fg0rioP>l2U|XbcHm3^X>0E~d<Y+3o?2XQHbEjX|M{sbSHpjzvrZ zi<l-BF)b`&+E~PNu!!km5!1sWrjJF;0E?I*7BM3%V#Zj+Ot6TVVi7aLB4&<74Ah55 z4|_{2>a4JcSz{5i!6IghMa&M1m_3>ps3ibOfBXzxrK@VrcR*6C0yxFK?^R^5=!2wj z1$c@D=>Vlpeuf6^n;Qk8IuyY={<BA{F6)KpP(;xIO1u0FpXD#*$G1c50QDI78KzsE zczv)3q60Llfhf^IDVv|+anRIlJK7*Rl)-lBcgg*bfa*|2u>+Lu`56L^D7DE#b*O-K z*hRCmS9e3~P(jfF$`$+!`oFj?^|V6lPzCF-5z_a6-UZR2ilPIQXZRU181frgpgPpR zI#fQzdc{I@sG;Zp<tTmz&cJ;OT3aA?sDpLn#5?HU>4ey!j-msU-}o6=iaM3~p*l3c zI{4?#D^G^%&_K}v%8mRC{x1{$&Tod;p$XQ({?1|Urw)i6nkYIzd6l2x<u(^R3#bk) zu#O2Wwbq?b9iWaUB0fMlnV;cA!qJu2njm&)gLNn!W$09c>Hu|85jsHmoS)&<vq$;W zP#rp89n}YHQckr)T&08JDo`oF&k%c<r&k@SLl>+g_*AxP2~>wJiVjd2!O!rg{mbp^ zjSyGqfputtf)A=g4@C#41mS16wvIEi7pg-atixi#QtcaU5LfA==m3>3{0z^{eM~%{ zIt;)%c3+5DJ`t+J07VC=^x<bvTj^uS4%J}@)={*K^R_=!harj%P}#)KFo}sf;Zy^} zA4XsuVJRgJLQow>C^|qT7e9lJOZ$O|P#wl#9Z$3yr`%|T_`?`Q2dG@*XZVtPFenzP z!vw5D?yvs!MNl0kC^|r;9zVl9Rxd6cs18%Gj@{b36AGX@Oi^@z%0zyKdlNU_`cn__ zhZ$JMpJf|@9HBbQP;`JwOnwF)w(EB;LUovfbtFvqk|_$+VUD5$RG#uP1mxZRz5=Sl z0<1$x>aOFP7KqO+P;`JwTYiS^pu`T<VF}j35PE0FQK$|}6dj<ln4iI+^ZeWds17Tz zj^7TS&Mk!MutL!RDyjJyuDCzow}<Mm2J7$@D3x!3>aa%90V>D&8M;dBmn%SZ*no9d zZTfUN0jk3WMF*&q=V$Pd=JRHT>aYdt*p+GQ=M2?hi=qQm2k<kfY}?KLq7D)tc3>TW zqQNiKp*rkPbbx9Ieg<JzkGtofI_$wZte!8o;DhS0hwA{fRUFXj6p)xB7BMF*V$N8^ zT(F3_Vi9x0BIb@o%ma&<Cl)a;EMneR#C))b`C<|C!y@L7MJxb|SRfWL(5NSRJ0cj1 zx)3a4p;*Miu!x0Y5sSbg7KueH3X51Y7O@yCVzF4n;;@Ltqltl9BcSxh&%o#BvVR*i z#X5jftm%ivQs1ECBcRz6M9l<Bo%{^)-txN^Ky^5Rbu`Ie-EbeO!x5gwL3V)BE<b~t z&CRntP#sQS9rLEi?>Gh30h-@I*a1q}{0w=zlOI+<bvT1{c&2^j+YZ&?jA92U-Sac7 z6Vl;Jhw5+v>uBl=+qwj*!v#eLC|B?^{3tYW4}<D(1?%8Y*xET6s>2mU2Pn_*Gx&P1 z>2ZVVa0Ba@sok8_4AtR=qQf0LGrn%#<a_2&9qwQq<qP~OOQ1U3QFMUv8$W|o&MO-& zs16UX4*3PYi_)MvJWzCiaw9)Oo2BDy8K@3Vu#SmZUEz^X9iAvUKzWs)f%A8nkRVit z7g$GkKn|-fREHOe4p2_!XXx3prjr$_!yBw4fYD%{BUFbsiVjdd=Vy@m5y<-+I#TBY z))5`I^PU-0hYyMlP$|IAuw`x9+>cNlzF-~i!=}B^f$H!@(E%zW_!<0?t94&Mb@+jG zbn>jOP=@O8L(u^$LHHS-OH9~%530i-tOGRkAqCapkD>!qzVI{5IMkeW9jYS$tYc!0 z>I5OEjsO%Lpwfq*!6T=f{{mD;AXrCjME(^nsE$As9iXy_pW%mS_Kp)!9YJ6n8z0mi zV20`lLeT*#x%e5jSf0y01l17?*0I9OLhvti95fh32dG@*XDEm@RNe#C5dzkc5;gnS zH>i#f6dj;akDo!OamtOYP#vLQ9Z$ShJoo_B0h*OS<XTXf$j|UuE`8PpsE#nO4h`=3 z_}5S!VJLQhN=$x+U3)BJRzr1!gLN3r*zfcVsv{gl2dF&dXXv?7t+gDgBLb}B-=~vZ z51~3DP;`JwTYiT4H+z39g6fC_>+l7Qib8cnqUZpX#rzCLEDXozL3Kodbtt$PJ-GqZ z5rv`yR8sRZu*f(~odwkq4c1X=HR0<OsE%k99iVcYpW)Hk&-v4#I%2>&eEGS&E<$z0 zpy&XV^85^2j+)v{hU$m~>sWDU{=>6S9kD1nKy?5=!=&)%5)+_0;=nrELIU@kg6fDv z(E+L<_!(-FIT-q&I^w}PmR+5&<2Y0YXvz%|=b*Mq0$QB{5=+D)mV`wt8H-p77O_+; zVrf{!(y@qTU=hp2B9?_kEE|hh4i>RoEMj?B#PYF-6<`r7#3ELNMXVT$SP2%fQY>O+ zSj5V)h*e+_1FZ-`Z%b8SQCE#ctOko%Ef%plEMoO&VxYDKDE;v>M19?Ps|%W96Tm6f z!}QJfBhVC^fRe^Rsgs|<qCI<SJ5)y^Sci7Y)rdn-9f>G9KxvnsL1A*woK~ogB(RQv zLq50nLv<vf=m4c`eg>}jYnz*)I+DRUe%!miU@ufhGKvmRy60#3vg%w`BUA@yMwp)g zRPFDE>PSJ+0m>Ep40pD@53GmkNCn$*`kP|@PN<Gl6dj;E!_RQ+kbq?^R7V<Ehxx;} zncJZ{(ol4Oauh$qE{}yeHBcStU>%E3&px~rsv{jm2PnVsGb{-?BwPj6kpb2*Y04La zEl?d9C^|s7k)L74tswSFsE$mqj>cHud7Gd*GEsDZ@+v<=)3f4tWl$YiU>zGpO>{Rx zb!4IF0Oe$UhO!)%N2O35*<c;Ydsp0D57m*4q63uA`5Cf5O}SbE)sX|%aV>cD`gKqp zIVd_nr2s!eLWSzdVyKQ>u#V1GYa7=>b>yPx0F@E^3?cuv?kR%m$OG%BE3hkF1J#j- zq61Wd@H2RTCIX;3^1(Wazn#li4b_p4q61XE@H5zPU0+-P)lmS}u`>H@?JB5_0u&vf z(ubeHXhQn*e5j5>u#Wo=xF@fK>L^6f0V<pL8Pvpnbmc*H6oGY!hH0%>0o752q61WN zq3S3G>*(2a?cQ>zj$#xYpmL3$L3&O{T`ts)60i<eK0$MsjuI3dpi+;YK|o2eC<m&e z6s+T4qIdr?s2!y!IzVM2s*W<Sj_q4ppD%^#C_~W!Dlz#PSXQh|&4$`h4%Sh?dB7f~ zqZ~yCs60j0Q32MG<<qfq3Dk}X6dj<_mY?CLu2p0f)Q(E9j+FiYW0;Og6dj<l7*$6V zSV#ONiM5NNc2uG00F~7I4DU9d^2vnSQ4Q8Hn<d`^rlT4~2dErJ)lmc1an0=L<3&(A zYEX25N_kWrwO}1WnbP$z9knPrKy?5=!z0URhYYBz>cBeuW*17qbkw2f0M!tvI_kkX zy3QWox)AEBdbkcyTcrW5P63HEVi9Y?BG!yWtObi$D;BXfEMo0g#5%Bubz%|g!Xnm< zMXU#lST7c_J}hGWSi~k^5u1obY!Vi+$ymguU=f>&MQj=tvFTXEW?&JUiA8J{7O~k_ z#O7cTn~Ozk9u~3rXkwuD3n=}erq~8>ie-Plx(JqH8{jDxqyv;X`5CV7e{Gx&%@vJc z9Zrf&d@voL#cz-{I!Fg7?V{>v0_!;7^z76EXs!S)jzj1GrEF9k&0rn2DW}?DIzVgQ z5IR8V9#uyRSjVo`buKU+p!IPG9iUvn&v3@IMm-Jck5;gbifIbUFdeNZJ_qF)R2^+# z9pARIJeUvlM;nR`P>w>?(GJ#8eDlQ|n2vT79iaS%s-pv}!|+v9HB3hbiVje2MAgv= z*74!jnMjz9P81!WyvomT;53hPD%9s)U>&(K8^vHcx=?h0ax$upZm<p=UFEOypg!+L z(E-Zms5*MUI$qgMy$sXQgQ5de3ZUxf1?yPp$G!=s1GIt~5rd#I0#!#JSVww%<ph|H zJ`_7ZB?zjHey|R;g4cO49sMXeK;;XnjtO8LPa9%=VLB$D=m3>Is5&Nsbu6BEUK^%k zB8m=B*@UWN5{8aRC^|qT7eB++z`1-W&={Ny){(Txkqc(WWE35sat&3-6tE73&6{7$ zg~s3%6dj;a4^_uh3>{NZbb!i4R2|d6I_@7<Jr1*D8j223iHWLXI);wvC^|spDXNYc zU>$R>OkWDKV+M*2P-%;*V<v`<nJ79yWihIbSzsM8PdQs)cFaQ20V=6cb<D=lF&jk( zs2oStF$b(e`df7p%ns1*0z_&DmGY=M=3?lWi(&_;4nWm04@1X16dj-%0#(O+u#TH- z?;K#Rnh)0jYO5?jt5ZN?3$chT!Xma9i`Wt@VoR}zEyE(V9E;crEMhCMh^@jRwi=7r z8Z2UKv52k1BDNlj*aj?O8?lIO!XmaAi`W({Vq39@ZNnnA9gElwEMhyci0#56wi}Ds z9xP&ev54)%BDNn*4Aiy&r9adZy8t7_E`X<4kPcAlMAfknL&riC9iX&}s$&s`jzuUs zKq(tl$6~OK8R7}@uza)_MF%L|qv`<d4B=-$*0BUd2Pjvd>R5_l$5Ip>pge=BV;P2y zWhgp8ISN(Bats~IQFMUv8>)^KU>#u^m;S<5NUuQA0m_Z2I#y!nSc#$olvh!8tisT- z3PlGfC!?<0UX7t+HHr>UK1bED21Cah6dj;a09D6Y3>|Axbb!hTR2}OubgV<s0V+XI zb*#tGu^vSSsC+@yu>q_@)Y9b+EIu}%=m3>Is5&-c=-7y&15`Gl>ez&#V-t!FP|1a= zV>5=1%_urR<r=DvEf_kspy&XVdZ;?KV(8e4q61VWqUzX&p<^404p51Ss$)Bbj_oKq zK;<c_jvW{}cA)40mA0rlc4Fw*iJ}8k7NhFeg`r~?iVjdojjCfehK}7RIzZ((s*XJv zI`*LG0G0BnI`(4d*o&eAR0p8y*oUEGABql84S}j-KZcI|a2=qw$^o=G1tfM5i`XG7 zVu!Ja9l;`Y6pPp~EMmv8h=F#5qR(}l#G>vLni#021NjX#G!9^d#sPR}fOLR-j;iAz zh7Qm^TturB6fUSb4q@mxgklFM)KGOC#?WyXMF%KMQFR=_&~XGs2Pni*bsWXeaTG-d zC_Yei9K+CY3`GYhwor8($Ix*cMF%J@QFWZa&~XAq2Pmddb)3Y|aS}xbC>@~cI0e>$ zyhG^}T*n)R0MPEH51>^a0t_4<K)Y{1JMTdIGWi*pKR{MbvU~uoYGq{L`~cbw0^X5_ zL@+UMf%Sp(fc6yGF$pnj18o&z0IltTDU@a42kr3#alsZaFfgQZh%=;vYy=51FfcGN zFoO1tgLt4FIv{!!kF*c~B@WPe03Zz7(*{aWAU0?x8Hfg@kWoB*Lx7Rt-+yK<2Jjgk z0vw<nzYGkZdW?aA!40&_$Tu^&D8D#Atwh1KA~`ij!O~neBrz#9CnpuWfzl~6Ee*89 znCxuB2r7rj)(tv426P4y#NEiofYSAY*7=`)`ez8Np2)$Vt-kptsB{I*V}S}wkUYrY zpxun1auZYng4VEsb{>M(9D()|g68N!y97aVsvsL){)L=f17d^B0_lU<NemmN7McF{ zAG`ZOb}(H%dv%VUw7}%)91PkzKi7fQJhGyRfz}mCK+j<U`3Y2Gfb@dgic1{Xerlfo z0=6G54I$eFV}o|9fVa*wFffEO<TDg8WHTgz&!GX$+rv~5M}zh$g8U0AyFj^=7+oOs zT%g6?;Ba$h$Y;o9C}8ksNMZo3G$6(Vgc^|jpdG{@yFnNsgP#Rj#R*cu$l%YA!vI>_ z0pgL4LHlMw_QEhRCV>18+Mfwh%gPYUP|A?Ykjs$B06P1}lOc~G4IC#RkrIYXhI|Il zx&@G0Y#6k+24pv=-T=|q)S!!j!VA>j2Z^&XxG>~1B!k_M3O<2|H1~k^E`aQXVUU@G lFev|n))x>`N31-|ZV*k39#FkXj5=b~fb4}~V)P)}4*(CSEVuvw literal 0 HcmV?d00001 diff --git a/tests/histval_initval_file/ramst_data.xlsx b/tests/histval_initval_file/ramst_data.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..849953eacbb225829a8e34b0440042e1e9f7d238 GIT binary patch literal 8575 zcmWIWW@Zs#;Nak3u=dpnU_b)g3=9nMMX5Q(`g$O8?WFTw%!UH(?`yjzRF`iPbxGO0 zx8uTWkJ^SAXZ|Ic&oq!Mt*vh6h+4Unz2CF$^I3D}S$BofzIM%V?{dpu6{X$N_eY|7 z@qE7Tuch~9ho4nG7v`nHpL}Z7l_NP{6ei^{Zjv^*5fgYQBF^ej!cv)??J0Lts#|hn z<C*`by!h6!^4q<Pd%t_b+P}9<->~wvTYLGFI3_pCi;uz=P0;<W;ihlAN6`PgOK|7{ zDZkx0`sF{X{WvtPMQ?o2Q8;%;$mX6I`%7(hwinH{7k=Kd?q9Lx4i2~ee|skRzC4|A z^}t2-410zEZ+4EfRZZI;FfcG!GchpW4j4fO28NXU<bb05f@1yT{GwF7irk#siD&%| z8wj+#w{d+^{fI@SWs%BMi-JW$K`W13y>a`>(fUo>eSd$m;52o8vd#E+WzKuE)tkd^ za@I_^wq=Qy*QCaWVIG&ar~Ljm$$p}af^m~(_5xLLj+Co+P48U2Q&sW#TBAFsVz;B( zl{;Hg`d?&uG2d@aTiDUkd3NsCS&38jE${oNe~o#s{%QABj58BXypWi&dx}S$6085j zcQ3ArC|IzvO7XBoiHiPB72Lzu&A#j$?@HA;8J$Jf(-xg~R4b5ZORAW0;m5zOx;63U zm&1!Qj|CPg#41;uwKdqXFZ;#Xj;##`_LfMv+nN8D2-Hsdl|09vUG09Jno8v3C!*Xt z`mAqx3Y?!lW8(wY(}z9#s^6aK^eEb+BxBEipm3jkXT)L`*3GrL|KINV%?1i(-P1i& z)EOBV%<+b@0CFfN78HO2dF}-N?862;N8kSzIrwGP4Q|CLk9Oqr%;mbRD7{<sd{`9! z|HENkzurF2z3^?%?0NHkcvjWywuqjqkShGg;hnUb)(5SO$NbEd((_-Nt~Bymzm!*w zt*Fgs+oQhy%LEh`HpYlHooBXGI>x&+Qug4<J0iEm)45K1>KMsp%urkWKy$^-M)zAr z*McJi_OQhs=brFK&|LkGehB;5;`loG^BX^~$RBjo7Gzm|y@*HSZH5d-*e&sc@=06V zJasxd=Kl2g@M(9`H{a_Umc_p9nLqvS@m=@7$Cesz(ATeNbh@?i>f@X>>!SVg6X(PQ z3*QF?(+%0qFE1Gw7^)cYB}QHb28N0p{o<0!oYZ1a7`=_~_rGl*v-f>)#J+wNRgoE& z6pmfVoX**+r08os<A|ruAN5VK89%=Kw)DH)a!9STU38`TZT<b<|9pD0qHJ>a)CVsn zW*wd~=iv*DBORxFp88BPuGu}K-sbR$2&LjfQ<oUu324^8#NWA*ce%OfQnAJ+6XTf3 z=z1=u$)O<v#Y?iZ9(pd^q9E3`i^pfJ=E+`VPC1`L1yUS`RQ!Z@iWDdEp1Kkgwc(=k z3G@3!49gAO;@){ZO?aw3HAJ|t*@V-o(L{5~ofk)LFlQ#syQut7L1<TzC(GBz-e>nX zIkG(NWmjLjME#uu|M#|gW_lvWD&<eHR4e#qCFx!*;$yz@Ros{Nq*p|i{^e_bm+rc< zq*G0u+3EIyJ>R{aZ`j&)`jz4o;~*{1AGx-NSs%7NlKZu2-V-SwVLxu}L$jt%&0f2T zSv_g3(1pn2J6Ga%zCZ9q^68&rZ!hmo`ut6?V_nzVTGiW(IrY!?zOGuD=kRKldGS-1 zHF1~te%zVXv%veDm*$J^L)mL}&gT4{xwT-{gi^&-Q_{{WycOH<X4}@^TDqrYp4=B# z_74BnzUj#7hUMzMuUH#uJA9tKJ@Vm9$gGp?t+O`&GdvRV-Ao|-CiB_rYTDD7O9Ld= zbcuVm&YrU<w)j=eKAtQN{>f4K&EJ#LiVQxt&78Y`ZSzbRj6HMY`0p>?lJ3<{)$VDV zPp&O0{x|<D%i+hn?a%O^`*?BP@gJcZ-`2c%F28nvvvKVOSIZp=UpM-FWN>}A%JT62 zyK`srPud-ClsEIs;)K}+OIs9P|9X+)Vo^7_p{{Lz)uj@bS^K=AvV2poeVKDvQ2n29 zy2<sM9p%5I-p_i)b8W%$IsF>{UhU=-W}Cg={Sr9!_V~AnG&3<UBn#q8z5I~WTb^H( zos^%S4NAYg!6)->8wl+EuFY~US2r$8dKz<h-voxc0?SWsT(D%~(OF8YMSHfs*kA4v znc4O2LbJ-bL+1Hu^QM_UkE(Jv2+I)NTp(e<AF_^nVVU9YPc!(^&TKvrdT?o&z-I1< zvdvYSZ8A5X-*T_IB>v`%(2lc*zURg{o_!l&zCa@=E4WzY@|&955)WF}GHjSuC&CiE z|C!T9zQn|T?9S7do=9B$*_oHiT7Y?y^2Y5`GjyVLy%is>%s%nh_w&T-F4hl?(*M0` z{g(bX)#kqZtSOt4!-_H+rPh9V8T^g6Xi49WDQC1ToGkc{)t-_UkkXudYQpAH8%~Rx z_di}M=_tR|@jgm%`t3Uzn#pa?3f8*01U~uSm2=zC_S2bf=RR)^Xtg`q6IN1LYPa+8 zW{nMtSpD2L7rx)kym7Tb+U5c|L;lKd7x=W&CO52`dMKjARfcQ1U!TL*sBWoG@ug47 zuGQN<Wy`9_{ixmBzP;pReSARaa?vFp0wX4RCgqAXF+JPYA(O@Ls{4Ekb7O*r{Y7?H zlS9*{H-2i?<4E$&xc=jG)4FeLDn&|GJWU%~TaEW^f3Yvz)YJF*ei2pIv;~(ZOcwsk z=XT`H@!OduzG;^;1lAtDsKAr2-dw);W6Fek%QSiQZ>oI$qV9Qmq23Emt6yTgf7ST| z^7OadD^}mUb@7wnu<vDO{=|u{jt3Qc3QiSKe;64UikR^w91%#uDb7eNN=*qaDay=C z2bX@m{f=CR3`AVM&r|xdcbQg)$0R)#{{`$EFR!!Bo<C#0*xtQ?0_Bg2W|$lIWW7%m z5Kj9x(L_g_mqSI|+FzV^`QyZWtOt(<rMG*mc-Y9ZcBbYtrK~9t&hcKiJWsAWo=_<$ z98`MFkUe_U8S#^vi{I{W*GZhPdfCkr3AT*|g-aGC@+PU&OBepX=(f@PmF>pIDY3EZ zWP2)|4E#<eO{o#I*C_nUzq{TrGJd8y$g7Fwe>SgVU|<l&Tf$30yb5WGA?FlGvuvU- zs7h>m|5w!Q`%zE!<Q|K?J&x=D{$M;7_~^nBvq{&s{;$)Mj^;{zb7As@>!0^|e0^oo z`>NxJGY{LUMJ%lckCt)lZT$Q0?L*11vy1LM$WZOyATP9fkMNBKaZmlI&7UnI^^y)v zu#R1F(#vn<^^?1r-v;WR{^WUi4&zzT;I+}rTk^C6b{8M|zajZLFJJuP>iGsIcsb7& z$xSrA7}THiKwIC4{Y&o8r?yY+m1J)ypIYBMKgg_{^J;vW-1{o-e9qfz1M1%VQThC7 z`%Krh>+jvIVFHDW|A(JdmlzlrRPi<uBp@LJ3X|fD)YOt<eK2JRDn|CsjV-=?Vyo-@ z_v;g0D*Epf@_SsZq-}a6=Dz1t<9SlnGgs}osFbp?O-Vvvlkw-*mw8`k*M9Tc8np5; z`|U;B7<3p|#H9{gdn*6GaC?01%j1{xEcRGV{`@BAs{Fe4x9>juJbN?VZr|Vg&vHs< znYF)7vzPg0p1%Lv^3C>ff6qU?p7`f!$?fl#Px(J6s46bA_C21jr{{Nl``^3IO6+8Q zH~&9(*5F>Q+W)6Nem*LZ`F*zR-@@I0TTgF#^(b$%^&H*cA89@_j};Ve-u-UB^t$)& ze;wZ9lk(>K?34QcUY3>H%#DpbSNx+e=I)zs!S??uZ~QvC@8%o-z5nkOe%|^2f`7f` zx%>0&`0Rg)%k8f%EUo<b;c)o$+jHkTM`*9!xWBUa+uEATJ9YSHT7J47`~T~gNB>t} ze*59;+W1Sq|33R-aq#ES|MKOx%Xd4!kDq(&ce{AK)V{LA|El-f{aIE2vv>d3#~;2N z+VQ*Q_4JRi^~ScoMYn2xU3mZd^~(GE{_Onz{qnu@PY$mypWpWPGRwBVXP?#Cx4M4V zEPd?w_5D9o>x#=bw9DSBTgn{P*;Tine?j`{*AxCuo?jO_XKkHy+iw2rv-igPPD<6^ z_b>6^#~)WWINi^!lYRI6>ZcEPH*BwwYKuSQowzIVhL5pp#KGgfH#W;ndz7>F<NCUn z^QS-i`TD7Q`11YsIg_62imCni^uK@hv$uQR|LFa@LG4e}kIL<H^Zpi{teiPLC~RF# zlz-jon)~gg@Akhv_jlg^+4rUT*W0Z5pBQ=Z{V)B$_ntpzt@=4@{^3LAAN9ElN?(S* z%KT@&=HB0D6<pFE5*J<nzC3eBb;PDr;k)m)-TudrZhii9-e>;(Q~uq*oA~d$$zLh6 zz=)ftQ)YeM#-aUUzqR{!19$dkH|A~sbbo&GKZD~kXEs`#e^sd-5%zA+vHiDwX0JY7 z_+yvUbJ5Lb%5U=dZ?3v`<f4(z%lge{pWoEB;+IVmFS~wu&Ify$KG*nln@)G@Co;+l zWzU^Z?^|N^aGsF(yw{xPBoFTt=Prv7ySu-AlUK|Uj;42e^t?|lN@1Tg!_++Otl;YG z*%`@e9rN6BH!C@@diF#~EEeO~dM4(o+Zu%zf1>wgtTIY+ovgBDsbOwsM)$JZRUKk1 zwz*+H>;-i_lCGVav9)PU>0J{+ZH`|@GrO(2x9fN$UAr}7YulR8(4%V<UWhN()GjSx z@;q}(Vzb$VtE+u#N|+q?Ta?b-`mv1F^UN)&&D$nyUD0Ke#Ok=;VyeBJ>q$Np!__I* zeob(^wWsXkMhR8sbypVEFu8E9->Jv>q|`U|$R354;wR+KUTNp=5{k=i7FrR|dis^o zvsS*VBE74xe)FBCv2mM5qg1HJyGM(Syx8KNUrCg7<y^nji?d{<(&|UeqFle8o?LBI zx4c}#t6*)c*8-oXxzVf7a_6o(dDQajH{WZT8^38bI!)caa}v*#FWgVG#NDk$RQFu- zQw>=4X<44A{x&W3P`TSiAlugqX@u>(pY!TN&sncmG4kssUG-XX*K0w{)6&?Z>dqRH z6~*Dl%32qt{5cf0UgpZ`JNa88<^*2S54a{4D$Ad!@_Op#YufBzPsy*n@~>x7<My1# z{;&94IoJPW5S3fFs>{eOZehxUuk0@*%x|unvo+Q-BfN6z%KrE%CC^K5PxE_w?qu21 zHE&Nj?ml(;)=EZ?72&1Pp_QVa)xgHKe?7(R-oyQNRo>p2N8HmzRCin}d%7WZYUJ9A zg|S!vh1dtrhMJla-YPfG+4KDEEi<KVI|Lre&JE|g9UADBBdsA>v0APFyjZ}L4^g+L z9xe-AaejuW7u&r>VeZdUcAi@MRO@(AXv#;)ds3>*>$0zyPEOf=YVBRE<9SofBWu?6 zPht!=+G@U7<Kfn_)iS$7<BmC>%%1XP&%ehjI%0)D-eh&q39qXUo6fK?rq%vqfGj9T zcb?i9^Yql(0D}i%>w4{L0;fEP+8x?=SF2yYVr`(o1F^M7*ukF3o0`16$anR(v^Qa; zaVw1-K~V%2+qx^KWm4mHQN1#4xY*Qt^EXCcWxBWTWZu+hka4F(UpaAkvE4hPS?(5C z)ZMl<Ml@nwOx!W?QvsJghpp{qceDa&E(=ZAU9_&FKU_nyVzy0x|9K6sinVW79VmOM z5_SX>61!GB{;m&l_HL~Wu{(9-=0`40d9ZesmE0=lz(d(}{i55nGp{}u^kTcWY3h$t z3LuqxwKl|g2CsVC{dbjCtc}ivg&GgHep}7-d+L>svx|BsHE!4V`qA>{damsKS{vez zdhK!B=`ee>?0)A!r|jHt)@|A=ujE>4SbkpReFPj{Ad5X$zDssEdEm9w*2>9GS8bWL zTIlrDDX&80RnucioxR%^wOo%{=cN-Kw1QuG3eTQ@7V9eD%AWZC`R00Z=5~RjvvtCk zZjG55u}&piyf2{W*;yl)kjuIl>HgS-DG$zSm2T=^)N=igSea7zzc=R3REwtW^tyXw z9z?6lx|o`+`Mr}K7WQll-F_A1v1zL(otS#$`@A)QMbFl%?Ay`+a?5(JMd6cHpO0S? zo;v&Z_I>4`K>fN(rE2QR+pj<tKiXc^zG%kwP2W~`{Rmx_XY73P!0jX38A>!f3)X&J zrBpTbD05KulsSc`jqc42obn;+b*SqXt<y<&9Zt?PFaNmH4jjs>HpKlb&tG$1!}4?2 zuCf-ey;^I+BcoTn?f$xIO>}96Ti~JWwc(=IR<8+7o~&W{`C8T+P(krCxG7@&CbO~* zQ?GM-QfpM+gHr$N(AKY7*^jsrvZu_c{92m^aq^+6siq(Ax`M=FZE|jdJbZ06*Xz(_ z^FFv9lnlRe!MH2w&aGSPvU0*Bh3%K`aXWb+daG~EHb^LBtqG4@%$6Kj^ep#E>^+Ey zYFoK`t!x%QITO8FdOgHq-!H2==dXzbi5(5^1Q$hBp~8DtU45bAb#BknXTH}~--=qF zwJ3aRRTiUa`aP$)e-~*y+<I;GtQVnc-HHQ>o`v%3E>JmW`aV&i?5TZNa!gYA)b8&s zpn_&=?A0Udt{9g0PU2plH_v0+YLH`-!nf|)(J;w){gLFi8l8pG*}JnkVy}MOX~%VL z%d3a)`CK{IZH+N?S@-J4uM<+L;`e^6%7i2_DW&kORcfrN)0Zt*s{0Od#I)6ICqmaA z1I23YqvMmod8+8D!OkH6%mq<v*%+^5W@G=O?SO9{a~nnNvBnybKf&Pgf}xg|7U4 zE3oKcXl)!w<n1cOve1<Wd8fowOwC=O@z6AXmr_~iN+r7~b1Jp}{+yi?-n%u{^vF6b z)3EkQ-0Q2BNV^*5XRi&{y|~)zrzj{USO3~O>F=to-&Rli5xVr0SYXk^wMqM(0uN=s z4cC3m6Ur;1vGc>Ra>f#nZGTs()`hN2uL~@C*n4#eC@a4W*ZsKK%QSDnlQXO3i$F=| zZMg2|)j@C1pIOg!bw=}|mg~3HM?DKSJR+qk9@jd1P59caaa(=XU%8fA7J5WINVZET zCVO|*%-EIEoPkBpLcd=CdGzdVmzlAmS-*{T2dOt}bQV5Ws|mhW*(VVpDzxZ@(;Df0 z0n-d;hj*p<Y`n6#*<hE!YQgdusb`*TT_kx~$5exRG56+O?(Aujn=7|w91HQjo5sGF zyI5@h+{9^yv#)oj`E0+k*3-bs*t&Ed%jTY&dy-9(Pl=j)uS+aR>}%(?0-0pHSn~3^ z9p|%o7jqZac-=gxlWg{0>g<f_mAellmL!JttAa(O&(3IgdG-v;nU&Sn3DXp3hxetO zIp}cIa<YMV{hCq(?-_5S?-s7DP6)Hzwc~niTHnO@%dhj|-<;FYk((QH_(hXUIe)3a z=^1BrdA9FnPy70^=k;CY%`5gj3IDSDw)mdMZQl>9(VAR%v^wFM*tf2}^52un?|hP* z@ikv}f!MN+%d%(oJ)bMG_w{kL>ju02d{Tcqcm0a0?eDA9Q{PXRX*t8B>bzgM!S8+L zK|kKjeEcw5qBh~$@3LLZH_P`;zVzMaznQE=?2M}tW@n7jiaC{!zMnADbH<8)vNKfA zJiGhe>C}DW(o{Az@s!Yie4BZ0#vJnaZ|#)Er}pZV<r$-t-|-uq>pd4*?L8p-q0zE# z!`kM^V>#~<maxki8M9CR!4$^6x##AcgC630(!-XAEa9;;SgjmUCB0|H^@H3mo7>M^ zImER$e|hwbO7%Sxf+|k<=&lJ^{PX434@vj9^_NK8GhSVseu+nZ#@9mYyNAx~e%LzY zuya~g;;So`du8L!ynfjF<*;*#R^m>nzuxOR#6R~{D5`#(7s)$u!n7X;*4VAORQ>4a z9*sDUV4IX>Qp@TlvV*+HtDO6B!py80yFPNKNpAl8-fD@|vY9K}UdI2Qeos>W+0u_r zQICzU+HYyQ$evcp<E`H({`pyj;#II7Et|&3V>#;*m)Of01@m^dyIX_Oh?JYv6Gh{z z2DLZU_PWNM$$rxM<%DzEs>ENLe5)q!nGt@H`{ktXXR<8jPdUk+);ech;<MaOPOqK_ z8oiwS{luz%sWi#WJKH9DRi5xM^|{(`NGI9sx<QaO|IC$bE7xg3ELimvWI-qc^X8tL z|E~K5^Ikp^ayTSa1>zym&ma%U8F}c>6#qP}QqdI5ulgegF?kipWFCX%*)uBd@0oDu zr%$N*n#3=Sk(QoSPxs6yKgX>(xBX1WVHaM>CEw3=SAN_x;aTMopH<Hli>toxnKAu5 zcjo-|Gj|S)6zyu8`Tab%=7RPUF(6*+%<v1`FBi0*xN_*q<`8iD?fG&66hRG^cMqLe z{i3zxB8c~DI`09UWV7uCm)!Yhu54v|R>Ez(eu?-cPZ00rZ=1`}FOTk-7U!XFo3c!d zZN_EYGka#md6*-3^Wr@0ZIjYizs`&7l~@vfrMuF7?}SNJCwz1vzVhEYVNulyA5$KK z<<&DP!}o63RCVNxt&cH?7r%GIAuzAEZE5(m?#lGN8!mzQVA=e=8y+Ee<$E`LLh$PM zZeXg0o728`gAkb4o45S?jqb{cdpD?6A2_q>jbL%r^u05t-{j8T?0)9XVUyxr?K8!1 zac6H?|48t)X;09z5`JU-t>V|R`e*EH&jj<fiC@b>@V1Lz%R}&Xh+iv!^YV9!hZTc( zD_2i?>H0nCUWxviS8|5M{Fl$XluNr;roZMLoEKNAzvi=?!RBk#N9M#;>p$E3{ZQ9? zLF4ZRXXm_2e0KNyp;HLn-|vUGKEUN<e;o2c@N9oLb$?)l>5Kj0bQ-~{{o%y@k@2&( zjm}=7_%qfYTc<r@eimL4QKh?Y#`j0uy2sehtpBj#OID5H`(xr!ed}jtTH7V~tv@dQ zxvpj*>(7RtqH@#XCh9+v{psZW31W^~{F&-ctzu6h=7jE>QT~)$_cX+uT{VX9Pm4#* z;GYryF!ANopGo&->TfZTH`ssZ@TKa{NB3C7XB68d)U~!Ro&LPLvU=ZzUo{8*aPfQV zUl9MyR=ZI27udpki{77!{vw-uG5m~y*NntzhSAkC7VG|Mu)KRX0Xt`Ab;O?~f@j>$ zh%djrZ~i`TNAvLxYoGW1m-8&<gl+$uw%fYK&h}xAT>0(tdF*>WE&P6Y{;}U1y4niA z-!7P8_IsVZ&)*+ByMJBkzx*z${_&ynm7jP1|D5(`&u8O%-_7f?ZdTrHIi34>lb8Jd zIc<yYvpkP{`D(d+U2%<++WvnR%bDEl?ff64Nh}kOw?A{6`Hp<}@v|G{?cdbB{@e1W z>vOl%KXE<*^W7g!{=R6ozjMEq%U<u{)|Zbze9p7JYghks2m6ophg0tNf8MkG@b$yT zZ~yynZ$0Dw=pO6+OlFC?`z@{c9-HKqO?JPLzpno0w+(-PmYIL`f1P8UmpAYGir01f z-?#0y{{Oj7Tc)kK{_Vdj`+KMB-4nSlTb_UJ6T_z+yz}CB%JuEu;H$c(J2iLj-0K&! zcJJQ#@%BrDvzP1RmK>jcKY#oG?@xdF7L;1%Y`=eAc*n21&))rL&-?egynes@GW(i4 zcfT&b%K!KJRsX|xpMCf}|JV8Nzt8TdDL&UZ`~S~xpB_~jC3c-Y^d~)-=XHwd|NqA; zH}PNIwWs3b%l&_>diI}r-@LjWJlHki+P@jgg%}vRj^i8g6lP#xh<47;D@n~Oi4UnP zNG*;9k8@2q4Vrg!{r<P>M6}56)J6fXTde)6A&b^b>{Rc}{4?S0v~TYv)kRmWy3pPc z5&7-R-t@FLDzkG#Ca*bInOWkeR^lUcp;a&_+_Ey-X6g16GuhPcwXE|K)_t>F>Aa!5 z=jS4}qqe4ECT?DjMfi7=if-N$@rmok*NU3MT#K1sOlW)Ixa=nLl$xt8PYRol%Zfi$ z+4=sHl9u|NTW(@D2{VpryuNCg@kj7sRCn{MOR=dUQ*-;)FZ~+6UwF+rK8B#9=N?t= ze{|Vt{}SE>&sdMYUDA+pF1F$sm++11H!T+%f4@}b3_de=qulzVjJ9?^l=rOg)0JxE z7CNWA=<8F5;Axu}zC>tF3Fv4RQ#hBBFZJy3Hpc(y8@BW9_+aV~!28z6f5QHr=sJnb zGP7jESM9j6+-m(!=8sY`b!VFS6Yl?Zk-hu)-uz?rHec?tZegvyrZ>5<{lnw^tCOc} z{N`@?7d%zDX;NQf6e9yeI4dY>7@0&E5Od|olf~Rf^X3pHWVjYQL>u6Zsu6kq6Ev3$ z(EuVP85uBVmeI8%&kKSkNkJMRxSk0~J9NqvT{rT)3~25Uq7y_eV@8`vMAwQuGS3gv z0mmt9V6C8mSlBcUx@P3DZqVR8Trb014zOm7p?q``kjI2UW8w%CIyk{5K!P0E5m<vC zIlF;IkP+rA;sTokG66i0j69x<?i%Ej0m_;PQ~G7GX4C+0RyL3#P6kc}dnN`3EqM?R E0LGE^ssI20 literal 0 HcmV?d00001 diff --git a/tests/initval_file/ramst_datafile.mod b/tests/histval_initval_file/ramst_datafile.mod similarity index 100% rename from tests/initval_file/ramst_datafile.mod rename to tests/histval_initval_file/ramst_datafile.mod diff --git a/tests/histval_initval_file/ramst_histval_file.mod b/tests/histval_initval_file/ramst_histval_file.mod new file mode 100644 index 000000000..8971ba04e --- /dev/null +++ b/tests/histval_initval_file/ramst_histval_file.mod @@ -0,0 +1,96 @@ +/* Test for the histval_file() command. This file needs ramst_histval_data.m. */ + +var c k; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + + +model; +c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); +c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); +end; + +initval; +x = 1; +k = ((delt+bet)/(1.0*aa*alph))^(1/(alph-1)); +c = aa*k^alph-delt*k; +end; + +steady; + +histval_file(datafile = 'ramst_histval_data.m'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(filename = ramst_initval_file_data_row_vec_mat); +perfect_foresight_setup(periods=200); +if oo_.exo_simul(2) ~= 1.2 + error('initval_file problem with exogenous variable'); +end +if oo_.endo_simul(2, 2) ~= 13 + error('initval_file option problem with endogenous variable'); +end +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end + +initval_file(datafile = 'ramst_data.m'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(datafile = 'ramst_data.mat'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(datafile = 'ramst_data.csv'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(datafile = 'ramst_data.xlsx'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +if ispc; + initval_file(datafile = 'ramst_data.cls'); + perfect_foresight_setup(periods = 200); + perfect_foresight_solver; + oo_.exo_simul = []; + oo_.endo_simul = []; + + if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') + end; +end; + diff --git a/tests/histval_initval_file/ramst_initval_file.mod b/tests/histval_initval_file/ramst_initval_file.mod new file mode 100644 index 000000000..8e72fe750 --- /dev/null +++ b/tests/histval_initval_file/ramst_initval_file.mod @@ -0,0 +1,113 @@ +/* Test for the initval_file() command. This file needs ramst_initval_file_data.m. It should give results similar to those of ramst.mod */ + +var c k; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + + +model; +c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); +c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); +end; + +initval; +x = 1; +k = ((delt+bet)/(1.0*aa*alph))^(1/(alph-1)); +c = aa*k^alph-delt*k; +end; + +steady; + +initval_file(filename = ramst_initval_file_data_row_vec_mat); +perfect_foresight_setup(periods=200); +if oo_.exo_simul(2) ~= 1.2 + error('initval_file problem with exogenous variable'); +end +if oo_.endo_simul(2, 2) ~= 13 + error('initval_file option problem with endogenous variable'); +end +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end + +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(filename = ramst_initval_file_data_col_vec_mat); + +perfect_foresight_setup(periods=200); +if oo_.exo_simul(2) ~= 1.2 + error('initval_file problem with exogenous variable'); +end +if oo_.endo_simul(2, 2) ~= 13 + error('initval_file problem with endogenous variable'); +end +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end + +if ispc() + initval_file(filename = ramst_initval_file_excel); + perfect_foresight_setup(periods=200); + perfect_foresight_solver; + if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed'); + end; +end + +initval_file(datafile = 'ramst_data.m'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(datafile = 'ramst_data.mat'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(datafile = 'ramst_data.csv'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +initval_file(datafile = 'ramst_data.xlsx'); +perfect_foresight_setup(periods = 200); +perfect_foresight_solver; +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end +oo_.exo_simul = []; +oo_.endo_simul = []; + +if ispc; + initval_file(datafile = 'ramst_data.cls'); + perfect_foresight_setup(periods = 200); + perfect_foresight_solver; + oo_.exo_simul = []; + oo_.endo_simul = []; + + if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') + end; +end; + diff --git a/tests/histval_initval_file/ramst_initval_file_data.m b/tests/histval_initval_file/ramst_initval_file_data.m new file mode 100644 index 000000000..cc1914ca1 --- /dev/null +++ b/tests/histval_initval_file/ramst_initval_file_data.m @@ -0,0 +1,14 @@ +x = vertcat([ 1; 1.2 ], repmat(1, 200, 1)); +k = repmat(13, 202, 1); +c = repmat(1.5, 202, 1); +save('ramst_initval_file_data_col_vec_mat.mat','c','k','x'); + +if ispc() + xlswrite('ramst_initval_file_excel',[x k c],1,'A2'); + xlswrite('ramst_initval_file_excel',{'x' 'k' 'c'},1,'A1'); +end + +c=c'; +k=k'; +x=x'; +save('ramst_initval_file_data_row_vec_mat.mat','c','k','x'); diff --git a/tests/histval_initval_file/sim_exo_lead_lag.mod b/tests/histval_initval_file/sim_exo_lead_lag.mod new file mode 100644 index 000000000..5a06c1c5c --- /dev/null +++ b/tests/histval_initval_file/sim_exo_lead_lag.mod @@ -0,0 +1,43 @@ +// Uses autonomous system from sim_base.mod, but adds separate system where exogenous variables have several leads and lags +// Lags and leads on exogenous variables are substituted out by auxiliary variables + +var c cmav k z_backward z_forward; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + +model; + c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); + c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); + z_backward=0.1*1+0.9*z_backward(-1) + (x(-4) - 1); + z_forward=0.2*1+0.8*z_forward(+1) + (x(+4) - 1); + cmav = 0.2*(c(-2) + c(-1) + c + c(+1) + c(+2)); +end; + +initval; + c = 1.2; + cmav = 1.2; + k = 12; + x = 1; //set x(0), x(-1), x(-2), x(-3) + z_backward = 1; + z_forward = 1; +end; + +shocks; +var x; //sets x(+2) +periods 2; +values 0.9; +end; + +simul(periods=200); + +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed') +end + + diff --git a/tests/histval_initval_file/sim_exo_lead_lag_histvalf.mod b/tests/histval_initval_file/sim_exo_lead_lag_histvalf.mod new file mode 100644 index 000000000..3d9ae12bb --- /dev/null +++ b/tests/histval_initval_file/sim_exo_lead_lag_histvalf.mod @@ -0,0 +1,76 @@ +// Uses autonomous system from sim_base.mod, but adds separate system where exogenous variables have several leads and lags +// Lags and leads on exogenous variables are substituted out by auxiliary variables + +var c cmav k z_backward z_forward; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + +model; + c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); + c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); + z_backward=0.1*1+0.9*z_backward(-1) + (x(-4) - 1); + z_forward=0.2*1+0.8*z_forward(+1) + (x(+4) - 1); + cmav = 0.2*(c(-2) + c(-1) + c + c(+1) + c(+2)); +end; + +initval; + x = 1; +end; + +steady_state_model; + k = ((bet + delt)/(aa*alph*x))^(1/(alph - 1)); + c = aa*x*k^alph - delt*k; + z_backward = x; + z_forward = x; + cmav = c; +end; + +steady; + +shocks; + var x; + periods 2; + values 0.9; +end; + +perfect_foresight_setup(periods=200); +perfect_foresight_solver; + +reference = oo_.endo_simul; + +data1 = repmat([oo_.steady_state' 1], 4, 1); +ds = dseries(data1, '1Y', [M_.endo_names; M_.exo_names]); + +histval_file(series = ds); +perfect_foresight_setup(periods=200); +perfect_foresight_solver; + +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed'); +end + +if max(max(abs(reference(1:5,5:end) - oo_.endo_simul(1:5,5:end)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the one with auxiliary variables') +end + +data1 = repmat([oo_.steady_state' 1], 6, 1); +ds1 = dseries(data1, '1Y', [M_.endo_names; M_.exo_names]); + +histval_file(series = ds1, first_obs = 3, last_obs = 6, nobs = 4); + +perfect_foresight_setup(periods=200); +perfect_foresight_solver; + +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed'); +end + +if max(max(abs(reference(1:5,:) - oo_.endo_simul(1:5,:)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the one with auxiliary variables') +end diff --git a/tests/histval_initval_file/sim_exo_lead_lag_initvalf.mod b/tests/histval_initval_file/sim_exo_lead_lag_initvalf.mod new file mode 100644 index 000000000..e74b6c9b2 --- /dev/null +++ b/tests/histval_initval_file/sim_exo_lead_lag_initvalf.mod @@ -0,0 +1,56 @@ +// Uses autonomous system from sim_base.mod, but adds separate system where exogenous variables have several leads and lags +// Lags and leads on exogenous variables are substituted out by auxiliary variables + +data1 = repmat([1.2, 1.2, 12, 1, 1, 1], 208, 1); +data1(6, 6) = 0.9; //shock to x in period 2 +ds = dseries(data1, '1Y', {'c', 'cmav', 'k', 'z_backward', 'z_forward', 'x'}); + +var c cmav k z_backward z_forward; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + +model; + c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); + c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); + z_backward=0.1*1+0.9*z_backward(-1) + (x(-4) - 1); + z_forward=0.2*1+0.8*z_forward(+1) + (x(+4) - 1); + cmav = 0.2*(c(-2) + c(-1) + c + c(+1) + c(+2)); +end; + +initval_file(series = ds); + +perfect_foresight_setup(periods=200); +perfect_foresight_solver(maxit=100); + +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed'); +end + +base_results=load('sim_exo_lead_lag_results.mat'); +if max(max(abs(base_results.oo_.endo_simul(1:5,:) - oo_.endo_simul(1:5,:)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the one with auxiliary variables') +end + +data1 = repmat([1.2, 1.2, 12, 1, 1, 1], 212, 1); +data1(8, 6) = 0.9; //shock to x in period 2 +ds1 = dseries(data1, '1Y', {'c', 'cmav', 'k', 'z_backward', 'z_forward', 'x'}); + +initval_file(series = ds1, first_obs = 3, last_obs = 210, nobs = 208); + +perfect_foresight_setup(periods=200); +perfect_foresight_solver(maxit=100); + +if ~oo_.deterministic_simulation.status + error('Perfect foresight simulation failed'); +end + +base_results=load('sim_exo_lead_lag_results.mat'); +if max(max(abs(base_results.oo_.endo_simul(1:5,:) - oo_.endo_simul(1:5,:)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the one with auxiliary variables') +end diff --git a/tests/histval_initval_file/sim_histvalf_stoch_simul.mod b/tests/histval_initval_file/sim_histvalf_stoch_simul.mod new file mode 100644 index 000000000..924a5f002 --- /dev/null +++ b/tests/histval_initval_file/sim_histvalf_stoch_simul.mod @@ -0,0 +1,86 @@ +// Uses autonomous system from sim_base.mod, but adds separate system where exogenous variables have several leads and lags +// Lags and leads on exogenous variables are substituted out by auxiliary variables + +var c cmav k z_backward z_forward; +varexo x; + +parameters alph gam delt bet aa; +alph=0.5; +gam=0.5; +delt=0.02; +bet=0.05; +aa=0.5; + +model; + c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); + c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); + z_backward=0.1*1+0.9*z_backward(-1) + (x(-4) - 1); + z_forward=0.2*1+0.8*z_forward(+1) + (x(+4) - 1); + cmav = 0.2*(c(-2) + c(-1) + c + c(+1) + c(+2)); +end; + +initval; + x = 1; +end; + +steady_state_model; + k = ((bet + delt)/(aa*alph*x))^(1/(alph - 1)); + c = aa*x*k^alph - delt*k; + z_backward = x; + z_forward = x; + cmav = c; +end; + +steady; + +shocks; + var x; + stderr 0.01; +end; + +s = rng; +stoch_simul(periods=20, drop=0, irf=0); + +reference = oo_.endo_simul; + +data1 = repmat([oo_.steady_state' 1], 4, 1); +ds = dseries(data1, '1Y', [M_.endo_names; M_.exo_names]); + +histval_file(series = ds); + +rng(s); +stoch_simul(periods=20, drop=0, irf=0); + +if max(max(abs(reference(1:5,5:end) - oo_.endo_simul(1:5,5:end)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the reference') +end + +data1 = repmat([oo_.steady_state' 1], 6, 1); +ds1 = dseries(data1, '1Y', [M_.endo_names; M_.exo_names]); + +histval_file(series = ds1, first_obs = 6, last_obs = 6, nobs = 1); + +rng(s); +stoch_simul(periods=20, drop=0, irf=0); + +if max(max(abs(reference(1:5,:) - oo_.endo_simul(1:5,:)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the reference') +end + +histval_file(series = ds1, first_simulation_period = 7); + +rng(s); +stoch_simul(periods=20, drop=0, irf=0); + +if max(max(abs(reference(1:5,:) - oo_.endo_simul(1:5,:)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the reference') +end + +histval_file(series = ds1, first_simulation_period = 7Y); + +rng(s); +stoch_simul(periods=20, drop=0, irf=0); + +if max(max(abs(reference(1:5,:) - oo_.endo_simul(1:5,:)))) > 1e-8 + error('Simulation with leads and lags doesn''t match the reference') +end diff --git a/tests/histval_initval_file_unit_tests.m b/tests/histval_initval_file_unit_tests.m new file mode 100644 index 000000000..4b81f71de --- /dev/null +++ b/tests/histval_initval_file_unit_tests.m @@ -0,0 +1,220 @@ +top_test_dir = getenv('TOP_TEST_DIR'); +addpath([top_test_dir filesep '..' filesep 'matlab/']); +dynare_config; + +cd('histval_initval_file'); +num_tests = 0; +failed_tests = {}; + +ds = dseries(randn(10,4)); + +M = struct(); +M.fname = ''; +M.endo_nbr = 3; +M.orig_endo_nbr = 3; +M.endo_names = {'Variable_1','Variable_2','Variable_3'}; +M.exo_nbr = 1; +M.exo_names = {'Variable_4'}; +M.exo_det_nbr = 0; + +caller = 'INITVAL'; + +options = struct(); +options.series = ds; +ds1 = histvalf_initvalf(caller, M, options); + +failed_tests = my_assert(failed_tests, all(all(ds1 == ds)), 'basic test'); +num_tests = num_tests + 1; + +options = struct(); +options.series = ds; +options.first_obs = 2; +ds1 = histvalf_initvalf(caller, M, options); +failed_tests = my_assert(failed_tests, ds1.init == dates('2Y'), ... + 'init test 1'); +num_tests = num_tests + 1; + +options = struct(); +options.series = ds; +options.first_obs = 2; +options.last_obs = 9; +ds1 = histvalf_initvalf(caller, M, options); +failed_tests = my_assert(failed_tests, ds1.init == dates('2Y'), ... + 'first_obs last_obs test 1'); +failed_tests = my_assert(failed_tests, ds1.last == dates('9Y'), ... + 'first_obs last_obs test 2'); +num_tests = num_tests + 2; + +options = struct(); +options.series = ds; +options.last_obs = 9; +ds1 = histvalf_initvalf(caller, M, options); +failed_tests = my_assert(failed_tests, ds1.init == dates('1Y'), ... + 'last_obs test 1'); +failed_tests = my_assert(failed_tests, ds1.last == dates('9Y'), ... + 'last_obs test 2'); +num_tests = num_tests + 2; + +options = struct(); +options.series = ds; +options.first_obs = 2; +options.last_obs = 9; +options.nobs = 8; +ds1 = histvalf_initvalf(caller, M, options); +failed_tests = my_assert(failed_tests, ds1.init == dates('2Y'), ... + 'first_obs, last_obs, nobs test 1'); +failed_tests = my_assert(failed_tests, ds1.last == dates('9Y'), ... + 'first_obs, last_obs, nobs test 2'); +num_tests = num_tests + 2; + +options = struct(); +options.series = ds; +options.last_obs = 9; +options.nobs = 8; +ds1 = histvalf_initvalf(caller, M, options); +failed_tests = my_assert(failed_tests, ds1.init == dates('2Y'), ... + 'last_obs, nobs test 1'); +failed_tests = my_assert(failed_tests, ds1.last == dates('9Y'), ... + 'last_obs, nobs test 2'); +num_tests = num_tests + 2; + +options = struct(); +options.series = ds; +options.first_obs = 2; +options.last_obs = 9; +options.nobs = 7; + +try + ds1 = histvalf_initvalf(caller, M, options); + error('This test didn''t catch the error') +catch me + if strcmp(me.message, ['INITVAL_FILE: FIST_OBS, LAST_OBS and NOBS contain', ... + ' inconsistent information. Use only two of these', ... + ' options.']) == false + failed_tests = cat(1, failed_tests, 'Wrong nobs error message' ); + end +end +num_tests = num_tests + 1; + +options = struct(); +options.series = ds; +options.first_obs = -1; + +try + ds1 = histvalf_initvalf(caller, M, options); + error('This test didn''t catch the error') +catch me + if strcmp(me.message, [caller, '_FILE: the first requested period is', ... + ' before available data.']) == false + failed_tests = cat(1, failed_tests, ... + 'Wrong first period error message'); + end +end +num_tests = num_tests + 1; + +options = struct(); +options.series = ds; +options.last_obs = 11; + +try + ds1 = histvalf_initvalf(caller, M, options); + error('This test didn''t catch the error') +catch me + if strcmp(me.message, [caller, '_FILE: the last requested period is', ... + ' after available data.']) == false + failed_tests = cat(1, failed_tests, ... + 'Wrong last period error message'); + end +end +num_tests = num_tests + 1; + +fh = fopen('data.m', 'w'); +init__ = 'INIT__ = ''1Y'';'; +fprintf(fh, [init__ '\n']); +eval(init__); +names__ = 'NAMES__ = {''x'', ''y''};'; +fprintf(fh, [names__ '\n']); +eval(names__); +tex__ = 'TEX__ = {''x'', ''y''};'; +fprintf(fh, [tex__ '\n']); +eval(tex__); +x = randn(10, 1); +fprintf(fh, 'x = ['); +fprintf(fh, '%f ', x); +fprintf(fh, '];\n'); +y = randn(10, 1); +fprintf(fh, 'y = ['); +fprintf(fh, '%f ', y); +fprintf(fh, '];\n'); +fclose(fh); + +M.endo_nbr = 1; +M.orig_endo_nbr = 1; +M.endo_names = {'y'}; +M.exo_nbr = 1; +M.exo_names = {'x'}; +M.exo_det_nbr = 0; + +options = struct(); +options.datafile = 'data.m'; +series = histvalf_initvalf('INITVAL_FILE', M, options); +failed_tests = my_assert(failed_tests, series.init == dates('1Y'), ... + '*.m file first_obs test'); +failed_tests = my_assert(failed_tests, series.nobs == 10, ... + '*.m file nobs test'); + +save('data.mat', 'INIT__', 'NAMES__', 'TEX__', 'x', 'y'); +options = struct(); +options.datafile = 'data.mat'; +series = histvalf_initvalf('INITVAL_FILE', M, options); +failed_tests = my_assert(failed_tests, series.init == dates('1Y'), ... + '*.mat file first_obs test'); +failed_tests = my_assert(failed_tests, series.nobs == 10, ... + '*.mat file nobs test'); + +fh = fopen('data.csv', 'w'); +fprintf(fh, 'x,y\n'); +for i = 1:size(x,1) + fprintf(fh, '%f,%f\n', x(i), y(i)); +end +fclose(fh); + +if ~verLessThan('matlab', '8.2') + writetable(table(x,y), 'data.xlsx') + options = struct(); + options.datafile = 'data.xlsx'; + series = histvalf_initvalf('INITVAL_FILE', M, options); + failed_tests = my_assert(failed_tests, series.init == dates('1Y'), ... + '*.xlsx file first_obs test'); + failed_tests = my_assert(failed_tests, series.nobs == 10, ... + '*.xlsx file nobs test'); + num_tests = num_tests + 2; + + if ispc + writetable(table(x,y), 'data.xls') + options = struct(); + options.datafile = 'data.xls'; + series = histvalf_initvalf('INITVAL_FILE', M, options); + failed_tests = my_assert(failed_tests, series.init == dates('1Y'), ... + '*.xls file first_obs test'); + failed_tests = my_assert(failed_tests, series.nobs == 10, ... + '*.xls file nobs test'); + num_tests = num_tests + 2; + end +end + +cd(getenv('TOP_TEST_DIR')); +fid = fopen('histval_initval_file_unit_tests.m.trs', 'w+'); +num_failed_tests = length(failed_tests) +if num_failed_tests > 0 + fprintf(fid,':test-result: FAIL\n'); + fprintf(fid,':number-tests: %d\n', num_tests); + fprintf(fid,':number-failed-tests: %d\n', num_failed_tests); + fprintf(fid,':list-of-failed-tests: %s\n', failed_tests{:}); +else + fprintf(fid,':test-result: PASS\n'); + fprintf(fid,':number-tests: %d\n', num_tests); + fprintf(fid,':number-failed-tests: 0\n'); +end +fclose(fid); +exit; diff --git a/tests/initval_file/ramst_initval_file.mod b/tests/initval_file/ramst_initval_file.mod deleted file mode 100644 index 2cc8f91ed..000000000 --- a/tests/initval_file/ramst_initval_file.mod +++ /dev/null @@ -1,55 +0,0 @@ -/* Test for the initval_file() command. This file needs ramst_initval_file_data.m. It should give results similar to those of ramst.mod */ - -var c k; -varexo x; - -parameters alph gam delt bet aa; -alph=0.5; -gam=0.5; -delt=0.02; -bet=0.05; -aa=0.5; - - -model; -c + k - aa*x*k(-1)^alph - (1-delt)*k(-1); -c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam); -end; - -initval; -x = 1; -k = ((delt+bet)/(1.0*aa*alph))^(1/(alph-1)); -c = aa*k^alph-delt*k; -end; - -steady; - -initval_file(filename = ramst_initval_file_data_row_vec_mat); -if oo_.exo_simul(2) ~= 1.2 - error('initval_file problem with exogenous variable'); -end -if oo_.endo_simul(2, 2) ~= 13 - error('initval_file option problem with endogenous variable'); -end -perfect_foresight_setup(periods=200); -perfect_foresight_solver; - -oo_.exo_simul = []; -oo_.endo_simul = []; - -initval_file(filename = ramst_initval_file_data_col_vec_mat); -if oo_.exo_simul(2) ~= 1.2 - error('initval_file problem with exogenous variable'); -end -if oo_.endo_simul(2, 2) ~= 13 - error('initval_file problem with endogenous variable'); -end - -perfect_foresight_setup(periods=200); -perfect_foresight_solver; - -if ispc() - initval_file(filename = ramst_initval_file_excel); - perfect_foresight_setup(periods=200); - perfect_foresight_solver; -end diff --git a/tests/smoother2histval/fs2000_simul.mod b/tests/smoother2histval/fs2000_simul.mod index eb65974e1..a682c76c0 100644 --- a/tests/smoother2histval/fs2000_simul.mod +++ b/tests/smoother2histval/fs2000_simul.mod @@ -66,6 +66,10 @@ results_estimation=load('fs2000_smooth_results'); M_.params=results_estimation.M_.params; steady; +OO = load('fs2000_smooth_results.mat'); +M_.params = OO.M_.params; + histval_file(filename = 'fs2000_histval.mat'); -simul(periods = 30); +perfect_foresight_setup(periods = 100); +perfect_foresight_solver; diff --git a/tests/smoother2histval/fs2000_smooth.mod b/tests/smoother2histval/fs2000_smooth.mod index 89447eb57..65bb15b68 100644 --- a/tests/smoother2histval/fs2000_smooth.mod +++ b/tests/smoother2histval/fs2000_smooth.mod @@ -82,6 +82,6 @@ varobs gp_obs gy_obs; options_.solve_tolf = 1e-12; -estimation(order=1,datafile=fsdat_simul,nobs=192,mh_replic=1500,mh_nblocks=1,mh_jscale=0.8,smoother,consider_all_endogenous); +estimation(order=1,datafile=fsdat_simul,mh_replic=1500,mh_nblocks=1,mh_jscale=0.8,smoother,consider_all_endogenous); smoother2histval(period = 5, outfile = 'fs2000_histval.mat'); -- GitLab