diff --git a/deterministic.pdf b/deterministic.pdf
index 4092954654c70b230a5bb3609417164944c37c0e..4e399cfcc73bd7f2bcb79aad1ac1a636a4bb06bc 100644
Binary files a/deterministic.pdf and b/deterministic.pdf differ
diff --git a/deterministic.tex b/deterministic.tex
index 91ff3eb01f0471a172e1dd64a7f18ce1fc6ccc9c..326f910407aedb0c485c23bbf7f335cf71218c1b 100644
--- a/deterministic.tex
+++ b/deterministic.tex
@@ -682,7 +682,7 @@ $$d_T = (B_T-A_TD_{T-1})^{-1}(f(y_{T+1},y_T,y_{T-1},u_T)+A_Td_{T-1})$$
   \begin{equation*}
     \label{eq:social-planner-problem:1}
     \max_{\{c_{t+j},\ell_{t+j},k_{t+j}\}_{j=0}^{\infty}} 
-    \mathbb{E}_t \sum_{j=0}^{\infty}\beta^ju(c_{t+j},\ell_{t+j})
+    \sum_{j=0}^{\infty}\beta^ju(c_{t+j},\ell_{t+j})
   \end{equation*}
   s.t.
   \begin{gather*}
@@ -715,7 +715,7 @@ $$d_T = (B_T-A_TD_{T-1})^{-1}(f(y_{T+1},y_T,y_{T-1},u_T)+A_Td_{T-1})$$
   \begin{itemize}
   \item Euler equation:
     \begin{equation*}
-      u_c(c_t,\ell_t) = \beta\, \mathbb E_t\left[
+      u_c(c_t,\ell_t) = \beta\, \left[
         u_c(c_{t+1},\ell_{t+1})\Bigl(A_{t+1}f_k(k_t,\ell_{t+1}) + 1
         -\delta\Bigr) \right]
     \end{equation*}
@@ -1045,7 +1045,7 @@ end;
 \begin{frame}[fragile]
   \frametitle{First order conditions}
   \begin{gather*}
-    u_c(c_t,\ell_t) - \mu_t = \beta\, \mathbb E_t\left[
+    u_c(c_t,\ell_t) - \mu_t = \beta\, \left[
       u_c(c_{t+1},\ell_{t+1})\left(A_{t+1}f_k(k_t,\ell_{t+1}) + 1
       -\delta\right) - \mu_{t+1}(1-\delta)\right] \\
     \frac{u_{\ell}(c_t,\ell_t)}{u_c(c_t,\ell_t)} + A_tf_l(k_{t-1},\ell_t) =
@@ -1178,10 +1178,10 @@ occbin_graph y i i_not pie;
   How to simulate an unexpected shock at a period $t > 1$?
   \begin{itemize}
   \item Do a perfect foresight simulation from periods $0$ to $T$ \emph{without the
-      shock}
+      unexpected shock in $t$} (but with other expected shocks)
   \item Do another perfect foresight simulation from periods $t$ to $T$
     \begin{itemize}
-    \item applying the shock in $t$,
+    \item applying the unexpected shock in $t$ (and keeping expected shocks),
     \item and using the results of the first simulation as initial condition
     \end{itemize}
   \item Combine the two simulations:
@@ -1443,7 +1443,7 @@ plot(oo_.endo_simul(ic, 1:21));
     \ccbysa
     \column{0.71\textwidth}
     \tiny
-    Copyright © 2015-2023 Dynare Team \\
+    Copyright © 2015-2024 Dynare Team \\
     License: \href{http://creativecommons.org/licenses/by-sa/4.0/}{Creative
       Commons Attribution-ShareAlike 4.0}
   \end{columns}
diff --git a/exercise-zlb.pdf b/exercise-zlb.pdf
index 082dd1dda20470b60e36166da016e30957bc8164..72b00325c74c848028856c45547a8bd0385d9de2 100644
Binary files a/exercise-zlb.pdf and b/exercise-zlb.pdf differ
diff --git a/exercise-zlb.tex b/exercise-zlb.tex
index 8ee18c66f7108f3f599d45944fb3e67c2ee78a0f..b991929c31a91be54f1a49bdf56ad2de2af1dd89 100644
--- a/exercise-zlb.tex
+++ b/exercise-zlb.tex
@@ -29,7 +29,7 @@
   stochastic version. Display the interest rate with \texttt{rplot}. What do
   you observe?
 \item Now, transform the previous example by adding a \emph{negative}
-  (\texttt{i.e.} inflationary) one-standard-deviation productivity shock in
+  (\textit{i.e.} inflationary) one-standard-deviation productivity shock in
   period 5, in two different ways. In the first version, the shock will be
   anticipated; in the second one, the shock will be unexpected.
   Verify that in the first version the ZLB is