Skip to content
Snippets Groups Projects
Select Git revision
  • e37b32b01534ffe9a5a5ec3f00f745720b75a83f
  • master default
  • nlf-fixes
  • newton-quadratic-equation-solver
  • nlf-fixes-r
  • nls-fixes
  • sep-fixes
  • sep
  • use-dprior
  • ep-sparse
  • rebase-1
  • parfor
  • reset-seed-in-unit-tests
  • remove-persistent-variables
  • nonlinear-filter-fixes
  • pac-mce-with-composite-target
  • 6.x
  • dprior
  • covariance-quadratic-approximation
  • benchmark-ec
  • kalman_mex
  • 5.5
  • 5.4
  • 5.3
  • 5.2
  • 5.1
  • 5.0
  • 5.0-rc1
  • 4.7-beta3
  • 4.7-beta2
  • 4.7-beta1
  • 4.6.4
  • 4.6.3
  • 4.6.2
  • 4.6.1
  • 4.6.0
  • 4.6.0-rc2
  • 4.6.0-rc1
  • 4.6-beta1
  • 4.5.7
  • 4.5.6
41 results

check_prior_bounds.m

Blame
  • Forked from Dynare / dynare
    Source project has a limited visibility.
    log_transform.m 3.38 KiB
    function [yy, xdir, isig, lam]=log_transform(y0,xdir0,isig,lam)
    % [yy, xdir, isig, lam]=log_transform(y0,xdir0,isig,lam)
    % Conduct automatic log transformation lam(yy/isig+lam)
    % Inputs:
    %   - y0    [double]    series to transform
    %   - xdir  [char]      string indating the type of transformation:
    %                           - log: standard log transformation
    %                           - minuslog: log of minus (y0)
    %                           - logsquared: log of y0^2
    %                           - logskew: log of y0 shifted by lam
    %   - isig  [double]    scaling factor for y0
    %   - lam   [double]    shifting for y0
    %
    % Outputs:
    %   - yy    [double]    transformed series
    %   - xdir  [char]      string indating the type of transformation:
    %                           - log: standard log transformation
    %                           - minuslog: log of minus (y0)
    %                           - logsquared: log of y0^2
    %                           - logskew: log of y0 shifted by lam
    %   - isig  [double]    scaling factor for y0
    %   - lam   [double]    shifting for y0
    %
    % Notes: takes either one or four arguments. For one argument, the log
    % transformation is conducted. For four arguments, the inverse
    % transformation is applied.
    
    % Written by Marco Ratto
    % Joint Research Centre, The European Commission,
    % marco.ratto@ec.europa.eu
    
    % Copyright © 2012 European Commission
    % Copyright © 2012-2017 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
    
    if nargin==4
        % inverse transformation
        yy = (exp(y0)-lam)*isig;
        return
    end
    
    if nargin==1
        xdir0='';
    end
    f=@(lam,y)gsa.skewness(log(y+lam));
    isig=1;
    if ~(max(y0)<0 || min(y0)>0)
        if gsa.skewness(y0)<0
            isig=-1;
            y0=-y0;
        end
        if isoctave
            n=hist(y0,10);
        else
            n=histcounts(y0,10);
        end
        if n(1)>20*n(end)
            try
                lam=fzero(f,[-min(y0)+10*eps -min(y0)+abs(median(y0))],[],y0);
            catch
                yl(1)=f(-min(y0)+10*eps,y0);
                yl(2)=f(-min(y0)+abs(median(y0)),y0);
                if abs(yl(1))<abs(yl(2))
                    lam=-min(y0)+eps;
                else
                    lam = -min(y0)+abs(median(y0));
                end
            end
            yy = log(y0+lam);
            xdir=[xdir0,'_logskew'];
        else
            isig=0;
            lam=0;
            yy = log(y0.^2);
            xdir=[xdir0,'_logsquared'];
        end
    else
        if max(y0)<0
            isig=-1;
            y0=-y0;
            xdir=[xdir0,'_minuslog'];
        elseif min(y0)>0
            xdir=[xdir0,'_log'];
        end
        try
            lam=fzero(f,[-min(y0)+10*eps -min(y0)+median(y0)],[],y0);
        catch
            yl(1)=f(-min(y0)+10*eps,y0);
            yl(2)=f(-min(y0)+abs(median(y0)),y0);
            if abs(yl(1))<abs(yl(2))
                lam=-min(y0)+eps;
            else
                lam = -min(y0)+abs(median(y0));
            end
        end
        lam = max(lam,0);
        yy = log(y0+lam);
    end