From 184c403375e2d15d1108959c7bb24ab9b2130192 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?St=C3=A9phane=20Adjemian=20=28Charybdis=29?= <stephane.adjemian@univ-lemans.fr> Date: Wed, 10 Jul 2013 16:16:32 +0200 Subject: [PATCH] Replaced disp(' ') by skipline(). --- matlab/dynare_estimation_1.m | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/matlab/dynare_estimation_1.m b/matlab/dynare_estimation_1.m index dac4b33d80..01ad200562 100644 --- a/matlab/dynare_estimation_1.m +++ b/matlab/dynare_estimation_1.m @@ -34,9 +34,9 @@ global M_ options_ oo_ estim_params_ bayestopt_ dataset_ % Set particle filter flag. if options_.order > 1 if options_.particle.status && options_.order==2 - disp(' ') + skipline() disp('Estimation using a non linear filter!') - disp(' ') + skipline() if ~options_.nointeractive && ismember(options_.mode_compute,[1,3,4]) % Known gradient-based optimizers disp('You are using a gradient-based mode-finder. Particle filtering introduces discontinuities in the') disp('objective function w.r.t the parameters. Thus, should use a non-gradient based optimizer.') @@ -357,7 +357,7 @@ if ~isequal(options_.mode_compute,0) && ~options_.mh_posterior_mode_estimation fval = feval(objective_function,xparam1,dataset_,options_,M_,estim_params_,bayestopt_,oo_); options_.mh_jscale = Scale; mouvement = max(max(abs(PostVar-OldPostVar))); - disp(' ') + skipline() disp('========================================================== ') disp([' Change in the covariance matrix = ' num2str(mouvement) '.']) disp([' Mode improvement = ' num2str(abs(OldMode-fval))]) @@ -378,7 +378,7 @@ if ~isequal(options_.mode_compute,0) && ~options_.mh_posterior_mode_estimation options_.mh_jscale = Scale; mouvement = max(max(abs(PostVar-OldPostVar))); fval = feval(objective_function,xparam1,dataset_,options_,M_,estim_params_,bayestopt_,oo_); - disp(' ') + skipline() disp('========================================================== ') disp([' Change in the covariance matrix = ' num2str(mouvement) '.']) disp([' Mode improvement = ' num2str(abs(OldMode-fval))]) @@ -391,11 +391,11 @@ if ~isequal(options_.mode_compute,0) && ~options_.mh_posterior_mode_estimation save([M_.fname '_optimal_mh_scale_parameter.mat'],'Scale'); bayestopt_.jscale = ones(length(xparam1),1)*Scale; end - disp(' ') + skipline() disp(['Optimal value of the scale parameter = ' num2str(Scale)]) - disp(' ') + skipline() disp(['Final value of the log posterior (or likelihood): ' num2str(fval)]) - disp(' ') + skipline() parameter_names = bayestopt_.name; save([M_.fname '_mode.mat'],'xparam1','hh','parameter_names'); case 7 @@ -507,7 +507,7 @@ if ~options_.mh_posterior_mode_estimation && options_.cova_compute try chol(hh); catch - disp(' ') + skipline() disp('POSTERIOR KERNEL OPTIMIZATION PROBLEM!') disp(' (minus) the hessian matrix at the "mode" is not positive definite!') disp('=> posterior variance of the estimated parameters are not positive.') @@ -556,9 +556,9 @@ if any(bayestopt_.pshape > 0) && ~options_.mh_posterior_mode_estimation log_det_invhess = -estim_params_nbr*log(scale_factor)+log(det(scale_factor*invhess)); likelihood = feval(objective_function,xparam1,dataset_,options_,M_,estim_params_,bayestopt_,oo_); oo_.MarginalDensity.LaplaceApproximation = .5*estim_params_nbr*log(2*pi) + .5*log_det_invhess - likelihood; - disp(' ') + skipline() disp(sprintf('Log data density [Laplace approximation] is %f.',oo_.MarginalDensity.LaplaceApproximation)) - disp(' ') + skipline() end elseif ~any(bayestopt_.pshape > 0) && ~options_.mh_posterior_mode_estimation oo_=display_estimation_results_table(xparam1,stdh,M_,options_,estim_params_,bayestopt_,oo_,pnames,'Maximum Likelihood','mle'); -- GitLab