From 2e73856f5a4381c760ab1f3a8d9c423aa0702d46 Mon Sep 17 00:00:00 2001 From: Johannes Pfeifer <jpfeifer@gmx.de> Date: Thu, 7 Dec 2023 21:15:18 +0100 Subject: [PATCH] GSA and identification: move files to namespace --- license.txt | 44 +++++----- matlab/{gsa => +gsa}/Morris_Measure_Groups.m | 0 matlab/{gsa => +gsa}/Sampling_Function_2.m | 0 matlab/{gsa/myboxplot.m => +gsa/boxplot.m} | 4 +- matlab/{gsa => +gsa}/cumplot.m | 0 .../log_trans_.m => +gsa/log_transform.m} | 8 +- matlab/{gsa => +gsa}/map_calibration.m | 16 ++-- .../map_identification.m} | 44 +++++----- .../monte_carlo_filtering.m} | 50 +++++------ .../monte_carlo_filtering_analysis.m} | 18 ++-- .../monte_carlo_moments.m} | 10 +-- .../prior_draw_gsa.m => +gsa/prior_draw.m} | 3 +- matlab/{gsa => +gsa}/priorcdf.m | 0 .../reduced_form_mapping.m} | 40 ++++----- .../reduced_form_screening.m} | 16 ++-- matlab/{dynare_sensitivity.m => +gsa/run.m} | 18 ++-- matlab/{gsa => +gsa}/scatter_analysis.m | 4 +- matlab/{gsa => +gsa}/scatter_mcf.m | 4 +- matlab/{gsa => +gsa}/scatter_plots.m | 2 +- matlab/{gsa => +gsa}/set_shocks_param.m | 0 .../{gsa/gsa_skewness.m => +gsa/skewness.m} | 4 +- matlab/{gsa/smirnov.m => +gsa/smirnov_test.m} | 6 +- .../stab_map_.m => +gsa/stability_mapping.m} | 22 ++--- .../stability_mapping_bivariate.m} | 4 +- .../stability_mapping_univariate.m} | 16 ++-- .../stand_.m => +gsa/standardize_columns.m} | 4 +- matlab/{gsa => +gsa}/tcrit.m | 0 matlab/{gsa => +gsa}/teff.m | 0 matlab/{gsa => +gsa}/th_moments.m | 0 .../analysis.m} | 56 ++++++------- .../bruteforce.m} | 4 +- .../checks.m} | 12 +-- .../checks_via_subsets.m} | 8 +- matlab/{ => +identification}/cosn.m | 2 +- .../display.m} | 8 +- .../get_jacobians.m} | 12 +-- .../numerical_objective.m} | 4 +- .../plot.m} | 26 +++--- .../run.m} | 82 +++++++++---------- .../simulated_moment_uncertainty.m | 0 matlab/commutation.m | 2 +- matlab/duplication.m | 2 +- matlab/fjaco.m | 6 +- matlab/get_minimal_state_representation.m | 2 +- matlab/get_perturbation_params_derivs.m | 2 +- matlab/list_of_functions_to_be_cleared.m | 2 +- matlab/pruned_state_space_system.m | 4 +- matlab/set_all_parameters.m | 2 +- preprocessor | 2 +- 49 files changed, 288 insertions(+), 287 deletions(-) rename matlab/{gsa => +gsa}/Morris_Measure_Groups.m (100%) rename matlab/{gsa => +gsa}/Sampling_Function_2.m (100%) rename matlab/{gsa/myboxplot.m => +gsa/boxplot.m} (97%) rename matlab/{gsa => +gsa}/cumplot.m (100%) rename matlab/{gsa/log_trans_.m => +gsa/log_transform.m} (94%) rename matlab/{gsa => +gsa}/map_calibration.m (97%) rename matlab/{gsa/map_ident_.m => +gsa/map_identification.m} (90%) rename matlab/{gsa/filt_mc_.m => +gsa/monte_carlo_filtering.m} (95%) rename matlab/{gsa/mcf_analysis.m => +gsa/monte_carlo_filtering_analysis.m} (75%) rename matlab/{gsa/mc_moments.m => +gsa/monte_carlo_moments.m} (84%) rename matlab/{gsa/prior_draw_gsa.m => +gsa/prior_draw.m} (96%) rename matlab/{gsa => +gsa}/priorcdf.m (100%) rename matlab/{gsa/redform_map.m => +gsa/reduced_form_mapping.m} (95%) rename matlab/{gsa/redform_screen.m => +gsa/reduced_form_screening.m} (92%) rename matlab/{dynare_sensitivity.m => +gsa/run.m} (95%) rename matlab/{gsa => +gsa}/scatter_analysis.m (89%) rename matlab/{gsa => +gsa}/scatter_mcf.m (98%) rename matlab/{gsa => +gsa}/scatter_plots.m (99%) rename matlab/{gsa => +gsa}/set_shocks_param.m (100%) rename matlab/{gsa/gsa_skewness.m => +gsa/skewness.m} (95%) rename matlab/{gsa/smirnov.m => +gsa/smirnov_test.m} (94%) rename matlab/{gsa/stab_map_.m => +gsa/stability_mapping.m} (95%) rename matlab/{gsa/stab_map_2.m => +gsa/stability_mapping_bivariate.m} (96%) rename matlab/{gsa/stab_map_1.m => +gsa/stability_mapping_univariate.m} (88%) rename matlab/{gsa/stand_.m => +gsa/standardize_columns.m} (93%) rename matlab/{gsa => +gsa}/tcrit.m (100%) rename matlab/{gsa => +gsa}/teff.m (100%) rename matlab/{gsa => +gsa}/th_moments.m (100%) rename matlab/{identification_analysis.m => +identification/analysis.m} (94%) rename matlab/{ident_bruteforce.m => +identification/bruteforce.m} (98%) rename matlab/{identification_checks.m => +identification/checks.m} (95%) rename matlab/{identification_checks_via_subsets.m => +identification/checks_via_subsets.m} (98%) rename matlab/{ => +identification}/cosn.m (98%) rename matlab/{disp_identification.m => +identification/display.m} (98%) rename matlab/{get_identification_jacobians.m => +identification/get_jacobians.m} (97%) rename matlab/{identification_numerical_objective.m => +identification/numerical_objective.m} (97%) rename matlab/{plot_identification.m => +identification/plot.m} (95%) rename matlab/{dynare_identification.m => +identification/run.m} (94%) rename matlab/{ => +identification}/simulated_moment_uncertainty.m (100%) diff --git a/license.txt b/license.txt index d6f1336af2..c1bee92b07 100644 --- a/license.txt +++ b/license.txt @@ -161,33 +161,33 @@ Comment: The author gave authorization to redistribute Journal of Multivariate Analysis, 2008, vol. 99, issue 3, pages 542-554. -Files: matlab/gsa/Morris_Measure_Groups.m - matlab/gsa/Sampling_Function_2.m +Files: matlab/+gsa/Morris_Measure_Groups.m + matlab/+gsa/Sampling_Function_2.m Copyright: 2005 European Commission - 2012-2017 Dynare Team + 2012-2013 Dynare Team License: GPL-3+ Comment: Written by Jessica Cariboni and Francesca Campolongo Joint Research Centre, The European Commission, -Files: matlab/gsa/cumplot.m - matlab/gsa/filt_mc_.m - matlab/gsa/gsa_skewness.m - matlab/gsa/log_trans_.m - matlab/gsa/map_calibration.m - matlab/gsa/map_ident_.m - matlab/gsa/mcf_analysis.m - matlab/gsa/myboxplot.m - matlab/gsa/prior_draw_gsa.m - matlab/gsa/redform_map.m - matlab/gsa/redform_screen.m - matlab/gsa/scatter_mcf.m - matlab/gsa/smirnov.m - matlab/gsa/stab_map_.m - matlab/gsa/stab_map_1.m - matlab/gsa/stab_map_2.m - matlab/gsa/stand_.m - matlab/gsa/tcrit.m - matlab/gsa/teff.m +Files: matlab/+gsa/cumplot.m + matlab/+gsa/monte_carlo_filtering.m + matlab/+gsa/skewness.m + matlab/+gsa/log_trans_.m + matlab/+gsa/map_calibration.m + matlab/+gsa/map_identification.m + matlab/+gsa/monte_carlo_filtering_analysis.m + matlab/+gsa/boxplot.m + matlab/+gsa/prior_draw.m + matlab/+gsa/reduced_form_mapping.m + matlab/+gsa/reduced_form_screening.m + matlab/+gsa/scatter_mcf.m + matlab/+gsa/smirnov_test.m + matlab/+gsa/stability_mapping.m + matlab/+gsa/stability_mapping_univariate.m + matlab/+gsa/stability_mapping_bivariate.m + matlab/+gsa/standardize_columns.m + matlab/+gsa/tcrit.m + matlab/+gsa/teff.m Copyright: 2011-2018 European Commission 2011-2023 Dynare Team License: GPL-3+ diff --git a/matlab/gsa/Morris_Measure_Groups.m b/matlab/+gsa/Morris_Measure_Groups.m similarity index 100% rename from matlab/gsa/Morris_Measure_Groups.m rename to matlab/+gsa/Morris_Measure_Groups.m diff --git a/matlab/gsa/Sampling_Function_2.m b/matlab/+gsa/Sampling_Function_2.m similarity index 100% rename from matlab/gsa/Sampling_Function_2.m rename to matlab/+gsa/Sampling_Function_2.m diff --git a/matlab/gsa/myboxplot.m b/matlab/+gsa/boxplot.m similarity index 97% rename from matlab/gsa/myboxplot.m rename to matlab/+gsa/boxplot.m index 4d6cf60d10..f893b7a819 100644 --- a/matlab/gsa/myboxplot.m +++ b/matlab/+gsa/boxplot.m @@ -1,5 +1,5 @@ -function sout = myboxplot (data,notched,symbol,vertical,maxwhisker) -% sout = myboxplot (data,notched,symbol,vertical,maxwhisker) +function sout = boxplot (data,notched,symbol,vertical,maxwhisker) +% sout = boxplot (data,notched,symbol,vertical,maxwhisker) % Creates a box plot % Copyright © 2010-2023 Dynare Team diff --git a/matlab/gsa/cumplot.m b/matlab/+gsa/cumplot.m similarity index 100% rename from matlab/gsa/cumplot.m rename to matlab/+gsa/cumplot.m diff --git a/matlab/gsa/log_trans_.m b/matlab/+gsa/log_transform.m similarity index 94% rename from matlab/gsa/log_trans_.m rename to matlab/+gsa/log_transform.m index 3dedb694e8..852ddb1870 100644 --- a/matlab/gsa/log_trans_.m +++ b/matlab/+gsa/log_transform.m @@ -1,5 +1,5 @@ -function [yy, xdir, isig, lam]=log_trans_(y0,xdir0,isig,lam) -% [yy, xdir, isig, lam]=log_trans_(y0,xdir0,isig,lam) +function [yy, xdir, isig, lam]=log_transform(y0,xdir0,isig,lam) +% [yy, xdir, isig, lam]=log_transform(y0,xdir0,isig,lam) % Conduct automatic log transformation lam(yy/isig+lam) % Inputs: % - y0 [double] series to transform @@ -56,10 +56,10 @@ end if nargin==1 xdir0=''; end -f=@(lam,y)gsa_skewness(log(y+lam)); +f=@(lam,y)gsa.skewness(log(y+lam)); isig=1; if ~(max(y0)<0 || min(y0)>0) - if gsa_skewness(y0)<0 + if gsa.skewness(y0)<0 isig=-1; y0=-y0; end diff --git a/matlab/gsa/map_calibration.m b/matlab/+gsa/map_calibration.m similarity index 97% rename from matlab/gsa/map_calibration.m rename to matlab/+gsa/map_calibration.m index 44703dc05c..aa68e09008 100644 --- a/matlab/gsa/map_calibration.m +++ b/matlab/+gsa/map_calibration.m @@ -229,7 +229,7 @@ if ~isempty(indx_irf) if ~options_.nograph && length(time_matrix{plot_indx(ij)})==1 set(0,'currentfigure',h1), subplot(nrow,ncol, plot_indx(ij)), - hc = cumplot(mat_irf{ij}(:,ik)); + hc = gsa.cumplot(mat_irf{ij}(:,ik)); a=axis; delete(hc); x1val=max(endo_prior_restrictions.irf{ij,4}(1),a(1)); @@ -237,7 +237,7 @@ if ~isempty(indx_irf) hp = patch([x1val x2val x2val x1val],a([3 3 4 4]),'b'); hold all, set(hp,'FaceColor', [0.7 0.8 1]) - hc = cumplot(mat_irf{ij}(:,ik)); + hc = gsa.cumplot(mat_irf{ij}(:,ik)); set(hc,'color','k','linewidth',2) hold off, % hold off, @@ -259,7 +259,7 @@ if ~isempty(indx_irf) end options_mcf.title = atitle0; if ~isempty(indx1) && ~isempty(indx2) - mcf_analysis(xmat(:,nshock+1:end), indx1, indx2, options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(xmat(:,nshock+1:end), indx1, indx2, options_mcf, M_, options_, bayestopt_, estim_params_); end end for ij=1:nbr_irf_couples @@ -316,7 +316,7 @@ if ~isempty(indx_irf) options_mcf.title = atitle0; if ~isempty(indx1) && ~isempty(indx2) - mcf_analysis(xmat(:,nshock+1:end), indx1, indx2, options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(xmat(:,nshock+1:end), indx1, indx2, options_mcf, M_, options_, bayestopt_, estim_params_); end end end @@ -434,7 +434,7 @@ if ~isempty(indx_moment) if ~options_.nograph && length(time_matrix{plot_indx(ij)})==1 set(0,'currentfigure',h2); subplot(nrow,ncol,plot_indx(ij)), - hc = cumplot(mat_moment{ij}(:,ik)); + hc = gsa.cumplot(mat_moment{ij}(:,ik)); a=axis; delete(hc), % hist(mat_moment{ij}), x1val=max(endo_prior_restrictions.moment{ij,4}(1),a(1)); @@ -442,7 +442,7 @@ if ~isempty(indx_moment) hp = patch([x1val x2val x2val x1val],a([3 3 4 4]),'b'); set(hp,'FaceColor', [0.7 0.8 1]) hold all - hc = cumplot(mat_moment{ij}(:,ik)); + hc = gsa.cumplot(mat_moment{ij}(:,ik)); set(hc,'color','k','linewidth',2) hold off title([endo_prior_restrictions.moment{ij,1},' vs ',endo_prior_restrictions.moment{ij,2},'(',leg,')'],'interpreter','none'), @@ -463,7 +463,7 @@ if ~isempty(indx_moment) end options_mcf.title = atitle0; if ~isempty(indx1) && ~isempty(indx2) - mcf_analysis(xmat, indx1, indx2, options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(xmat, indx1, indx2, options_mcf, M_, options_, bayestopt_, estim_params_); end end for ij=1:nbr_moment_couples @@ -520,7 +520,7 @@ if ~isempty(indx_moment) end options_mcf.title = atitle0; if ~isempty(indx1) && ~isempty(indx2) - mcf_analysis(xmat, indx1, indx2, options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(xmat, indx1, indx2, options_mcf, M_, options_, bayestopt_, estim_params_); end end end diff --git a/matlab/gsa/map_ident_.m b/matlab/+gsa/map_identification.m similarity index 90% rename from matlab/gsa/map_ident_.m rename to matlab/+gsa/map_identification.m index 2b7194fa2f..3f9f86b9b6 100644 --- a/matlab/gsa/map_ident_.m +++ b/matlab/+gsa/map_identification.m @@ -1,5 +1,5 @@ -function map_ident_(OutputDirectoryName,opt_gsa,M_,oo_,options_,estim_params_,bayestopt_) -% map_ident_(OutputDirectoryName,opt_gsa,M_,oo_,options_,estim_params_,bayestopt_) +function map_identification(OutputDirectoryName,opt_gsa,M_,oo_,options_,estim_params_,bayestopt_) +% map_identification(OutputDirectoryName,opt_gsa,M_,oo_,options_,estim_params_,bayestopt_) % Inputs % - OutputDirectoryName [string] name of the output directory % - opt_gsa [structure] GSA options structure @@ -58,16 +58,16 @@ fname_ = M_.fname; if opt_gsa.load_ident_files==0 mss = yys(bayestopt_.mfys,:); - mss = teff(mss(:,istable),Nsam,istable); - yys = teff(yys(dr.order_var,istable),Nsam,istable); + mss = gsa.teff(mss(:,istable),Nsam,istable); + yys = gsa.teff(yys(dr.order_var,istable),Nsam,istable); if exist('T','var') - [vdec, cc, ac] = mc_moments(T, lpmatx, dr, M_, options_, estim_params_); + [vdec, cc, ac] = gsa.monte_carlo_moments(T, lpmatx, dr, M_, options_, estim_params_); else return end if opt_gsa.morris==2 - pdraws = dynare_identification(M_,oo_,options_,bayestopt_,estim_params_,options_.options_ident,[lpmatx lpmat(istable,:)]); + pdraws = identification.run(M_,oo_,options_,bayestopt_,estim_params_,options_.options_ident,[lpmatx lpmat(istable,:)]); if ~isempty(pdraws) && max(max(abs(pdraws-[lpmatx lpmat(istable,:)])))==0 disp(['Sample check OK. Largest difference: ', num2str(max(max(abs(pdraws-[lpmatx lpmat(istable,:)]))))]), clear pdraws; @@ -84,7 +84,7 @@ if opt_gsa.load_ident_files==0 end iplo=iplo+1; subplot(2,3,iplo) - myboxplot(squeeze(vdec(:,j,:))',[],'.',[],10) + gsa.boxplot(squeeze(vdec(:,j,:))',[],'.',[],10) set(gca,'xticklabel',' ','fontsize',10,'xtick',1:size(options_.varobs,1)) set(gca,'xlim',[0.5 size(options_.varobs,1)+0.5]) set(gca,'ylim',[-2 102]) @@ -105,11 +105,11 @@ if opt_gsa.load_ident_files==0 end end for j=1:size(cc,1) - cc(j,j,:)=stand_(squeeze(log(cc(j,j,:))))./2; + cc(j,j,:)=gsa.standardize_columns(squeeze(log(cc(j,j,:))))./2; end - [vdec, ~, ir_vdec, ic_vdec] = teff(vdec,Nsam,istable); - [cc, ~, ir_cc, ic_cc] = teff(cc,Nsam,istable); - [ac, ~, ir_ac, ic_ac] = teff(ac,Nsam,istable); + [vdec, ~, ir_vdec, ic_vdec] = gsa.teff(vdec,Nsam,istable); + [cc, ~, ir_cc, ic_cc] = gsa.teff(cc,Nsam,istable); + [ac, ~, ir_ac, ic_ac] = gsa.teff(ac,Nsam,istable); nc1= size(T,2); endo_nbr = M_.endo_nbr; @@ -123,7 +123,7 @@ if opt_gsa.load_ident_files==0 [Aa,Bb] = kalman_transition_matrix(dr,iv,ic); A = zeros(size(Aa,1),size(Aa,2)+size(Aa,1),length(istable)); if ~isempty(lpmatx) - M_=set_shocks_param(M_,estim_params_,lpmatx(1,:)); + M_=gsa.set_shocks_param(M_,estim_params_,lpmatx(1,:)); end A(:,:,1)=[Aa, triu(Bb*M_.Sigma_e*Bb')]; for j=2:length(istable) @@ -131,14 +131,14 @@ if opt_gsa.load_ident_files==0 dr.ghu = T(:, (nc1-M_.exo_nbr+1):end, j); [Aa,Bb] = kalman_transition_matrix(dr, iv, ic); if ~isempty(lpmatx) - M_=set_shocks_param(M_,estim_params_,lpmatx(j,:)); + M_=gsa.set_shocks_param(M_,estim_params_,lpmatx(j,:)); end A(:,:,j)=[Aa, triu(Bb*M_.Sigma_e*Bb')]; end clear T clear lpmatx - [yt, j0]=teff(A,Nsam,istable); + [yt, j0]=gsa.teff(A,Nsam,istable); yt = [yys yt]; if opt_gsa.morris==2 clear TAU A @@ -155,7 +155,7 @@ if opt_gsa.morris==1 if opt_gsa.load_ident_files==0 SAMorris=NaN(npT,3,size(vdec,2)); for i=1:size(vdec,2) - [~, SAMorris(:,:,i)] = Morris_Measure_Groups(npT, [lpmat0 lpmat], vdec(:,i),nliv); + [~, SAMorris(:,:,i)] = gsa.Morris_Measure_Groups(npT, [lpmat0 lpmat], vdec(:,i),nliv); end SAvdec = squeeze(SAMorris(:,1,:))'; save([OutputDirectoryName,'/',fname_,'_morris_IDE.mat'],'SAvdec','vdec','ir_vdec','ic_vdec') @@ -164,7 +164,7 @@ if opt_gsa.morris==1 end hh_fig = dyn_figure(options_.nodisplay,'name','Screening identification: variance decomposition'); - myboxplot(SAvdec,[],'.',[],10) + gsa.boxplot(SAvdec,[],'.',[],10) set(gca,'xticklabel',' ','fontsize',10,'xtick',1:npT) set(gca,'xlim',[0.5 npT+0.5]) ydum = get(gca,'ylim'); @@ -190,7 +190,7 @@ if opt_gsa.morris==1 ccac = [mss cc ac]; SAMorris=NaN(npT,3,size(ccac,2)); for i=1:size(ccac,2) - [~, SAMorris(:,:,i)] = Morris_Measure_Groups(npT, [lpmat0 lpmat], [ccac(:,i)],nliv); + [~, SAMorris(:,:,i)] = gsa.Morris_Measure_Groups(npT, [lpmat0 lpmat], [ccac(:,i)],nliv); end SAcc = squeeze(SAMorris(:,1,:))'; SAcc = SAcc./(max(SAcc,[],2)*ones(1,npT)); @@ -202,7 +202,7 @@ if opt_gsa.morris==1 end hh_fig=dyn_figure(options_.nodisplay,'name','Screening identification: theoretical moments'); - myboxplot(SAcc,[],'.',[],10) + gsa.boxplot(SAcc,[],'.',[],10) set(gca,'xticklabel',' ','fontsize',10,'xtick',1:npT) set(gca,'xlim',[0.5 npT+0.5]) set(gca,'ylim',[0 1]) @@ -223,7 +223,7 @@ if opt_gsa.morris==1 if opt_gsa.load_ident_files==0 SAMorris=NaN(npT,3,j0); for j=1:j0 - [~, SAMorris(:,:,j)] = Morris_Measure_Groups(npT, [lpmat0 lpmat], yt(:,j),nliv); + [~, SAMorris(:,:,j)] = gsa.Morris_Measure_Groups(npT, [lpmat0 lpmat], yt(:,j),nliv); end SAM = squeeze(SAMorris(1:end,1,:)); @@ -249,7 +249,7 @@ if opt_gsa.morris==1 load([OutputDirectoryName,'/',fname_,'_morris_IDE'],'SAnorm') end hh_fig=dyn_figure(options_.nodisplay,'name','Screening identification: model'); - myboxplot(SAnorm',[],'.',[],10) + gsa.boxplot(SAnorm',[],'.',[],10) set(gca,'xticklabel',' ','fontsize',10,'xtick',1:npT) set(gca,'xlim',[0.5 npT+0.5]) set(gca,'ylim',[0 1]) @@ -297,7 +297,7 @@ else % main effects analysis catch EET=[]; end - ccac = stand_([mss cc ac]); + ccac = gsa.standardize_columns([mss cc ac]); [pcc, dd] = eig(cov(ccac(istable,:))); [latent, isort] = sort(-diag(dd)); latent = -latent; @@ -314,7 +314,7 @@ else % main effects analysis if itrans==0 y0 = ccac(istable,j); elseif itrans==1 - y0 = log_trans_(ccac(istable,j)); + y0 = gsa.log_transform(ccac(istable,j)); else y0 = trank(ccac(istable,j)); end diff --git a/matlab/gsa/filt_mc_.m b/matlab/+gsa/monte_carlo_filtering.m similarity index 95% rename from matlab/gsa/filt_mc_.m rename to matlab/+gsa/monte_carlo_filtering.m index b59f6026c3..69b100b4d3 100644 --- a/matlab/gsa/filt_mc_.m +++ b/matlab/+gsa/monte_carlo_filtering.m @@ -1,5 +1,5 @@ -function [rmse_MC, ixx] = filt_mc_(OutDir,options_gsa_,dataset_,dataset_info,M_,oo_,options_,bayestopt_,estim_params_) -% [rmse_MC, ixx] = filt_mc_(OutDir,options_gsa_,dataset_,dataset_info,M_,oo_,options_,bayestopt_,estim_params_ +function [rmse_MC, ixx] = monte_carlo_filtering(OutDir,options_gsa_,dataset_,dataset_info,M_,oo_,options_,bayestopt_,estim_params_) +% [rmse_MC, ixx] = monte_carlo_filtering(OutDir,options_gsa_,dataset_,dataset_info,M_,oo_,options_,bayestopt_,estim_params_ % Inputs: % - OutputDirectoryName [string] name of the output directory % - options_gsa_ [structure] GSA options @@ -288,7 +288,7 @@ options_scatter.OutputDirectoryName = OutDir; options_scatter.amcf_name = asname; options_scatter.amcf_title = atitle; options_scatter.title = tmp_title; -scatter_analysis(r2_MC, x,options_scatter, options_); +gsa.scatter_analysis(r2_MC, x,options_scatter, options_); % end of visual scatter analysis if ~options_.opt_gsa.ppost && options_.opt_gsa.lik_only @@ -320,7 +320,7 @@ if ~options_.opt_gsa.ppost && options_.opt_gsa.lik_only options_mcf.nobeha_title_latex = 'worse posterior kernel'; end - mcf_analysis(x, ipost(1:nfilt), ipost(nfilt+1:end), options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(x, ipost(1:nfilt), ipost(nfilt+1:end), options_mcf, M_, options_, bayestopt_, estim_params_); if options_.opt_gsa.pprior anam = 'rmse_prior_lik'; atitle = 'RMSE prior: Log Likelihood Kernel'; @@ -338,7 +338,7 @@ if ~options_.opt_gsa.ppost && options_.opt_gsa.lik_only options_mcf.nobeha_title_latex = 'worse likelihood'; end - mcf_analysis(x, ilik(1:nfilt), ilik(nfilt+1:end), options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(x, ilik(1:nfilt), ilik(nfilt+1:end), options_mcf, M_, options_, bayestopt_, estim_params_); else if options_.opt_gsa.ppost @@ -367,9 +367,9 @@ else SS = zeros(npar+nshock, length(vvarvecm)); for j = 1:npar+nshock for i = 1:length(vvarvecm) - [~, P] = smirnov(x(ixx(nfilt0(i)+1:end,i),j),x(ixx(1:nfilt0(i),i),j), alpha); - [H1] = smirnov(x(ixx(nfilt0(i)+1:end,i),j),x(ixx(1:nfilt0(i),i),j),alpha,1); - [H2] = smirnov(x(ixx(nfilt0(i)+1:end,i),j),x(ixx(1:nfilt0(i),i),j),alpha,-1); + [~, P] = gsa.smirnov_test(x(ixx(nfilt0(i)+1:end,i),j),x(ixx(1:nfilt0(i),i),j), alpha); + [H1] = gsa.smirnov_test(x(ixx(nfilt0(i)+1:end,i),j),x(ixx(1:nfilt0(i),i),j),alpha,1); + [H2] = gsa.smirnov_test(x(ixx(nfilt0(i)+1:end,i),j),x(ixx(1:nfilt0(i),i),j),alpha,-1); if H1==0 && H2==0 SS(j,i)=1; elseif H1==0 @@ -382,7 +382,7 @@ else for i = 1:length(vvarvecm) for l = 1:length(vvarvecm) if l~=i && PP(j,i)<alpha && PP(j,l)<alpha - [~,P] = smirnov(x(ixx(1:nfilt0(i),i),j),x(ixx(1:nfilt0(l),l),j), alpha); + [~,P] = gsa.smirnov_test(x(ixx(1:nfilt0(i),i),j),x(ixx(1:nfilt0(l),l),j), alpha); PPV(i,l,j) = P; elseif l==i PPV(i,l,j) = PP(j,i); @@ -407,11 +407,11 @@ else hh_fig=dyn_figure(options_.nodisplay,'name',[temp_name,' ',int2str(ifig)]); end subplot(3,3,i-9*(ifig-1)) - h=cumplot(lnprior(ixx(1:nfilt0(i),i))); + h=gsa.cumplot(lnprior(ixx(1:nfilt0(i),i))); set(h,'color','blue','linewidth',2) - hold on, h=cumplot(lnprior); + hold on, h=gsa.cumplot(lnprior); set(h,'color','k','linewidth',1) - h=cumplot(lnprior(ixx(nfilt0(i)+1:end,i))); + h=gsa.cumplot(lnprior(ixx(nfilt0(i)+1:end,i))); set(h,'color','red','linewidth',2) if options_.TeX title(vvarvecm_tex{i},'interpreter','latex') @@ -459,11 +459,11 @@ else hh_fig = dyn_figure(options_.nodisplay,'Name',[temp_name,' ',int2str(ifig)]); end subplot(3,3,i-9*(ifig-1)) - h=cumplot(likelihood(ixx(1:nfilt0(i),i))); + h=gsa.cumplot(likelihood(ixx(1:nfilt0(i),i))); set(h,'color','blue','linewidth',2) - hold on, h=cumplot(likelihood); + hold on, h=gsa.cumplot(likelihood); set(h,'color','k','linewidth',1) - h=cumplot(likelihood(ixx(nfilt0(i)+1:end,i))); + h=gsa.cumplot(likelihood(ixx(nfilt0(i)+1:end,i))); set(h,'color','red','linewidth',2) if options_.TeX title(vvarvecm_tex{i},'interpreter','latex') @@ -514,11 +514,11 @@ else hh_fig = dyn_figure(options_.nodisplay,'Name',[temp_name,' ',int2str(ifig)]); end subplot(3,3,i-9*(ifig-1)) - h=cumplot(logpo2(ixx(1:nfilt0(i),i))); + h=gsa.cumplot(logpo2(ixx(1:nfilt0(i),i))); set(h,'color','blue','linewidth',2) - hold on, h=cumplot(logpo2); + hold on, h=gsa.cumplot(logpo2); set(h,'color','k','linewidth',1) - h=cumplot(logpo2(ixx(nfilt0(i)+1:end,i))); + h=gsa.cumplot(logpo2(ixx(nfilt0(i)+1:end,i))); set(h,'color','red','linewidth',2) if options_.TeX title(vvarvecm_tex{i},'interpreter','latex') @@ -756,7 +756,7 @@ else options_mcf.nobeha_title_latex = ['worse fit of ' vvarvecm_tex{iy}]; end options_mcf.title = ['the fit of ' vvarvecm{iy}]; - mcf_analysis(x, ixx(1:nfilt0(iy),iy), ixx(nfilt0(iy)+1:end,iy), options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(x, ixx(1:nfilt0(iy),iy), ixx(nfilt0(iy)+1:end,iy), options_mcf, M_, options_, bayestopt_, estim_params_); end for iy = 1:length(vvarvecm) ipar = find(any(squeeze(PPV(iy,:,:))<alpha)); @@ -764,20 +764,20 @@ else hh_fig = dyn_figure(options_.nodisplay,'name',[temp_name,' observed variable ', vvarvecm{iy}]); for j=1+5*(ix-1):min(length(ipar),5*ix) subplot(2,3,j-5*(ix-1)) - h0=cumplot(x(:,ipar(j))); + h0=gsa.cumplot(x(:,ipar(j))); set(h0,'color',[0 0 0]) hold on, iobs=find(squeeze(PPV(iy,:,ipar(j)))<alpha); for i = 1:length(vvarvecm) if any(iobs==i) || i==iy - h0=cumplot(x(ixx(1:nfilt0(i),i),ipar(j))); + h0=gsa.cumplot(x(ixx(1:nfilt0(i),i),ipar(j))); if ~isoctave hcmenu = uicontextmenu; uimenu(hcmenu,'Label',vvarvecm{i}); set(h0,'uicontextmenu',hcmenu) end else - h0=cumplot(x(ixx(1:nfilt0(i),i),ipar(j))*NaN); + h0=gsa.cumplot(x(ixx(1:nfilt0(i),i),ipar(j))*NaN); end set(h0,'color',a00(i,:),'linewidth',2) end @@ -829,15 +829,15 @@ else hh_fig = dyn_figure(options_.nodisplay,'name',[temp_name,' estimated params and shocks ',int2str(ix)]); for j=1+5*(ix-1):min(size(snam2,1),5*ix) subplot(2,3,j-5*(ix-1)) - h0=cumplot(x(:,nsnam(j))); + h0=gsa.cumplot(x(:,nsnam(j))); set(h0,'color',[0 0 0]) hold on, npx=find(SP(nsnam(j),:)==0); for i = 1:length(vvarvecm) if any(npx==i) - h0=cumplot(x(ixx(1:nfilt0(i),i),nsnam(j))*NaN); + h0=gsa.cumplot(x(ixx(1:nfilt0(i),i),nsnam(j))*NaN); else - h0=cumplot(x(ixx(1:nfilt0(i),i),nsnam(j))); + h0=gsa.cumplot(x(ixx(1:nfilt0(i),i),nsnam(j))); if ~isoctave hcmenu = uicontextmenu; uimenu(hcmenu,'Label', vvarvecm{i}); diff --git a/matlab/gsa/mcf_analysis.m b/matlab/+gsa/monte_carlo_filtering_analysis.m similarity index 75% rename from matlab/gsa/mcf_analysis.m rename to matlab/+gsa/monte_carlo_filtering_analysis.m index 795a664ec8..ed312fcdbe 100644 --- a/matlab/gsa/mcf_analysis.m +++ b/matlab/+gsa/monte_carlo_filtering_analysis.m @@ -1,5 +1,5 @@ -function indmcf = mcf_analysis(lpmat, ibeha, inobeha, options_mcf, M_, options_, bayestopt_, estim_params_) -% indmcf = mcf_analysis(lpmat, ibeha, inobeha, options_mcf, M_, options_, bayestopt_, estim_params_) +function indmcf = monte_carlo_filtering_analysis(lpmat, ibeha, inobeha, options_mcf, M_, options_, bayestopt_, estim_params_) +% indmcf = monte_carlo_filtering_analysis(lpmat, ibeha, inobeha, options_mcf, M_, options_, bayestopt_, estim_params_) % Inputs: % - lpmat [double] Monte Carlo matrix % - ibeha [integer] index of behavioural runs @@ -66,7 +66,7 @@ if isfield(options_mcf,'xparam1') end OutputDirectoryName = options_mcf.OutputDirectoryName; -[proba, dproba] = stab_map_1(lpmat, ibeha, inobeha, [],fname_, options_, bayestopt_.name, estim_params_,0); +[proba, dproba] = gsa.stability_mapping_univariate(lpmat, ibeha, inobeha, [],fname_, options_, bayestopt_.name, estim_params_,0); indmcf=find(proba<pvalue_ks); [~,jtmp] = sort(proba(indmcf),1,'ascend'); indmcf = indmcf(jtmp); @@ -87,11 +87,11 @@ end if length(ibeha)>10 && length(inobeha)>10 if options_.TeX - indcorr1 = stab_map_2(lpmat(ibeha,:),alpha2, pvalue_corr, M_, options_, bayestopt_, estim_params_, beha_title, beha_title_latex); - indcorr2 = stab_map_2(lpmat(inobeha,:),alpha2, pvalue_corr, M_, options_, bayestopt_, estim_params_, nobeha_title, nobeha_title_latex); + indcorr1 = gsa.stability_mapping_bivariate(lpmat(ibeha,:),alpha2, pvalue_corr, M_, options_, bayestopt_, estim_params_, beha_title, beha_title_latex); + indcorr2 = gsa.stability_mapping_bivariate(lpmat(inobeha,:),alpha2, pvalue_corr, M_, options_, bayestopt_, estim_params_, nobeha_title, nobeha_title_latex); else - indcorr1 = stab_map_2(lpmat(ibeha,:),alpha2, pvalue_corr, M_, options_, bayestopt_, estim_params_, beha_title); - indcorr2 = stab_map_2(lpmat(inobeha,:),alpha2, pvalue_corr, M_, options_, bayestopt_, estim_params_, nobeha_title); + indcorr1 = gsa.stability_mapping_bivariate(lpmat(ibeha,:),alpha2, pvalue_corr, M_, options_, bayestopt_, estim_params_, beha_title); + indcorr2 = gsa.stability_mapping_bivariate(lpmat(inobeha,:),alpha2, pvalue_corr, M_, options_, bayestopt_, estim_params_, nobeha_title); end indcorr = union(indcorr1(:), indcorr2(:)); indcorr = indcorr(~ismember(indcorr(:),indmcf)); @@ -104,11 +104,11 @@ if ~isempty(indmcf) && ~options_.nograph xx=xparam1(indmcf); end if options_.TeX - scatter_mcf(lpmat(ibeha,indmcf),lpmat(inobeha,indmcf), param_names_tex(indmcf), ... + gsa.scatter_mcf(lpmat(ibeha,indmcf),lpmat(inobeha,indmcf), param_names_tex(indmcf), ... '.', [fname_,'_',amcf_name], OutputDirectoryName, amcf_title,xx, options_, ... beha_title, nobeha_title, beha_title_latex, nobeha_title_latex) else - scatter_mcf(lpmat(ibeha,indmcf),lpmat(inobeha,indmcf), param_names_tex(indmcf), ... + gsa.scatter_mcf(lpmat(ibeha,indmcf),lpmat(inobeha,indmcf), param_names_tex(indmcf), ... '.', [fname_,'_',amcf_name], OutputDirectoryName, amcf_title,xx, options_, ... beha_title, nobeha_title) end diff --git a/matlab/gsa/mc_moments.m b/matlab/+gsa/monte_carlo_moments.m similarity index 84% rename from matlab/gsa/mc_moments.m rename to matlab/+gsa/monte_carlo_moments.m index 31554da12d..510e28e949 100644 --- a/matlab/gsa/mc_moments.m +++ b/matlab/+gsa/monte_carlo_moments.m @@ -1,5 +1,5 @@ -function [vdec, cc, ac] = mc_moments(mm, ss, dr, M_, options_, estim_params_) -% [vdec, cc, ac] = mc_moments(mm, ss, dr, M_, options_,estim_params_) +function [vdec, cc, ac] = monte_carlo_moments(mm, ss, dr, M_, options_, estim_params_) +% [vdec, cc, ac] = monte_carlo_moments(mm, ss, dr, M_, options_,estim_params_) % Conduct Monte Carlo simulation of second moments for GSA % Inputs: % - dr [structure] decision rules @@ -32,7 +32,7 @@ function [vdec, cc, ac] = mc_moments(mm, ss, dr, M_, options_, estim_params_) [~, nc1, nsam] = size(mm); nobs=length(options_.varobs); -disp('mc_moments: Computing theoretical moments ...') +disp('monte_carlo_moments: Computing theoretical moments ...') h = dyn_waitbar(0,'Theoretical moments ...'); vdec = zeros(nobs,M_.exo_nbr,nsam); cc = zeros(nobs,nobs,nsam); @@ -42,9 +42,9 @@ for j=1:nsam dr.ghx = mm(:, 1:(nc1-M_.exo_nbr),j); dr.ghu = mm(:, (nc1-M_.exo_nbr+1):end, j); if ~isempty(ss) - M_=set_shocks_param(M_,estim_params_,ss(j,:)); + M_=gsa.set_shocks_param(M_,estim_params_,ss(j,:)); end - [vdec(:,:,j), corr, autocorr] = th_moments(dr,options_,M_); + [vdec(:,:,j), corr, autocorr] = gsa.th_moments(dr,options_,M_); cc(:,:,j)=triu(corr); dum=NaN(nobs,nobs*options_.ar); for i=1:options_.ar diff --git a/matlab/gsa/prior_draw_gsa.m b/matlab/+gsa/prior_draw.m similarity index 96% rename from matlab/gsa/prior_draw_gsa.m rename to matlab/+gsa/prior_draw.m index 58731ec0a1..c3b8f8d9df 100644 --- a/matlab/gsa/prior_draw_gsa.m +++ b/matlab/+gsa/prior_draw.m @@ -1,4 +1,5 @@ -function pdraw = prior_draw_gsa(M_,bayestopt_,options_,estim_params_,init,rdraw) +function pdraw = prior_draw(M_,bayestopt_,options_,estim_params_,init,rdraw) +% pdraw = prior_draw(M_,bayestopt_,options_,estim_params_,init,rdraw) % Draws from the prior distributions for use with Sensitivity Toolbox for DYNARE % % INPUTS diff --git a/matlab/gsa/priorcdf.m b/matlab/+gsa/priorcdf.m similarity index 100% rename from matlab/gsa/priorcdf.m rename to matlab/+gsa/priorcdf.m diff --git a/matlab/gsa/redform_map.m b/matlab/+gsa/reduced_form_mapping.m similarity index 95% rename from matlab/gsa/redform_map.m rename to matlab/+gsa/reduced_form_mapping.m index 8475fd7e12..de575f4cb2 100644 --- a/matlab/gsa/redform_map.m +++ b/matlab/+gsa/reduced_form_mapping.m @@ -1,5 +1,5 @@ -function redform_map(dirname,options_gsa_,M_,estim_params_,options_,bayestopt_,oo_) -% redform_map(dirname,options_gsa_,M_,estim_params_,options_,bayestopt_,oo_) +function reduced_form_mapping(dirname,options_gsa_,M_,estim_params_,options_,bayestopt_,oo_) +% reduced_form_mapping(dirname,options_gsa_,M_,estim_params_,options_,bayestopt_,oo_) % Inputs: % - dirname [string] name of the output directory % - options_gsa_ [structure] GSA options_ @@ -85,7 +85,7 @@ options_mcf.fname_ = M_.fname; options_mcf.OutputDirectoryName = adir; if ~exist('T','var') - stab_map_(dirname,options_gsa_,M_,oo_,options_,bayestopt_,estim_params_); + gsa.stability_mapping(dirname,options_gsa_,M_,oo_,options_,bayestopt_,estim_params_); if pprior load([dirname,filesep,M_.fname,'_prior'],'T'); else @@ -182,14 +182,14 @@ for j = 1:length(anamendo) end if ~options_.nograph hf=dyn_figure(options_.nodisplay,'name',['Reduced Form Mapping (Monte Carlo Filtering): ',namendo,' vs ', namexo]); - hc = cumplot(y0); + hc = gsa.cumplot(y0); a=axis; delete(hc); x1val=max(threshold(1),a(1)); x2val=min(threshold(2),a(2)); hp = patch([x1val x2val x2val x1val],a([3 3 4 4]),'b'); set(hp,'FaceColor', [0.7 0.8 1]) hold all, - hc = cumplot(y0); + hc = gsa.cumplot(y0); set(hc,'color','k','linewidth',2) hold off, if options_.TeX @@ -218,7 +218,7 @@ for j = 1:length(anamendo) options_mcf.OutputDirectoryName = xdir; if ~isempty(iy) && ~isempty(iyc) fprintf(['%4.1f%% of the ',type,' support matches ',atitle0,'\n'],length(iy)/length(y0)*100) - icheck = mcf_analysis(x0, iy, iyc, options_mcf, M_, options_, bayestopt_, estim_params_); + icheck = gsa.monte_carlo_filtering_analysis(x0, iy, iyc, options_mcf, M_, options_, bayestopt_, estim_params_); lpmat=x0(iy,:); if nshocks @@ -349,14 +349,14 @@ for j = 1:length(anamendo) end if ~options_.nograph hf=dyn_figure(options_.nodisplay,'name',['Reduced Form Mapping (Monte Carlo Filtering): ',namendo,' vs lagged ', namlagendo]); - hc = cumplot(y0); + hc = gsa.cumplot(y0); a=axis; delete(hc); x1val=max(threshold(1),a(1)); x2val=min(threshold(2),a(2)); hp = patch([x1val x2val x2val x1val],a([3 3 4 4]),'b'); set(hp,'FaceColor', [0.7 0.8 1]) hold all, - hc = cumplot(y0); + hc = gsa.cumplot(y0); set(hc,'color','k','linewidth',2) hold off if options_.TeX @@ -387,7 +387,7 @@ for j = 1:length(anamendo) if ~isempty(iy) && ~isempty(iyc) fprintf(['%4.1f%% of the ',type,' support matches ',atitle0,'\n'],length(iy)/length(y0)*100) - icheck = mcf_analysis(x0, iy, iyc, options_mcf, M_, options_, bayestopt_, estim_params_); + icheck = gsa.monte_carlo_filtering_analysis(x0, iy, iyc, options_mcf, M_, options_, bayestopt_, estim_params_); lpmat=x0(iy,:); if nshocks @@ -476,9 +476,9 @@ end if isempty(threshold) && ~options_.nograph hh_fig=dyn_figure(options_.nodisplay,'name','Reduced Form GSA'); if ilog==0 - myboxplot(si',[],'.',[],10) + gsa.boxplot(si',[],'.',[],10) else - myboxplot(silog',[],'.',[],10) + gsa.boxplot(silog',[],'.',[],10) end xlabel(' ') set(gca,'xticklabel',' ','fontsize',10,'xtick',1:np) @@ -513,7 +513,7 @@ if options_map.prior_range x0(:,j)=(x0(:,j)-pd(j,3))./(pd(j,4)-pd(j,3)); end else - x0=priorcdf(x0,pshape, pd(:,1), pd(:,2), pd(:,3), pd(:,4)); + x0=gsa.priorcdf(x0,pshape, pd(:,1), pd(:,2), pd(:,3), pd(:,4)); end if ilog @@ -549,7 +549,7 @@ if iload==0 ipred = setdiff(1:nrun,ifit); if ilog - [~, ~, isig, lam] = log_trans_(y0(iest)); + [~, ~, isig, lam] = gsa.log_transform(y0(iest)); y1 = log(y0*isig+lam); end if ~options_.nograph @@ -571,9 +571,9 @@ if iload==0 title(options_map.title,'interpreter','none') subplot(222) if ilog - hc = cumplot(y1); + hc = gsa.cumplot(y1); else - hc = cumplot(y0); + hc = gsa.cumplot(y0); end set(hc,'color','k','linewidth',2) title([options_map.title ' CDF'],'interpreter','none') @@ -620,7 +620,7 @@ if iload==0 if nfit<nrun if ilog yf = ss_anova_fcast(x0(ipred,:), gsa1); - yf = log_trans_(yf,'',isig,lam)+ss_anova_fcast(x0(ipred,:), gsax); + yf = gsa.log_transform(yf,'',isig,lam)+ss_anova_fcast(x0(ipred,:), gsax); else yf = ss_anova_fcast(x0(ipred,:), gsa_); end @@ -657,7 +657,7 @@ function gsa2 = log2level_map(gsa1, isig, lam) nest=length(gsa1.y); np = size(gsa1.x0,2); gsa2=gsa1; -gsa2.y = log_trans_(gsa1.y,'',isig,lam); +gsa2.y = gsa.log_transform(gsa1.y,'',isig,lam); gsa2.fit = (exp(gsa1.fit)-lam)*isig; gsa2.f0 = mean(gsa2.fit); gsa2.out.SSE = sum((gsa2.fit-gsa2.y).^2); @@ -727,7 +727,7 @@ for jt=1:10 indy{jt}=find( (y0>post_deciles(jt)) & (y0<=post_deciles(jt+1))); leg{jt}=[int2str(jt) '-dec']; end -[proba] = stab_map_1(x0, indy{1}, indy{end}, [], fname, options_, parnames, estim_params_,0); +[proba] = gsa.stability_mapping_univariate(x0, indy{1}, indy{end}, [], fname, options_, parnames, estim_params_,0); indmcf=find(proba<options_mcf.pvalue_ks); if isempty(indmcf) [~,jtmp] = sort(proba,1,'ascend'); @@ -747,7 +747,7 @@ for jx=1:nbr_par subplot(nrow,ncol,jx) hold off for jt=1:10 - h=cumplot(x0(indy{jt},indmcf(jx))); + h=gsa.cumplot(x0(indy{jt},indmcf(jx))); set(h,'color', cmap(jt,:), 'linewidth', 2) hold all end @@ -782,7 +782,7 @@ if nargin<5 end if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format))) fidTeX = fopen([figpath '.tex'],'w'); - fprintf(fidTeX,'%% TeX eps-loader file generated by redform_map.m (Dynare).\n'); + fprintf(fidTeX,'%% TeX eps-loader file generated by reduced_form_mapping.m (Dynare).\n'); fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']); fprintf(fidTeX,'\\begin{figure}[H]\n'); fprintf(fidTeX,'\\centering \n'); diff --git a/matlab/gsa/redform_screen.m b/matlab/+gsa/reduced_form_screening.m similarity index 92% rename from matlab/gsa/redform_screen.m rename to matlab/+gsa/reduced_form_screening.m index 4ef7ad153e..47bf18145f 100644 --- a/matlab/gsa/redform_screen.m +++ b/matlab/+gsa/reduced_form_screening.m @@ -1,5 +1,5 @@ -function redform_screen(dirname, options_gsa_, estim_params_, M_, dr, options_, bayestopt_) -% redform_screen(dirname, options_gsa_, estim_params_, M_, dr, options_, bayestopt_) +function reduced_form_screening(dirname, options_gsa_, estim_params_, M_, dr, options_, bayestopt_) +% reduced_form_screening(dirname, options_gsa_, estim_params_, M_, dr, options_, bayestopt_) % Conduct reduced form screening % Inputs: % - dirname [string] name of the output directory @@ -72,7 +72,7 @@ for j=1:size(anamendo,1) namexo_tex = anamexo_tex{jx}; iexo = strmatch(namexo, M_.exo_names, 'exact'); if ~isempty(iexo) - y0=teff(T(iendo,iexo+nspred,:), kn, istable); + y0=gsa.teff(T(iendo,iexo+nspred,:), kn, istable); if ~isempty(y0) if mod(iplo,9)==0 ifig = ifig+1; @@ -82,7 +82,7 @@ for j=1:size(anamendo,1) iplo = iplo+1; js = js+1; subplot(3, 3, iplo) - [~, SAMorris] = Morris_Measure_Groups(np+nshock, [lpmat0 lpmat], y0, nliv); + [~, SAMorris] = gsa.Morris_Measure_Groups(np+nshock, [lpmat0 lpmat], y0, nliv); SAM = squeeze(SAMorris(nshock+1:end,1)); SA(:,js) = SAM./(max(SAM)+eps); [~, iso] = sort(-SA(:,js)); @@ -122,7 +122,7 @@ for j=1:size(anamendo,1) ilagendo=strmatch(namlagendo, M_.endo_names(dr.order_var(M_.nstatic+1:M_.nstatic+nsok)), 'exact'); if ~isempty(ilagendo) - y0=teff(T(iendo,ilagendo,:),kn,istable); + y0=gsa.teff(T(iendo,ilagendo,:),kn,istable); if ~isempty(y0) if mod(iplo,9)==0 ifig=ifig+1; @@ -132,7 +132,7 @@ for j=1:size(anamendo,1) iplo=iplo+1; js=js+1; subplot(3,3,iplo), - [~, SAMorris] = Morris_Measure_Groups(np+nshock, [lpmat0 lpmat], y0,nliv); + [~, SAMorris] = gsa.Morris_Measure_Groups(np+nshock, [lpmat0 lpmat], y0,nliv); SAM = squeeze(SAMorris(nshock+1:end,1)); SA(:,js)=SAM./(max(SAM)+eps); [~, iso] = sort(-SA(:,js)); @@ -166,7 +166,7 @@ for j=1:size(anamendo,1) end hh_fig=dyn_figure(options_.nodisplay,'Name','Reduced form screening'); -myboxplot(SA',[],'.',[],10) +gsa.boxplot(SA',[],'.',[],10) set(gca,'xticklabel',' ','fontsize',10,'xtick',1:np) set(gca,'xlim',[0.5 np+0.5]) set(gca,'ylim',[0 1]) @@ -191,7 +191,7 @@ if nargin<6 end if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format))) fidTeX = fopen([figpath '.tex'],'w'); - fprintf(fidTeX,'%% TeX eps-loader file generated by redform_screen.m (Dynare).\n'); + fprintf(fidTeX,'%% TeX eps-loader file generated by reduced_form_screening.m (Dynare).\n'); fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']); fprintf(fidTeX,'\\begin{figure}[H]\n'); fprintf(fidTeX,'\\centering \n'); diff --git a/matlab/dynare_sensitivity.m b/matlab/+gsa/run.m similarity index 95% rename from matlab/dynare_sensitivity.m rename to matlab/+gsa/run.m index 225c19b5c5..c84be3cac0 100644 --- a/matlab/dynare_sensitivity.m +++ b/matlab/+gsa/run.m @@ -1,5 +1,5 @@ -function x0=dynare_sensitivity(M_,oo_,options_,bayestopt_,estim_params_,options_gsa) -% x0=dynare_sensitivity(M_,oo_,options_,bayestopt_,estim_params_,options_gsa) +function x0=run(M_,oo_,options_,bayestopt_,estim_params_,options_gsa) +% x0=run(M_,oo_,options_,bayestopt_,estim_params_,options_gsa) % Frontend to the Sensitivity Analysis Toolbox for DYNARE % Inputs: % - M_ [structure] Matlab's structure describing the model @@ -306,7 +306,7 @@ if (options_gsa.load_stab || options_gsa.load_rmse || options_gsa.load_redform) end if options_gsa.stab && ~options_gsa.ppost - x0 = stab_map_(OutputDirectoryName,options_gsa,M_,oo_,options_,bayestopt_,estim_params_); + x0 = gsa.stability_mapping(OutputDirectoryName,options_gsa,M_,oo_,options_,bayestopt_,estim_params_); if isempty(x0) skipline() disp('Sensitivity computations stopped: no parameter set provided a unique solution') @@ -316,11 +316,11 @@ end options_.opt_gsa = options_gsa; if ~isempty(options_gsa.moment_calibration) || ~isempty(options_gsa.irf_calibration) - map_calibration(OutputDirectoryName, M_, options_, oo_, estim_params_,bayestopt_); + gsa.map_calibration(OutputDirectoryName, M_, options_, oo_, estim_params_,bayestopt_); end if options_gsa.identification - map_ident_(OutputDirectoryName,options_gsa,M_,oo_,options_,estim_params_,bayestopt_); + gsa.map_identification(OutputDirectoryName,options_gsa,M_,oo_,options_,estim_params_,bayestopt_); end if options_gsa.redform && ~isempty(options_gsa.namendo) @@ -346,10 +346,10 @@ if options_gsa.redform && ~isempty(options_gsa.namendo) save([OutputDirectoryName filesep M_.fname '_mc.mat'],'lpmat','lpmat0','istable','iunstable','iwrong','iindeterm') options_gsa.load_stab=1; - x0 = stab_map_(OutputDirectoryName,options_gsa,M_,oo_,options_,bayestopt_,estim_params_); + x0 = gsa.stability_mapping(OutputDirectoryName,options_gsa,M_,oo_,options_,bayestopt_,estim_params_); end if options_gsa.morris==1 - redform_screen(OutputDirectoryName,options_gsa, estim_params_, M_, oo_.dr, options_, bayestopt_); + gsa.reduced_form_screening(OutputDirectoryName,options_gsa, estim_params_, M_, oo_.dr, options_, bayestopt_); else % check existence of the SS_ANOVA toolbox if isempty(options_gsa.threshold_redform) && ~(exist('gsa_sdp','file')==6 || exist('gsa_sdp','file')==2) @@ -360,7 +360,7 @@ if options_gsa.redform && ~isempty(options_gsa.namendo) fprintf('After obtaining the files, you need to unpack them and set a Matlab Path to those files.\n') error('SS-ANOVA-R Toolbox missing!') end - redform_map(OutputDirectoryName,options_gsa,M_,estim_params_,options_,bayestopt_,oo_); + gsa.reduced_form_mapping(OutputDirectoryName,options_gsa,M_,estim_params_,options_,bayestopt_,oo_); end end % RMSE mapping @@ -415,7 +415,7 @@ if options_gsa.rmse end end clear a; - filt_mc_(OutputDirectoryName,options_gsa,dataset_,dataset_info,M_,oo_,options_,bayestopt_,estim_params_); + gsa.monte_carlo_filtering(OutputDirectoryName,options_gsa,dataset_,dataset_info,M_,oo_,options_,bayestopt_,estim_params_); end options_.opt_gsa = options_gsa; diff --git a/matlab/gsa/scatter_analysis.m b/matlab/+gsa/scatter_analysis.m similarity index 89% rename from matlab/gsa/scatter_analysis.m rename to matlab/+gsa/scatter_analysis.m index 1596271bde..db3cc16267 100644 --- a/matlab/gsa/scatter_analysis.m +++ b/matlab/+gsa/scatter_analysis.m @@ -50,8 +50,8 @@ if ~options_.nograph xx=xparam1; end if options_.TeX - scatter_plots(lpmat, xdata, param_names_tex, '.', [fname_, '_', amcf_name], OutputDirectoryName, amcf_title, xx, options_) + gsa.scatter_plots(lpmat, xdata, param_names_tex, '.', [fname_, '_', amcf_name], OutputDirectoryName, amcf_title, xx, options_) else - scatter_plots(lpmat, xdata, param_names, '.', [fname_, '_', amcf_name], OutputDirectoryName, amcf_title, xx, options_) + gsa.scatter_plots(lpmat, xdata, param_names, '.', [fname_, '_', amcf_name], OutputDirectoryName, amcf_title, xx, options_) end end diff --git a/matlab/gsa/scatter_mcf.m b/matlab/+gsa/scatter_mcf.m similarity index 98% rename from matlab/gsa/scatter_mcf.m rename to matlab/+gsa/scatter_mcf.m index f10995c798..909734c899 100644 --- a/matlab/gsa/scatter_mcf.m +++ b/matlab/+gsa/scatter_mcf.m @@ -96,10 +96,10 @@ for i = 1:p for j = 1:p h = axes('position',[fL(i),fL(p+1-j),ffl,ffl]); if i==j - h1=cumplot(X(:,j)); + h1=gsa.cumplot(X(:,j)); set(h1,'color',[0 0 1],'LineWidth',1.5) hold on, - h2=cumplot(Y(:,j)); + h2=gsa.cumplot(Y(:,j)); set(h2,'color',[1 0 0],'LineWidth',1.5) if ~isempty(xparam1) hold on, plot(xparam1([j j]),[0 1],'k--') diff --git a/matlab/gsa/scatter_plots.m b/matlab/+gsa/scatter_plots.m similarity index 99% rename from matlab/gsa/scatter_plots.m rename to matlab/+gsa/scatter_plots.m index 64e76b7150..16e4b126ee 100644 --- a/matlab/gsa/scatter_plots.m +++ b/matlab/+gsa/scatter_plots.m @@ -86,7 +86,7 @@ for i = 1:p for j = 1:p h = axes('position',[fL(i),fL(p+1-j),ffl,ffl]); if i==j - h1=cumplot(X(:,j)); + h1=gsa.cumplot(X(:,j)); set(h,'Tag','cumplot') set(h1,'color',[0 0 1],'LineWidth',1.5) if ~isempty(xparam1) diff --git a/matlab/gsa/set_shocks_param.m b/matlab/+gsa/set_shocks_param.m similarity index 100% rename from matlab/gsa/set_shocks_param.m rename to matlab/+gsa/set_shocks_param.m diff --git a/matlab/gsa/gsa_skewness.m b/matlab/+gsa/skewness.m similarity index 95% rename from matlab/gsa/gsa_skewness.m rename to matlab/+gsa/skewness.m index 7b6c4d8bf5..a4b75768c2 100644 --- a/matlab/gsa/gsa_skewness.m +++ b/matlab/+gsa/skewness.m @@ -1,5 +1,5 @@ -function s=gsa_skewness(y) -% s=gsa_skewness(y) +function s=skewness(y) +% s=skewness(y) % Compute normalized skewness of y % Inputs: % - y [double] input vector diff --git a/matlab/gsa/smirnov.m b/matlab/+gsa/smirnov_test.m similarity index 94% rename from matlab/gsa/smirnov.m rename to matlab/+gsa/smirnov_test.m index 0c68141e30..3ca80e3c8b 100644 --- a/matlab/gsa/smirnov.m +++ b/matlab/+gsa/smirnov_test.m @@ -1,7 +1,7 @@ -function [H,prob,d] = smirnov(x1 , x2 , alpha, iflag ) +function [H,prob,d] = smirnov_test(x1 , x2 , alpha, iflag ) +% [H,prob,d] = smirnov_test(x1 , x2 , alpha, iflag ) % Smirnov test for 2 distributions -% [H,prob,d] = smirnov(x1 , x2 , alpha, iflag ) -% + % Written by Marco Ratto % Joint Research Centre, The European Commission, % marco.ratto@ec.europa.eu diff --git a/matlab/gsa/stab_map_.m b/matlab/+gsa/stability_mapping.m similarity index 95% rename from matlab/gsa/stab_map_.m rename to matlab/+gsa/stability_mapping.m index 019fd1e4e2..0da8eefb20 100644 --- a/matlab/gsa/stab_map_.m +++ b/matlab/+gsa/stability_mapping.m @@ -1,5 +1,5 @@ -function x0 = stab_map_(OutputDirectoryName,opt_gsa,M_,oo_,options_,bayestopt_,estim_params_) -% x0 = stab_map_(OutputDirectoryName,opt_gsa,M_,oo_,options_,bayestopt_,estim_params_) +function x0 = stability_mapping(OutputDirectoryName,opt_gsa,M_,oo_,options_,bayestopt_,estim_params_) +% x0 = stability_mapping(OutputDirectoryName,opt_gsa,M_,oo_,options_,bayestopt_,estim_params_) % Mapping of stability regions in the prior ranges applying % Monte Carlo filtering techniques. % @@ -37,7 +37,7 @@ function x0 = stab_map_(OutputDirectoryName,opt_gsa,M_,oo_,options_,bayestopt_,e % 3) Bivariate plots of significant correlation patterns % ( abs(corrcoef) > alpha2) under the stable and unacceptable subsets % -% USES qmc_sequence, stab_map_1, stab_map_2 +% USES qmc_sequence, gsa.stability_mapping_univariate, gsa.stability_mapping_bivariate % % Written by Marco Ratto % Joint Research Centre, The European Commission, @@ -147,7 +147,7 @@ if fload==0 %run new MC yys=zeros(length(dr_.ys),Nsam); if opt_gsa.morris == 1 - [lpmat] = Sampling_Function_2(nliv, np+nshock, ntra, ones(np+nshock, 1), zeros(np+nshock,1), []); + [lpmat] = gsa.Sampling_Function_2(nliv, np+nshock, ntra, ones(np+nshock, 1), zeros(np+nshock,1), []); lpmat = lpmat.*(nliv-1)/nliv+1/nliv/2; Nsam=size(lpmat,1); lpmat0 = lpmat(:,1:nshock); @@ -167,7 +167,7 @@ if fload==0 %run new MC end end end - prior_draw_gsa(M_,bayestopt_,options_,estim_params_,1); %initialize + gsa.prior_draw(M_,bayestopt_,options_,estim_params_,1); %initialize if pprior for j=1:nshock if opt_gsa.morris~=1 @@ -184,7 +184,7 @@ if fload==0 %run new MC lpmat(:,j)=lpmat(:,j).*(upper_bound-lower_bound)+lower_bound; end else - xx=prior_draw_gsa(M_,bayestopt_,options_,estim_params_,0,[lpmat0 lpmat]); + xx=gsa.prior_draw(M_,bayestopt_,options_,estim_params_,0,[lpmat0 lpmat]); lpmat0=xx(:,1:nshock); lpmat=xx(:,nshock+1:end); clear xx; @@ -500,7 +500,7 @@ if ~isempty(iunstable) || ~isempty(iwrong) options_mcf.nobeha_title_latex = 'NO unique Stable Saddle-Path'; end options_mcf.title = 'unique solution'; - mcf_analysis(lpmat, istable, itmp, options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(lpmat, istable, itmp, options_mcf, M_, options_, bayestopt_, estim_params_); if ~isempty(iindeterm) itmp = isolve(~ismember(isolve,iindeterm)); @@ -513,7 +513,7 @@ if ~isempty(iunstable) || ~isempty(iwrong) options_mcf.nobeha_title_latex = 'indeterminacy'; end options_mcf.title = 'indeterminacy'; - mcf_analysis(lpmat, itmp, iindeterm, options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(lpmat, itmp, iindeterm, options_mcf, M_, options_, bayestopt_, estim_params_); end if ~isempty(ixun) @@ -527,7 +527,7 @@ if ~isempty(iunstable) || ~isempty(iwrong) options_mcf.nobeha_title_latex = 'explosive solution'; end options_mcf.title = 'instability'; - mcf_analysis(lpmat, itmp, ixun, options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(lpmat, itmp, ixun, options_mcf, M_, options_, bayestopt_, estim_params_); end inorestriction = istable(~ismember(istable,irestriction)); % violation of prior restrictions @@ -543,7 +543,7 @@ if ~isempty(iunstable) || ~isempty(iwrong) options_mcf.nobeha_title_latex = 'inability to find a solution'; end options_mcf.title = 'inability to find a solution'; - mcf_analysis(lpmat, itmp, iwrong, options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(lpmat, itmp, iwrong, options_mcf, M_, options_, bayestopt_, estim_params_); end if ~isempty(irestriction) @@ -576,7 +576,7 @@ if ~isempty(iunstable) || ~isempty(iwrong) options_mcf.nobeha_title_latex = 'NO prior IRF/moment calibration'; end options_mcf.title = 'prior restrictions'; - mcf_analysis([lpmat0 lpmat], irestriction, inorestriction, options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis([lpmat0 lpmat], irestriction, inorestriction, options_mcf, M_, options_, bayestopt_, estim_params_); iok = irestriction(1); x0 = [lpmat0(iok,:)'; lpmat(iok,:)']; else diff --git a/matlab/gsa/stab_map_2.m b/matlab/+gsa/stability_mapping_bivariate.m similarity index 96% rename from matlab/gsa/stab_map_2.m rename to matlab/+gsa/stability_mapping_bivariate.m index c6c06da19f..4d508c6a41 100644 --- a/matlab/gsa/stab_map_2.m +++ b/matlab/+gsa/stability_mapping_bivariate.m @@ -1,5 +1,5 @@ -function indcorr = stab_map_2(x,alpha2, pvalue_crit, M_,options_,bayestopt_,estim_params_, case_name_plain, case_name_latex, dirname,xparam1,figtitle,fig_caption_latex) -% indcorr = stab_map_2(x,alpha2, pvalue_crit, M_,options_,bayestopt_,estim_params_, fnam, fnam_latex, dirname,xparam1,figtitle,fig_caption_latex) +function indcorr = stability_mapping_bivariate(x,alpha2, pvalue_crit, M_,options_,bayestopt_,estim_params_, case_name_plain, case_name_latex, dirname,xparam1,figtitle,fig_caption_latex) +% indcorr = stability_mapping_bivariate(x,alpha2, pvalue_crit, M_,options_,bayestopt_,estim_params_, fnam, fnam_latex, dirname,xparam1,figtitle,fig_caption_latex) % Inputs: % - x % - alpha2 diff --git a/matlab/gsa/stab_map_1.m b/matlab/+gsa/stability_mapping_univariate.m similarity index 88% rename from matlab/gsa/stab_map_1.m rename to matlab/+gsa/stability_mapping_univariate.m index d6e6d1680c..56c9d00c95 100644 --- a/matlab/gsa/stab_map_1.m +++ b/matlab/+gsa/stability_mapping_univariate.m @@ -1,5 +1,5 @@ -function [proba, dproba] = stab_map_1(lpmat, ibehaviour, inonbehaviour, aname, fname_, options_, parnames, estim_params_, iplot, ipar, dirname, pcrit, atitle) -% [proba, dproba] = stab_map_1(lpmat, ibehaviour, inonbehaviour, aname, fname_, options_, parnames, estim_params_, iplot, ipar, dirname, pcrit, atitle) +function [proba, dproba] = stability_mapping_univariate(lpmat, ibehaviour, inonbehaviour, aname, fname_, options_, parnames, estim_params_, iplot, ipar, dirname, pcrit, atitle) +% [proba, dproba] = stability_mapping_univariate(lpmat, ibehaviour, inonbehaviour, aname, fname_, options_, parnames, estim_params_, iplot, ipar, dirname, pcrit, atitle) % Inputs: % - lpmat [double] Monte Carlo matrix % - ibehaviour [integer] index of behavioural runs @@ -18,7 +18,7 @@ function [proba, dproba] = stab_map_1(lpmat, ibehaviour, inonbehaviour, aname, f % % Plots: dotted lines for BEHAVIOURAL % solid lines for NON BEHAVIOURAL -% USES smirnov +% USES gsa.smirnov_test.m % % Written by Marco Ratto % Joint Research Centre, The European Commission, @@ -71,7 +71,7 @@ end proba=NaN(npar,1); dproba=NaN(npar,1); for j=1:npar - [~,P,KSSTAT] = smirnov(lpmat(ibehaviour,j),lpmat(inonbehaviour,j)); + [~,P,KSSTAT] = gsa.smirnov_test(lpmat(ibehaviour,j),lpmat(inonbehaviour,j)); proba(j)=P; dproba(j)=KSSTAT; end @@ -88,12 +88,12 @@ if iplot && ~options_.nograph for j=1+12*(i-1):min(nparplot,12*i) subplot(3,4,j-12*(i-1)) if ~isempty(ibehaviour) - h=cumplot(lpmat(ibehaviour,j)); + h=gsa.cumplot(lpmat(ibehaviour,j)); set(h,'color',[0 0 1], 'linestyle',':','LineWidth',1.5) end hold on if ~isempty(inonbehaviour) - h=cumplot(lpmat(inonbehaviour,j)); + h=gsa.cumplot(lpmat(inonbehaviour,j)); set(h,'color',[0 0 0],'LineWidth',1.5) end title([ftit{j},'. p-value ', num2str(proba(ipar(j)),2)],'interpreter','none') @@ -102,7 +102,7 @@ if iplot && ~options_.nograph dyn_saveas(hh_fig,[dirname,filesep,fname_,'_',aname,'_SA_',int2str(i)],options_.nodisplay,options_.graph_format); if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format))) fidTeX = fopen([dirname,filesep,fname_,'_',aname,'_SA_',int2str(i) '.tex'],'w'); - fprintf(fidTeX,'%% TeX eps-loader file generated by stab_map_1.m (Dynare).\n'); + fprintf(fidTeX,'%% TeX eps-loader file generated by gsa.stability_mapping_univariate.m (Dynare).\n'); fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']); fprintf(fidTeX,'\\begin{figure}[H]\n'); fprintf(fidTeX,'\\centering \n'); @@ -117,7 +117,7 @@ if iplot && ~options_.nograph dyn_saveas(hh_fig,[dirname,filesep,fname_,'_',aname,'_SA'],options_.nodisplay,options_.graph_format); if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format))) fidTeX = fopen([dirname,filesep,fname_,'_',aname,'_SA.tex'],'w'); - fprintf(fidTeX,'%% TeX eps-loader file generated by stab_map_1.m (Dynare).\n'); + fprintf(fidTeX,'%% TeX eps-loader file generated by gsa.stability_mapping_univariate.m (Dynare).\n'); fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']); fprintf(fidTeX,'\\begin{figure}[H]\n'); fprintf(fidTeX,'\\centering \n'); diff --git a/matlab/gsa/stand_.m b/matlab/+gsa/standardize_columns.m similarity index 93% rename from matlab/gsa/stand_.m rename to matlab/+gsa/standardize_columns.m index c95ccf1435..9f59f20c68 100644 --- a/matlab/gsa/stand_.m +++ b/matlab/+gsa/standardize_columns.m @@ -1,5 +1,5 @@ -function [y, meany, stdy] = stand_(x) -% [y, meany, stdy] = stand_(x) +function [y, meany, stdy] = standardize_columns(x) +% [y, meany, stdy] = standardize_columns(x) % Standardise a matrix by columns % % [x,my,sy]=stand(y) diff --git a/matlab/gsa/tcrit.m b/matlab/+gsa/tcrit.m similarity index 100% rename from matlab/gsa/tcrit.m rename to matlab/+gsa/tcrit.m diff --git a/matlab/gsa/teff.m b/matlab/+gsa/teff.m similarity index 100% rename from matlab/gsa/teff.m rename to matlab/+gsa/teff.m diff --git a/matlab/gsa/th_moments.m b/matlab/+gsa/th_moments.m similarity index 100% rename from matlab/gsa/th_moments.m rename to matlab/+gsa/th_moments.m diff --git a/matlab/identification_analysis.m b/matlab/+identification/analysis.m similarity index 94% rename from matlab/identification_analysis.m rename to matlab/+identification/analysis.m index 09c9cefe3a..e2dba28ace 100644 --- a/matlab/identification_analysis.m +++ b/matlab/+identification/analysis.m @@ -1,5 +1,5 @@ -function [ide_moments, ide_spectrum, ide_minimal, ide_hess, ide_reducedform, ide_dynamic, derivatives_info, info, error_indicator] = identification_analysis(M_,options_,oo_,bayestopt_,estim_params_,params, indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, init) -% [ide_moments, ide_spectrum, ide_minimal, ide_hess, ide_reducedform, ide_dynamic, derivatives_info, info, error_indicator] = identification_analysis(M_,options_,oo_,bayestopt_,estim_params_,params, indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, init) +function [ide_moments, ide_spectrum, ide_minimal, ide_hess, ide_reducedform, ide_dynamic, derivatives_info, info, error_indicator] = analysis(M_,options_,oo_,bayestopt_,estim_params_,params, indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, init) +% [ide_moments, ide_spectrum, ide_minimal, ide_hess, ide_reducedform, ide_dynamic, derivatives_info, info, error_indicator] = analysis(M_,options_,oo_,bayestopt_,estim_params_,params, indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, init) % ------------------------------------------------------------------------- % This function wraps all identification analysis, i.e. it % (1) wraps functions for the theoretical identification analysis based on moments (Iskrev, 2010), @@ -58,18 +58,18 @@ function [ide_moments, ide_spectrum, ide_minimal, ide_hess, ide_reducedform, ide % indicator on problems % ------------------------------------------------------------------------- % This function is called by -% * dynare_identification.m +% * identification.run % ------------------------------------------------------------------------- % This function calls % * [M_.fname,'.dynamic'] % * dseries % * dsge_likelihood.m % * dyn_vech -% * ident_bruteforce -% * identification_checks -% * identification_checks_via_subsets +% * identification.bruteforce +% * identification.checks +% * identification.checks_via_subsets % * isoctave -% * get_identification_jacobians (previously getJJ) +% * identification.get_jacobians (previously getJJ) % * matlab_ver_less_than % * prior_bounds % * resol @@ -120,7 +120,7 @@ if ~isempty(estim_params_) M_ = set_all_parameters(params,estim_params_,M_); end -%get options (see dynare_identification.m for description of options) +%get options (see identification.run.m for description of options) nlags = options_ident.ar; advanced = options_ident.advanced; replic = options_ident.replic; @@ -142,7 +142,7 @@ error_indicator.identification_spectrum=0; if info(1) == 0 %no errors in solution % Compute parameter Jacobians for identification analysis - [~, ~, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dMOMENTS, dSPECTRUM, dSPECTRUM_NO_MEAN, dMINIMAL, derivatives_info] = get_identification_jacobians(estim_params_, M_, options_, options_ident, indpmodel, indpstderr, indpcorr, indvobs, oo_.dr, oo_.steady_state, oo_.exo_steady_state, oo_.exo_det_steady_state); + [~, ~, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dMOMENTS, dSPECTRUM, dSPECTRUM_NO_MEAN, dMINIMAL, derivatives_info] = identification.get_jacobians(estim_params_, M_, options_, options_ident, indpmodel, indpstderr, indpcorr, indvobs, oo_.dr, oo_.steady_state, oo_.exo_steady_state, oo_.exo_det_steady_state); if isempty(dMINIMAL) % Komunjer and Ng is not computed if (1) minimality conditions are not fullfilled or (2) there are more shocks and measurement errors than observables, so we need to reset options error_indicator.identification_minimal = 1; @@ -206,7 +206,7 @@ if info(1) == 0 %no errors in solution options_ident_local.no_identification_spectrum = 1; %do not recompute dSPECTRUM options_ident_local.ar = nlags; %store new lag number options_.ar = nlags; %store new lag number - [~, ~, ~, ~, ~, ~, MOMENTS, dMOMENTS, ~, ~, ~, ~] = get_identification_jacobians(estim_params_, M_, options_, options_ident_local, indpmodel, indpstderr, indpcorr, indvobs, oo_.dr, oo_.steady_state, oo_.exo_steady_state, oo_.exo_det_steady_state); + [~, ~, ~, ~, ~, ~, MOMENTS, dMOMENTS, ~, ~, ~, ~] = identification.get_jacobians(estim_params_, M_, options_, options_ident_local, indpmodel, indpstderr, indpcorr, indvobs, oo_.dr, oo_.steady_state, oo_.exo_steady_state, oo_.exo_det_steady_state); ind_dMOMENTS = (find(max(abs(dMOMENTS'),[],1) > tol_deriv)); %new index with non-zero rows end @@ -305,7 +305,7 @@ if info(1) == 0 %no errors in solution options_.analytic_derivation = analytic_derivation; %reset option AHess = -AHess; %take negative of hessian if min(eig(AHess))<-tol_rank - error('identification_analysis: Analytic Hessian is not positive semi-definite!') + error('identification.analysis: Analytic Hessian is not positive semi-definite!') end ide_hess.AHess = AHess; %store asymptotic Hessian %normalize asymptotic hessian @@ -313,9 +313,9 @@ if info(1) == 0 %no errors in solution iflag = any((deltaM.*deltaM)==0); %check if all second-order derivatives wrt to a single parameter are nonzero tildaM = AHess./((deltaM)*(deltaM')); %this normalization is for numerical purposes if iflag || rank(AHess)>rank(tildaM) - [ide_hess.cond, ide_hess.rank, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(AHess, 0, tol_rank, tol_sv, totparam_nbr); + [ide_hess.cond, ide_hess.rank, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification.checks(AHess, 0, tol_rank, tol_sv, totparam_nbr); else %use normalized version if possible - [ide_hess.cond, ide_hess.rank, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(tildaM, 0, tol_rank, tol_sv, totparam_nbr); + [ide_hess.cond, ide_hess.rank, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification.checks(tildaM, 0, tol_rank, tol_sv, totparam_nbr); end indok = find(max(ide_hess.indno,[],1)==0); ide_uncert_unnormaliz(indok) = sqrt(diag(inv(AHess(indok,indok))))'; @@ -325,7 +325,7 @@ if info(1) == 0 %no errors in solution diag_chh = sum(si_dREDUCEDFORM(:,ind1)'.*temp1)'; ind1 = ind1(ind1>stderrparam_nbr+corrparam_nbr); cdynamic = si_dDYNAMIC(:,ind1-stderrparam_nbr-corrparam_nbr)*((AHess(ind1,ind1))\si_dDYNAMIC(:,ind1-stderrparam_nbr-corrparam_nbr)'); - flag_score = 1; %this is used for the title in plot_identification.m + flag_score = 1; %this is used for the title in identification.plot.m catch %Asymptotic Hessian via simulation if options_.order > 1 @@ -336,7 +336,7 @@ if info(1) == 0 %no errors in solution options_.periods = periods+100; end replic = max([replic, length(ind_dMOMENTS)*3]); - cmm = simulated_moment_uncertainty(ind_dMOMENTS, periods, replic,options_,M_,oo_); %covariance matrix of moments + cmm = identification.simulated_moment_uncertainty(ind_dMOMENTS, periods, replic,options_,M_,oo_); %covariance matrix of moments sd = sqrt(diag(cmm)); cc = cmm./(sd*sd'); [VV,DD,WW] = eig(cc); @@ -350,9 +350,9 @@ if info(1) == 0 %no errors in solution iflag = any((deltaM.*deltaM)==0); tildaM = MIM./((deltaM)*(deltaM')); if iflag || rank(MIM)>rank(tildaM) - [ide_hess.cond, ide_hess.rank, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(MIM, 0, tol_rank, tol_sv, totparam_nbr); + [ide_hess.cond, ide_hess.rank, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification.checks(MIM, 0, tol_rank, tol_sv, totparam_nbr); else %use normalized version if possible - [ide_hess.cond, ide_hess.rank, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(tildaM, 0, tol_rank, tol_sv, totparam_nbr); + [ide_hess.cond, ide_hess.rank, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification.checks(tildaM, 0, tol_rank, tol_sv, totparam_nbr); end indok = find(max(ide_hess.indno,[],1)==0); ind1 = find(ide_hess.ind0); @@ -363,7 +363,7 @@ if info(1) == 0 %no errors in solution if ~isempty(indok) ide_uncert_unnormaliz(indok) = (sqrt(diag(inv(tildaM(indok,indok))))./deltaM(indok))'; %sqrt(diag(inv(MIM(indok,indok))))'; end - flag_score = 0; %this is used for the title in plot_identification.m + flag_score = 0; %this is used for the title in identification.plot.m end % end of computing sample information matrix for identification strength measure ide_strength_dMOMENTS(indok) = (1./(ide_uncert_unnormaliz(indok)'./abs(params(indok)'))); %this is s_i in Ratto and Iskrev (2011, p.13) @@ -465,11 +465,11 @@ if info(1) == 0 %no errors in solution ide_moments.MOMENTS = MOMENTS; if advanced - % here we do not normalize (i.e. we set norm_dMOMENTS=1) as the OLS in ident_bruteforce is very sensitive to norm_dMOMENTS - [ide_moments.pars, ide_moments.cosndMOMENTS] = ident_bruteforce(M_.dname,M_.fname,dMOMENTS(ind_dMOMENTS,:), max_dim_cova_group, options_.TeX, options_ident.name_tex, options_ident.tittxt, tol_deriv); + % here we do not normalize (i.e. we set norm_dMOMENTS=1) as the OLS in identification.bruteforce is very sensitive to norm_dMOMENTS + [ide_moments.pars, ide_moments.cosndMOMENTS] = identification.bruteforce(M_.dname,M_.fname,dMOMENTS(ind_dMOMENTS,:), max_dim_cova_group, options_.TeX, options_ident.name_tex, options_ident.tittxt, tol_deriv); end - %here we focus on the unnormalized S and V, which is then used in plot_identification.m and for prior_mc > 1 + %here we focus on the unnormalized S and V, which is then used in identification.plot.m and for prior_mc > 1 [~, S, V] = svd(dMOMENTS(ind_dMOMENTS,:),0); if size(S,1) == 1 S = S(1); % edge case that S is not a matrix but a row vector @@ -522,9 +522,9 @@ if info(1) == 0 %no errors in solution %% Perform identification checks, i.e. find out which parameters are involved if checks_via_subsets - % identification_checks_via_subsets is only for debugging + % identification.checks_via_subsets is only for debugging [ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] = ... - identification_checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident, error_indicator); + identification.checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident, error_indicator); if ~error_indicator.identification_minimal ide_minimal.minimal_state_space=1; else @@ -532,19 +532,19 @@ if info(1) == 0 %no errors in solution end else [ide_dynamic.cond, ide_dynamic.rank, ide_dynamic.ind0, ide_dynamic.indno, ide_dynamic.ino, ide_dynamic.Mco, ide_dynamic.Pco, ide_dynamic.jweak, ide_dynamic.jweak_pair] = ... - identification_checks(dDYNAMIC(ind_dDYNAMIC,:)./norm_dDYNAMIC, 1, tol_rank, tol_sv, modparam_nbr); + identification.checks(dDYNAMIC(ind_dDYNAMIC,:)./norm_dDYNAMIC, 1, tol_rank, tol_sv, modparam_nbr); if ~options_ident.no_identification_reducedform && ~error_indicator.identification_reducedform [ide_reducedform.cond, ide_reducedform.rank, ide_reducedform.ind0, ide_reducedform.indno, ide_reducedform.ino, ide_reducedform.Mco, ide_reducedform.Pco, ide_reducedform.jweak, ide_reducedform.jweak_pair] = ... - identification_checks(dREDUCEDFORM(ind_dREDUCEDFORM,:)./norm_dREDUCEDFORM, 1, tol_rank, tol_sv, totparam_nbr); + identification.checks(dREDUCEDFORM(ind_dREDUCEDFORM,:)./norm_dREDUCEDFORM, 1, tol_rank, tol_sv, totparam_nbr); end if ~options_ident.no_identification_moments && ~error_indicator.identification_moments [ide_moments.cond, ide_moments.rank, ide_moments.ind0, ide_moments.indno, ide_moments.ino, ide_moments.Mco, ide_moments.Pco, ide_moments.jweak, ide_moments.jweak_pair] = ... - identification_checks(dMOMENTS(ind_dMOMENTS,:)./norm_dMOMENTS, 1, tol_rank, tol_sv, totparam_nbr); + identification.checks(dMOMENTS(ind_dMOMENTS,:)./norm_dMOMENTS, 1, tol_rank, tol_sv, totparam_nbr); end if ~options_ident.no_identification_minimal if ~error_indicator.identification_minimal [ide_minimal.cond, ide_minimal.rank, ide_minimal.ind0, ide_minimal.indno, ide_minimal.ino, ide_minimal.Mco, ide_minimal.Pco, ide_minimal.jweak, ide_minimal.jweak_pair] = ... - identification_checks(dMINIMAL(ind_dMINIMAL,:)./norm_dMINIMAL, 2, tol_rank, tol_sv, totparam_nbr); + identification.checks(dMINIMAL(ind_dMINIMAL,:)./norm_dMINIMAL, 2, tol_rank, tol_sv, totparam_nbr); ide_minimal.minimal_state_space=1; else ide_minimal.minimal_state_space=0; @@ -552,7 +552,7 @@ if info(1) == 0 %no errors in solution end if ~options_ident.no_identification_spectrum && ~error_indicator.identification_spectrum [ide_spectrum.cond, ide_spectrum.rank, ide_spectrum.ind0, ide_spectrum.indno, ide_spectrum.ino, ide_spectrum.Mco, ide_spectrum.Pco, ide_spectrum.jweak, ide_spectrum.jweak_pair] = ... - identification_checks(tilda_dSPECTRUM, 3, tol_rank, tol_sv, totparam_nbr); + identification.checks(tilda_dSPECTRUM, 3, tol_rank, tol_sv, totparam_nbr); end end end diff --git a/matlab/ident_bruteforce.m b/matlab/+identification/bruteforce.m similarity index 98% rename from matlab/ident_bruteforce.m rename to matlab/+identification/bruteforce.m index 75229b4e8b..c4be89e401 100644 --- a/matlab/ident_bruteforce.m +++ b/matlab/+identification/bruteforce.m @@ -18,7 +18,7 @@ function [pars, cosnJ] = ident_bruteforce(dname,fname,J, max_dim_cova_group, TeX % cosnJ : cosn of each column with the selected group of columns % ------------------------------------------------------------------------- % This function is called by -% * identification_analysis.m +% * identification.analysis.m % ========================================================================= % Copyright © 2009-2023 Dynare Team % @@ -67,7 +67,7 @@ for ll = 1:max_dim_cova_group cosnJ2=zeros(size(tmp2,1),1); b=[]; for jj = 1:size(tmp2,1) - [cosnJ2(jj,1), b(:,jj)] = cosn([J(:,ii),J(:,tmp2(jj,:))]); + [cosnJ2(jj,1), b(:,jj)] = identification.cosn([J(:,ii),J(:,tmp2(jj,:))]); end cosnJ(ii,ll) = max(cosnJ2(:,1)); if cosnJ(ii,ll)>tol_deriv diff --git a/matlab/identification_checks.m b/matlab/+identification/checks.m similarity index 95% rename from matlab/identification_checks.m rename to matlab/+identification/checks.m index be54d1be11..71c62c012b 100644 --- a/matlab/identification_checks.m +++ b/matlab/+identification/checks.m @@ -1,5 +1,5 @@ -function [condX, rankX, ind0, indno, ixno, Mco, Pco, jweak, jweak_pair] = identification_checks(X, test_flag, tol_rank, tol_sv, param_nbr) -% function [condX, rankX, ind0, indno, ixno, Mco, Pco, jweak, jweak_pair] = identification_checks(X, test_flag, tol_rank, tol_sv, param_nbr) +function [condX, rankX, ind0, indno, ixno, Mco, Pco, jweak, jweak_pair] = checks(X, test_flag, tol_rank, tol_sv, param_nbr) +% function [condX, rankX, ind0, indno, ixno, Mco, Pco, jweak, jweak_pair] = checks(X, test_flag, tol_rank, tol_sv, param_nbr) % ------------------------------------------------------------------------- % Checks rank criteria of identification tests and finds out parameter sets % that are not identifiable via the nullspace, pairwise correlation @@ -24,10 +24,10 @@ function [condX, rankX, ind0, indno, ixno, Mco, Pco, jweak, jweak_pair] = identi % * jweak_pair [(vech) matrix] gives 1 if a couple parameters has Pco=1 (with tolerance tol_rank) % ------------------------------------------------------------------------- % This function is called by -% * identification_analysis.m +% * identification.analysis.m % ------------------------------------------------------------------------- % This function calls -% * cosn +% * identification.cosn % * dyn_vech % * vnorm % ========================================================================= @@ -141,7 +141,7 @@ if test_flag == 0 || test_flag == 3 % G is a Gram matrix and hence should be a c else Mco = NaN(param_nbr,1); for ii = 1:size(Xparnonzero,2) - Mco(ind1(ii),:) = cosn([Xparnonzero(:,ii) , Xparnonzero(:,find([1:1:size(Xparnonzero,2)]~=ii)), Xrest]); + Mco(ind1(ii),:) = identification.cosn([Xparnonzero(:,ii) , Xparnonzero(:,find([1:1:size(Xparnonzero,2)]~=ii)), Xrest]); end end @@ -176,7 +176,7 @@ if test_flag ~= 0 for ii = 1:size(Xparnonzero,2) Pco(ind1(ii),ind1(ii)) = 1; for jj = ii+1:size(Xparnonzero,2) - Pco(ind1(ii),ind1(jj)) = cosn([Xparnonzero(:,ii),Xparnonzero(:,jj),Xrest]); + Pco(ind1(ii),ind1(jj)) = identification.cosn([Xparnonzero(:,ii),Xparnonzero(:,jj),Xrest]); Pco(ind1(jj),ind1(ii)) = Pco(ind1(ii),ind1(jj)); end end diff --git a/matlab/identification_checks_via_subsets.m b/matlab/+identification/checks_via_subsets.m similarity index 98% rename from matlab/identification_checks_via_subsets.m rename to matlab/+identification/checks_via_subsets.m index 871b882420..4d75e37367 100644 --- a/matlab/identification_checks_via_subsets.m +++ b/matlab/+identification/checks_via_subsets.m @@ -1,5 +1,5 @@ -function [ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] = identification_checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident,error_indicator) -%[ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] = identification_checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident,error_indicator) +function [ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] = checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident,error_indicator) +%[ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] = checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident,error_indicator) % ------------------------------------------------------------------------- % Finds problematic sets of paramters via checking the necessary rank condition % of the Jacobians for all possible combinations of parameters. The rank is @@ -50,7 +50,7 @@ function [ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] % * rank: [integer] rank of Jacobian % ------------------------------------------------------------------------- % This function is called by -% * identification_analysis.m +% * identification.analysis.m % ========================================================================= % Copyright © 2019-2021 Dynare Team % @@ -161,7 +161,7 @@ end % initialize for spectrum criteria if ~no_identification_spectrum && ~error_indicator.identification_spectrum - dSPECTRUM = ide_spectrum.tilda_dSPECTRUM; %tilda dSPECTRUM is normalized dSPECTRUM matrix in identification_analysis.m + dSPECTRUM = ide_spectrum.tilda_dSPECTRUM; %tilda dSPECTRUM is normalized dSPECTRUM matrix in identification.analysis.m %alternative normalization %dSPECTRUM = ide_spectrum.dSPECTRUM; %dSPECTRUM(ide_spectrum.ind_dSPECTRUM,:) = dSPECTRUM(ide_spectrum.ind_dSPECTRUM,:)./ide_spectrum.norm_dSPECTRUM; %normalize diff --git a/matlab/cosn.m b/matlab/+identification/cosn.m similarity index 98% rename from matlab/cosn.m rename to matlab/+identification/cosn.m index 7ccd1b5bec..a662c245e7 100644 --- a/matlab/cosn.m +++ b/matlab/+identification/cosn.m @@ -17,7 +17,7 @@ function [co, b, yhat] = cosn(H) % * y [n by 1] predicted endogenous values given ols estimation % ------------------------------------------------------------------------- % This function is called by -% * identification_checks.m +% * identification.checks.m % * ident_bruteforce.m % ========================================================================= % Copyright © 2008-2019 Dynare Team diff --git a/matlab/disp_identification.m b/matlab/+identification/display.m similarity index 98% rename from matlab/disp_identification.m rename to matlab/+identification/display.m index c723874329..a0726b8682 100644 --- a/matlab/disp_identification.m +++ b/matlab/+identification/display.m @@ -1,5 +1,5 @@ -function disp_identification(pdraws, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, name, options_ident) -% disp_identification(pdraws, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, name, options_ident) +function display(pdraws, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, name, options_ident) +% display(pdraws, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, name, options_ident) % ------------------------------------------------------------------------- % This function displays all identification analysis to the command line % ========================================================================= @@ -26,7 +26,7 @@ function disp_identification(pdraws, ide_reducedform, ide_moments, ide_spectrum, % * all output is printed on the command line % ------------------------------------------------------------------------- % This function is called by -% * dynare_identification.m +% * identification.run % ========================================================================= % Copyright © 2010-2021 Dynare Team % @@ -207,7 +207,7 @@ for jide = 1:4 end end - %% display problematic parameters computed by identification_checks_via_subsets + %% display problematic parameters computed by identification.checks_via_subsets elseif checks_via_subsets if ide.rank < size(Jacob,2) no_warning_message_display = 0; diff --git a/matlab/get_identification_jacobians.m b/matlab/+identification/get_jacobians.m similarity index 97% rename from matlab/get_identification_jacobians.m rename to matlab/+identification/get_jacobians.m index c60c0d1af3..fc1ba1436d 100644 --- a/matlab/get_identification_jacobians.m +++ b/matlab/+identification/get_jacobians.m @@ -1,5 +1,5 @@ -function [MEAN, dMEAN, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dMOMENTS, dSPECTRUM, dSPECTRUM_NO_MEAN, dMINIMAL, derivatives_info] = get_identification_jacobians(estim_params, M_, options_, options_ident, indpmodel, indpstderr, indpcorr, indvobs, dr, endo_steady_state, exo_steady_state, exo_det_steady_state) -% [MEAN, dMEAN, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dMOMENTS, dSPECTRUM, dSPECTRUM_NO_MEAN, dMINIMAL, derivatives_info] = get_identification_jacobians(estim_params, M_, options_, options_ident, indpmodel, indpstderr, indpcorr, indvobs, dr, endo_steady_state, exo_steady_state, exo_det_steady_state) +function [MEAN, dMEAN, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dMOMENTS, dSPECTRUM, dSPECTRUM_NO_MEAN, dMINIMAL, derivatives_info] = get_jacobians(estim_params, M_, options_, options_ident, indpmodel, indpstderr, indpcorr, indvobs, dr, endo_steady_state, exo_steady_state, exo_det_steady_state) +% [MEAN, dMEAN, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dMOMENTS, dSPECTRUM, dSPECTRUM_NO_MEAN, dMINIMAL, derivatives_info] = get_jacobians(estim_params, M_, options_, options_ident, indpmodel, indpstderr, indpcorr, indvobs, dr, endo_steady_state, exo_steady_state, exo_det_steady_state) % previously getJJ.m in Dynare 4.5 % Sets up the Jacobians needed for identification analysis % ========================================================================= @@ -84,7 +84,7 @@ function [MEAN, dMEAN, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dM % % ------------------------------------------------------------------------- % This function is called by -% * identification_analysis.m +% * identification.analysis.m % ------------------------------------------------------------------------- % This function calls % * commutation @@ -94,7 +94,7 @@ function [MEAN, dMEAN, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dM % * fjaco % * get_perturbation_params_derivs (previously getH) % * get_all_parameters -% * identification_numerical_objective (previously thet2tau) +% * identification.numerical_objective (previously thet2tau) % * pruned_state_space_system % * vec % ========================================================================= @@ -258,7 +258,7 @@ if ~no_identification_moments if kronflag == -1 %numerical derivative of autocovariogram - dMOMENTS = fjaco(str2func('identification_numerical_objective'), xparam1, 1, estim_params, M_, options_, indpmodel, indpstderr, indvobs, useautocorr, nlags, grid_nbr, dr, endo_steady_state, exo_steady_state, exo_det_steady_state); %[outputflag=1] + dMOMENTS = fjaco(str2func('identification.numerical_objective'), xparam1, 1, estim_params, M_, options_, indpmodel, indpstderr, indvobs, useautocorr, nlags, grid_nbr, dr, endo_steady_state, exo_steady_state, exo_det_steady_state); %[outputflag=1] dMOMENTS = [dMEAN; dMOMENTS]; %add Jacobian of steady state of VAROBS variables else dMOMENTS = zeros(obs_nbr + obs_nbr*(obs_nbr+1)/2 + nlags*obs_nbr^2 , totparam_nbr); @@ -315,7 +315,7 @@ if ~no_identification_spectrum IA = eye(size(pruned.A,1)); if kronflag == -1 %numerical derivative of spectral density - dOmega_tmp = fjaco(str2func('identification_numerical_objective'), xparam1, 2, estim_params, M_, options_, indpmodel, indpstderr, indvobs, useautocorr, nlags, grid_nbr, dr, endo_steady_state, exo_steady_state, exo_det_steady_state); %[outputflag=2] + dOmega_tmp = fjaco(str2func('identification.numerical_objective'), xparam1, 2, estim_params, M_, options_, indpmodel, indpstderr, indvobs, useautocorr, nlags, grid_nbr, dr, endo_steady_state, exo_steady_state, exo_det_steady_state); %[outputflag=2] kk = 0; for ig = 1:length(freqs) kk = kk+1; diff --git a/matlab/identification_numerical_objective.m b/matlab/+identification/numerical_objective.m similarity index 97% rename from matlab/identification_numerical_objective.m rename to matlab/+identification/numerical_objective.m index 548e687842..ec0ffc7938 100644 --- a/matlab/identification_numerical_objective.m +++ b/matlab/+identification/numerical_objective.m @@ -22,7 +22,7 @@ function out = identification_numerical_objective(params, outputflag, estim_para % OUTPUTS % out: dependent on outputflag % * 0: out = [Yss; vec(A); vec(B); dyn_vech(Sig_e)]; of indvar variables only, in DR order. This is needed to compute dTAU and Komunjer and Ng's D. -% Note that Jacobian of Om is computed in get_identification_Jacobians.m (previously getJJ.m) or get_first_order_solution_params_deriv.m (previously getH.m) from Jacobian of B and Sigma_e, because this is more efficient due to some testing with analytical derivatives from An and Schorfheide model +% Note that Jacobian of Om is computed in identification.get_jacobians.m (previously getJJ.m) or get_first_order_solution_params_deriv.m (previously getH.m) from Jacobian of B and Sigma_e, because this is more efficient due to some testing with analytical derivatives from An and Schorfheide model % * 1: out = [vech(cov(Y_t,Y_t)); vec(cov(Y_t,Y_{t-1}); ...; vec(cov(Y_t,Y_{t-nlags})] of indvar variables, in DR order. This is needed to compute Iskrev's J. % * 2: out = vec(spectral density) with dimension [var_nbr^2*grid_nbr,1] Spectral density of indvar variables evaluated at (grid_nbr/2+1) discretized points in the interval [0;pi]. This is needed for Qu and Tkachenko's G. % * -1: out = g1(:); of all variables, in DR order. This is needed to compute dLRE. @@ -32,7 +32,7 @@ function out = identification_numerical_objective(params, outputflag, estim_para % Jacobian of the dynamic model equations, and Y_t selected variables % ------------------------------------------------------------------------- % This function is called by -% * get_identification_jacobians.m (previously getJJ.m) +% * identification.get_jacobians.m (previously getJJ.m) % ------------------------------------------------------------------------- % This function calls % * [M_.fname,'.dynamic'] diff --git a/matlab/plot_identification.m b/matlab/+identification/plot.m similarity index 95% rename from matlab/plot_identification.m rename to matlab/+identification/plot.m index 035c9a3255..d20531f752 100644 --- a/matlab/plot_identification.m +++ b/matlab/+identification/plot.m @@ -1,5 +1,5 @@ -function plot_identification(M_, params, idemoments, idehess, idemodel, idelre, advanced, tittxt, name, IdentifDirectoryName, fname, options_, estim_params_, bayestopt_, tit_TeX, name_tex) -% plot_identification(M_, params,idemoments,idehess,idemodel, idelre, advanced, tittxt, name, IdentifDirectoryName, fname, options_, estim_params_, bayestopt_, tit_TeX, name_tex) +function plot(M_, params, idemoments, idehess, idemodel, idelre, advanced, tittxt, name, IdentifDirectoryName, fname, options_, estim_params_, bayestopt_, tit_TeX, name_tex) +% plot(M_, params,idemoments,idehess,idemodel, idelre, advanced, tittxt, name, IdentifDirectoryName, fname, options_, estim_params_, bayestopt_, tit_TeX, name_tex) % % INPUTS % o M_ [structure] model @@ -156,7 +156,7 @@ if SampleSize == 1 end if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format))) fidTeX = fopen([IdentifDirectoryName '/' fname '_ident_strength_' tittxt1,'.tex'],'w'); - fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n'); + fprintf(fidTeX,'%% TeX eps-loader file generated by identification.plot.m (Dynare).\n'); fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']); fprintf(fidTeX,'\\begin{figure}[H]\n'); fprintf(fidTeX,'\\centering \n'); @@ -203,7 +203,7 @@ if SampleSize == 1 dyn_saveas(hh_fig,[IdentifDirectoryName '/' fname '_sensitivity_' tittxt1 ],options_.nodisplay,options_.graph_format); if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format))) fidTeX = fopen([IdentifDirectoryName '/' fname '_sensitivity_' tittxt1,'.tex'],'w'); - fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n'); + fprintf(fidTeX,'%% TeX eps-loader file generated by identification.plot.m (Dynare).\n'); fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']); fprintf(fidTeX,'\\begin{figure}[H]\n'); fprintf(fidTeX,'\\centering \n'); @@ -262,7 +262,7 @@ if SampleSize == 1 dyn_saveas(hh_fig,[ IdentifDirectoryName '/' fname '_ident_collinearity_' tittxt1 '_' int2str(j) ],options_.nodisplay,options_.graph_format); if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format))) fidTeX = fopen([ IdentifDirectoryName '/' fname '_ident_collinearity_' tittxt1 '_' int2str(j),'.tex'],'w'); - fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n'); + fprintf(fidTeX,'%% TeX eps-loader file generated by identification.plot.m (Dynare).\n'); fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']); fprintf(fidTeX,'\\begin{figure}[H]\n'); fprintf(fidTeX,'\\centering \n'); @@ -329,7 +329,7 @@ if SampleSize == 1 dyn_saveas(f1,[ IdentifDirectoryName '/' fname '_ident_pattern_' tittxt1 '_1' ],options_.nodisplay,options_.graph_format); if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format))) fidTeX = fopen([ IdentifDirectoryName '/' fname '_ident_pattern_' tittxt1 '_1','.tex'],'w'); - fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n'); + fprintf(fidTeX,'%% TeX eps-loader file generated by identification.plot.m (Dynare).\n'); fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']); fprintf(fidTeX,'\\begin{figure}[H]\n'); fprintf(fidTeX,'\\centering \n'); @@ -344,7 +344,7 @@ if SampleSize == 1 dyn_saveas(f2,[ IdentifDirectoryName '/' fname '_ident_pattern_' tittxt1 '_2' ],options_.nodisplay,options_.graph_format); if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format))) fidTeX = fopen([ IdentifDirectoryName '/' fname '_ident_pattern_' tittxt1 '_2.tex'],'w'); - fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n'); + fprintf(fidTeX,'%% TeX eps-loader file generated by identification.plot.m (Dynare).\n'); fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']); fprintf(fidTeX,'\\begin{figure}[H]\n'); fprintf(fidTeX,'\\centering \n'); @@ -392,7 +392,7 @@ else dyn_saveas(hh_fig,[ IdentifDirectoryName '/' fname '_MC_sensitivity' ],options_.nodisplay,options_.graph_format); if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format))) fidTeX = fopen([ IdentifDirectoryName '/' fname '_MC_sensitivity.tex'],'w'); - fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n'); + fprintf(fidTeX,'%% TeX eps-loader file generated by identification.plot.m (Dynare).\n'); fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']); fprintf(fidTeX,'\\begin{figure}[H]\n'); fprintf(fidTeX,'\\centering \n'); @@ -450,17 +450,17 @@ else options_mcf.title = 'MC Highest Condition Number LRE Model'; ncut=floor(SampleSize/10*9); [~,is]=sort(idelre.cond); - mcf_analysis(params, is(1:ncut), is(ncut+1:end), options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(params, is(1:ncut), is(ncut+1:end), options_mcf, M_, options_, bayestopt_, estim_params_); options_mcf.amcf_name = 'MC_HighestCondNumberModel'; options_mcf.amcf_title = 'MC Highest Condition Number Model Solution'; options_mcf.title = 'MC Highest Condition Number Model Solution'; [~,is]=sort(idemodel.cond); - mcf_analysis(params, is(1:ncut), is(ncut+1:end), options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(params, is(1:ncut), is(ncut+1:end), options_mcf, M_, options_, bayestopt_, estim_params_); options_mcf.amcf_name = 'MC_HighestCondNumberMoments'; options_mcf.amcf_title = 'MC Highest Condition Number Model Moments'; options_mcf.title = 'MC Highest Condition Number Model Moments'; [~,is]=sort(idemoments.cond); - mcf_analysis(params, is(1:ncut), is(ncut+1:end), options_mcf, M_, options_, bayestopt_, estim_params_); + gsa.monte_carlo_filtering_analysis(params, is(1:ncut), is(ncut+1:end), options_mcf, M_, options_, bayestopt_, estim_params_); if nparam<5 f1 = dyn_figure(options_.nodisplay,'Name',[tittxt,' - MC Identification patterns (moments): HIGHEST SV']); @@ -514,7 +514,7 @@ else dyn_saveas(f1,[IdentifDirectoryName '/' fname '_MC_ident_pattern_1' ],options_.nodisplay,options_.graph_format); if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format))) fidTeX = fopen([IdentifDirectoryName '/' fname '_MC_ident_pattern_1.tex'],'w'); - fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n'); + fprintf(fidTeX,'%% TeX eps-loader file generated by identification.plot.m (Dynare).\n'); fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']); fprintf(fidTeX,'\\begin{figure}[H]\n'); fprintf(fidTeX,'\\centering \n'); @@ -529,7 +529,7 @@ else dyn_saveas(f2,[ IdentifDirectoryName '/' fname '_MC_ident_pattern_2' ],options_.nodisplay,options_.graph_format); if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format))) fidTeX = fopen([ IdentifDirectoryName '/' fname '_MC_ident_pattern_2.tex'],'w'); - fprintf(fidTeX,'%% TeX eps-loader file generated by plot_identification.m (Dynare).\n'); + fprintf(fidTeX,'%% TeX eps-loader file generated by identification.plot.m (Dynare).\n'); fprintf(fidTeX,['%% ' datestr(now,0) '\n\n']); fprintf(fidTeX,'\\begin{figure}[H]\n'); fprintf(fidTeX,'\\centering \n'); diff --git a/matlab/dynare_identification.m b/matlab/+identification/run.m similarity index 94% rename from matlab/dynare_identification.m rename to matlab/+identification/run.m index 1d9d23dd82..e716fa1ea8 100644 --- a/matlab/dynare_identification.m +++ b/matlab/+identification/run.m @@ -1,5 +1,5 @@ -function [pdraws, STO_REDUCEDFORM, STO_MOMENTS, STO_DYNAMIC, STO_si_dDYNAMIC, STO_si_dREDUCEDFORM, STO_si_dMOMENTS, STO_dSPECTRUM, STO_dMINIMAL] = dynare_identification(M_,oo_,options_,bayestopt_,estim_params_,options_ident, pdraws0) -% [pdraws, STO_REDUCEDFORM, STO_MOMENTS, STO_DYNAMIC, STO_si_dDYNAMIC, STO_si_dREDUCEDFORM, STO_si_dMOMENTS, STO_dSPECTRUM, STO_dMINIMAL] = dynare_identification(options_ident, pdraws0) +function [pdraws, STO_REDUCEDFORM, STO_MOMENTS, STO_DYNAMIC, STO_si_dDYNAMIC, STO_si_dREDUCEDFORM, STO_si_dMOMENTS, STO_dSPECTRUM, STO_dMINIMAL] = run(M_,oo_,options_,bayestopt_,estim_params_,options_ident, pdraws0) +% [pdraws, STO_REDUCEDFORM, STO_MOMENTS, STO_DYNAMIC, STO_si_dDYNAMIC, STO_si_dREDUCEDFORM, STO_si_dMOMENTS, STO_dSPECTRUM, STO_dMINIMAL] = run(options_ident, pdraws0) % ------------------------------------------------------------------------- % This function is called, when the user specifies identification(...); in the mod file. It prepares all identification analysis: % (1) set options, local and persistent variables for a new identification @@ -32,19 +32,19 @@ function [pdraws, STO_REDUCEDFORM, STO_MOMENTS, STO_DYNAMIC, STO_si_dDYNAMIC, ST % ------------------------------------------------------------------------- % This function is called by % * driver.m -% * map_ident_.m +% * gsa.map_identification.m % ------------------------------------------------------------------------- % This function calls % * checkpath -% * disp_identification +% * identification.display % * dyn_waitbar % * dyn_waitbar_close % * get_all_parameters % * get_posterior_parameters % * get_the_name -% * identification_analysis +% * identification.analysis % * isoctave -% * plot_identification +% * identification.plot % * dprior.draw % * set_default_option % * set_prior @@ -95,7 +95,7 @@ end options_ident = set_default_option(options_ident,'gsa_sample_file',0); % 0: do not use sample file % 1: triggers gsa prior sample - % 2: triggers gsa Monte-Carlo sample (i.e. loads a sample corresponding to pprior=0 and ppost=0 in dynare_sensitivity options) + % 2: triggers gsa Monte-Carlo sample (i.e. loads a sample corresponding to pprior=0 and ppost=0 in sensitivity.run options) % FILENAME: use sample file in provided path options_ident = set_default_option(options_ident,'parameter_set','prior_mean'); % 'calibration': use values in M_.params and M_.Sigma_e to update estimated stderr, corr and model parameters (get_all_parameters) @@ -140,7 +140,7 @@ options_ident = set_default_option(options_ident,'tol_rank','robust'); options_ident = set_default_option(options_ident,'tol_deriv',1.e-8); % tolerance level for selecting columns of non-zero derivatives options_ident = set_default_option(options_ident,'tol_sv',1.e-3); - % tolerance level for selecting non-zero singular values in identification_checks.m + % tolerance level for selecting non-zero singular values in identification.checks.m options_ident = set_default_option(options_ident,'schur_vec_tol',1e-11); % tolerance level used to find nonstationary variables in Schur decomposition of the transition matrix. @@ -181,7 +181,7 @@ if (isfield(options_ident,'no_identification_strength') && options_ident.no_ide options_ident.no_identification_moments = 0; end -%overwrite setting, as dynare_sensitivity does not make use of spectrum and minimal system +%overwrite setting, as sensitivity.run does not make use of spectrum and minimal system if isfield(options_,'opt_gsa') && isfield(options_.opt_gsa,'identification') && options_.opt_gsa.identification == 1 options_ident.no_identification_minimal = 1; options_ident.no_identification_spectrum = 1; @@ -308,12 +308,12 @@ options_.options_ident = []; options_ident = set_default_option(options_ident,'analytic_derivation_mode', options_.analytic_derivation_mode); % if not set by user, inherit default global one % 0: efficient sylvester equation method to compute analytical derivatives as in Ratto & Iskrev (2012) % 1: kronecker products method to compute analytical derivatives as in Iskrev (2010) (only for order=1) - % -1: numerical two-sided finite difference method to compute numerical derivatives of all identification Jacobians using function identification_numerical_objective.m (previously thet2tau.m) + % -1: numerical two-sided finite difference method to compute numerical derivatives of all identification Jacobians using function identification.numerical_objective.m (previously thet2tau.m) % -2: numerical two-sided finite difference method to compute numerically dYss, dg1, dg2, dg3, d2Yss and d2g1, the identification Jacobians are then computed analytically as with 0 if options_.discretionary_policy || options_.ramsey_policy if options_ident.analytic_derivation_mode~=-1 - fprintf('dynare_identification: discretionary_policy and ramsey_policy require analytic_derivation_mode=-1. Resetting the option.') + fprintf('identification.run: discretionary_policy and ramsey_policy require analytic_derivation_mode=-1. Resetting the option.') options_ident.analytic_derivation_mode=-1; end end @@ -384,7 +384,7 @@ else % no estimated_params block, choose all model parameters and all stderr par name_tex = cellfun(@(x) horzcat('$ SE_{', x, '} $'), M_.exo_names_tex, 'UniformOutput', false); name_tex = vertcat(name_tex, cellfun(@(x) horzcat('$ ', x, ' $'), M_.param_names_tex, 'UniformOutput', false)); if ~isequal(M_.H,0) - fprintf('\ndynare_identification:: Identification does not support measurement errors (yet) and will ignore them in the following. To test their identifiability, instead define them explicitly as varexo and provide measurement equations in the model definition.\n') + fprintf('\nidentification.run:: Identification does not support measurement errors (yet) and will ignore them in the following. To test their identifiability, instead define them explicitly as varexo and provide measurement equations in the model definition.\n') end end options_ident.name_tex = name_tex; @@ -402,13 +402,13 @@ end % settings dependent on number of parameters options_ident = set_default_option(options_ident,'max_dim_cova_group',min([2,totparam_nbr-1])); options_ident.max_dim_cova_group = min([options_ident.max_dim_cova_group,totparam_nbr-1]); - % In brute force search (ident_bruteforce.m) when advanced=1 this option sets the maximum dimension of groups of parameters that best reproduce the behavior of each single model parameter + % In brute force search (identification.bruteforce.m) when advanced=1 this option sets the maximum dimension of groups of parameters that best reproduce the behavior of each single model parameter options_ident = set_default_option(options_ident,'checks_via_subsets',0); - % 1: uses identification_checks_via_subsets.m to compute problematic parameter combinations - % 0: uses identification_checks.m to compute problematic parameter combinations [default] + % 1: uses identification.checks_via_subsets.m to compute problematic parameter combinations + % 0: uses identification.checks.m to compute problematic parameter combinations [default] options_ident = set_default_option(options_ident,'max_dim_subsets_groups',min([4,totparam_nbr-1])); - % In identification_checks_via_subsets.m, when checks_via_subsets=1, this option sets the maximum dimension of groups of parameters for which the corresponding rank criteria is checked + % In identification.checks_via_subsets.m, when checks_via_subsets=1, this option sets the maximum dimension of groups of parameters for which the corresponding rank criteria is checked % store identification options @@ -471,7 +471,7 @@ if iload <=0 options_ident.tittxt = parameters; %title text for graphs and figures % perform identification analysis for single point [ide_moments_point, ide_spectrum_point, ide_minimal_point, ide_hess_point, ide_reducedform_point, ide_dynamic_point, derivatives_info_point, info, error_indicator_point] = ... - identification_analysis(M_,options_,oo_,bayestopt_,estim_params_,params, indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); %the 1 at the end implies initialization of persistent variables + identification.analysis(M_,options_,oo_,bayestopt_,estim_params_,params, indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); %the 1 at the end implies initialization of persistent variables if info(1)~=0 % there are errors in the solution algorithm message = get_error_message(info,options_); @@ -488,7 +488,7 @@ if iload <=0 options_ident.tittxt = 'Random_prior_params'; %title text for graphs and figures % perform identification analysis [ide_moments_point, ide_spectrum_point, ide_minimal_point, ide_hess_point, ide_reducedform_point, ide_dynamic_point, derivatives_info_point, info, error_indicator_point] = ... - identification_analysis(M_,options_,oo_,bayestopt_,estim_params_,params, indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); + identification.analysis(M_,options_,oo_,bayestopt_,estim_params_,params, indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); end end if info(1) @@ -513,10 +513,10 @@ if iload <=0 save([IdentifDirectoryName '/' fname '_identif.mat'], 'ide_moments_point', 'ide_spectrum_point', 'ide_minimal_point', 'ide_hess_point', 'ide_reducedform_point', 'ide_dynamic_point', 'store_options_ident'); save([IdentifDirectoryName '/' fname '_' parameters '_identif.mat'], 'ide_moments_point', 'ide_spectrum_point', 'ide_minimal_point', 'ide_hess_point', 'ide_reducedform_point', 'ide_dynamic_point', 'store_options_ident'); % display results of identification analysis - disp_identification(params, ide_reducedform_point, ide_moments_point, ide_spectrum_point, ide_minimal_point, name, options_ident); + identification.display(params, ide_reducedform_point, ide_moments_point, ide_spectrum_point, ide_minimal_point, name, options_ident); if ~options_ident.no_identification_strength && ~options_.nograph && ~error_indicator_point.identification_strength && ~error_indicator_point.identification_moments % plot (i) identification strength and sensitivity measure based on the moment information matrix and (ii) plot advanced analysis graphs - plot_identification(M_,params, ide_moments_point, ide_hess_point, ide_reducedform_point, ide_dynamic_point, options_ident.advanced, parameters, name, ... + identification.plot(M_,params, ide_moments_point, ide_hess_point, ide_reducedform_point, ide_dynamic_point, options_ident.advanced, parameters, name, ... IdentifDirectoryName, M_.fname, options_, estim_params_, bayestopt_, parameters_TeX, name_tex); end @@ -529,7 +529,7 @@ if iload <=0 file_index = 0; % initialize counter for files (if options_.MaxNumberOfBytes is reached, we store results in files) options_MC = options_ident; %store options structure for Monte Carlo analysis options_MC.advanced = 0; %do not run advanced checking in a Monte Carlo analysis - options_ident.checks_via_subsets = 0; % for Monte Carlo analysis currently only identification_checks and not identification_checks_via_subsets is supported + options_ident.checks_via_subsets = 0; % for Monte Carlo analysis currently only identification.checks and not identification.checks_via_subsets is supported else iteration = 1; % iteration equals SampleSize and we are finished pdraws = []; % to have output object otherwise map_ident.m may crash @@ -543,7 +543,7 @@ if iload <=0 options_ident.tittxt = []; % clear title text for graphs and figures % run identification analysis [ide_moments, ide_spectrum, ide_minimal, ide_hess, ide_reducedform, ide_dynamic, ide_derivatives_info, info, error_indicator] = ... - identification_analysis(M_,options_,oo_,bayestopt_,estim_params_,params, indpmodel, indpstderr, indpcorr, options_MC, dataset_info, prior_exist, 0); % the 0 implies that we do not initialize persistent variables anymore + identification.analysis(M_,options_,oo_,bayestopt_,estim_params_,params, indpmodel, indpstderr, indpcorr, options_MC, dataset_info, prior_exist, 0); % the 0 implies that we do not initialize persistent variables anymore if iteration==0 && info(1)==0 % preallocate storage in the first admissable run delete([IdentifDirectoryName '/' fname '_identif_*.mat']) % delete previously saved results @@ -801,25 +801,25 @@ if iload <=0 end for irun=1:max([maxrun_dDYNAMIC, maxrun_dREDUCEDFORM, maxrun_dMOMENTS, maxrun_dSPECTRUM, maxrun_dMINIMAL]) iter=iter+1; - % note that this is not the same si_dDYNAMICnorm as computed in identification_analysis + % note that this is not the same si_dDYNAMICnorm as computed in identification.analysis % given that we have the MC sample of the Jacobians, we also normalize by the std of the sample of Jacobian entries, to get a fully standardized sensitivity measure si_dDYNAMICnorm(iter,:) = vnorm(STO_si_dDYNAMIC(:,:,irun)./repmat(normalize_STO_DYNAMIC,1,totparam_nbr-(stderrparam_nbr+corrparam_nbr))).*normaliz1((stderrparam_nbr+corrparam_nbr)+1:end); if ~options_MC.no_identification_reducedform && ~isempty(STO_si_dREDUCEDFORM) - % note that this is not the same si_dREDUCEDFORMnorm as computed in identification_analysis + % note that this is not the same si_dREDUCEDFORMnorm as computed in identification.analysis % given that we have the MC sample of the Jacobians, we also normalize by the std of the sample of Jacobian entries, to get a fully standardized sensitivity measure si_dREDUCEDFORMnorm(iter,:) = vnorm(STO_si_dREDUCEDFORM(:,:,irun)./repmat(normalize_STO_REDUCEDFORM,1,totparam_nbr)).*normaliz1; end if ~options_MC.no_identification_moments && ~isempty(STO_si_dMOMENTS) - % note that this is not the same si_dMOMENTSnorm as computed in identification_analysis + % note that this is not the same si_dMOMENTSnorm as computed in identification.analysis % given that we have the MC sample of the Jacobians, we also normalize by the std of the sample of Jacobian entries, to get a fully standardized sensitivity measure si_dMOMENTSnorm(iter,:) = vnorm(STO_si_dMOMENTS(:,:,irun)./repmat(normalize_STO_MOMENTS,1,totparam_nbr)).*normaliz1; end if ~options_MC.no_identification_spectrum && ~isempty(STO_dSPECTRUM) - % note that this is not the same dSPECTRUMnorm as computed in identification_analysis + % note that this is not the same dSPECTRUMnorm as computed in identification.analysis dSPECTRUMnorm(iter,:) = vnorm(STO_dSPECTRUM(:,:,irun)); %not yet used end if ~options_MC.no_identification_minimal && ~isempty(STO_dMINIMAL) - % note that this is not the same dMINIMALnorm as computed in identification_analysis + % note that this is not the same dMINIMALnorm as computed in identification.analysis dMINIMALnorm(iter,:) = vnorm(STO_dMINIMAL(:,:,irun)); %not yet used end end @@ -847,7 +847,7 @@ else options_.options_ident = options_ident; end -%% if dynare_identification is called as it own function (not through identification command) and if we load files +%% if identification.run is called as it own function (not through identification command) and if we load files if nargout>3 && iload filnam = dir([IdentifDirectoryName '/' fname '_identif_*.mat']); STO_si_dDYNAMIC = []; @@ -876,10 +876,10 @@ end if iload %if previous analysis is loaded fprintf(['Testing %s\n',parameters]); - disp_identification(ide_hess_point.params, ide_reducedform_point, ide_moments_point, ide_spectrum_point, ide_minimal_point, name, options_ident); + identification.display(ide_hess_point.params, ide_reducedform_point, ide_moments_point, ide_spectrum_point, ide_minimal_point, name, options_ident); if ~options_.nograph && ~error_indicator_point.identification_strength && ~error_indicator_point.identification_moments % plot (i) identification strength and sensitivity measure based on the sample information matrix and (ii) advanced analysis graphs - plot_identification(M_,ide_hess_point.params, ide_moments_point, ide_hess_point, ide_reducedform_point, ide_dynamic_point, options_ident.advanced, parameters, name, ... + identification.plot(M_,ide_hess_point.params, ide_moments_point, ide_hess_point, ide_reducedform_point, ide_dynamic_point, options_ident.advanced, parameters, name, ... IdentifDirectoryName, M_.fname, options_, estim_params_, bayestopt_, [], name_tex); end end @@ -890,11 +890,11 @@ if SampleSize > 1 %print results to console but make sure advanced=0 advanced0 = options_ident.advanced; options_ident.advanced = 0; - disp_identification(pdraws, IDE_REDUCEDFORM, IDE_MOMENTS, IDE_SPECTRUM, IDE_MINIMAL, name, options_ident); + identification.display(pdraws, IDE_REDUCEDFORM, IDE_MOMENTS, IDE_SPECTRUM, IDE_MINIMAL, name, options_ident); options_ident.advanced = advanced0; % reset advanced setting if ~options_.nograph && isfield(ide_hess_point,'ide_strength_dMOMENTS') % plot (i) identification strength and sensitivity measure based on the sample information matrix and (ii) advanced analysis graphs - plot_identification(M_, pdraws, IDE_MOMENTS, ide_hess_point, IDE_REDUCEDFORM, IDE_DYNAMIC, options_ident.advanced, 'MC sample ', name, ... + identification.plot(M_, pdraws, IDE_MOMENTS, ide_hess_point, IDE_REDUCEDFORM, IDE_DYNAMIC, options_ident.advanced, 'MC sample ', name, ... IdentifDirectoryName, M_.fname, options_, estim_params_, bayestopt_, [], name_tex); end %advanced display and plots for MC Sample, i.e. look at draws with highest/lowest condition number @@ -912,15 +912,15 @@ if SampleSize > 1 if ~iload options_ident.tittxt = tittxt; %title text for graphs and figures [ide_moments_max, ide_spectrum_max, ide_minimal_max, ide_hess_max, ide_reducedform_max, ide_dynamic_max, derivatives_info_max, info_max, error_indicator_max] = ... - identification_analysis(M_,options_,oo_,bayestopt_,estim_params_,pdraws(jmax,:), indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); %the 1 at the end initializes some persistent variables + identification.analysis(M_,options_,oo_,bayestopt_,estim_params_,pdraws(jmax,:), indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); %the 1 at the end initializes some persistent variables save([IdentifDirectoryName '/' fname '_identif.mat'], 'ide_hess_max', 'ide_moments_max', 'ide_spectrum_max', 'ide_minimal_max','ide_reducedform_max', 'ide_dynamic_max', 'jmax', '-append'); end advanced0 = options_ident.advanced; options_ident.advanced = 1; % make sure advanced setting is on - disp_identification(pdraws(jmax,:), ide_reducedform_max, ide_moments_max, ide_spectrum_max, ide_minimal_max, name, options_ident); + identification.display(pdraws(jmax,:), ide_reducedform_max, ide_moments_max, ide_spectrum_max, ide_minimal_max, name, options_ident); options_ident.advanced = advanced0; %reset advanced setting if ~options_.nograph && ~error_indicator_max.identification_strength && ~error_indicator_max.identification_moments % plot (i) identification strength and sensitivity measure based on the sample information matrix and (ii) advanced analysis graphs - plot_identification(M_, pdraws(jmax,:), ide_moments_max, ide_hess_max, ide_reducedform_max, ide_dynamic_max, 1, tittxt, name, ... + identification.plot(M_, pdraws(jmax,:), ide_moments_max, ide_hess_max, ide_reducedform_max, ide_dynamic_max, 1, tittxt, name, ... IdentifDirectoryName, M_.fname, options_, estim_params_, bayestopt_, tittxt, name_tex); end @@ -931,15 +931,15 @@ if SampleSize > 1 if ~iload options_ident.tittxt = tittxt; %title text for graphs and figures [ide_moments_min, ide_spectrum_min, ide_minimal_min, ide_hess_min, ide_reducedform_min, ide_dynamic_min, ~, ~, error_indicator_min] = ... - identification_analysis(M_,options_,oo_,bayestopt_,estim_params_,pdraws(jmin,:), indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); %the 1 at the end initializes persistent variables + identification.analysis(M_,options_,oo_,bayestopt_,estim_params_,pdraws(jmin,:), indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); %the 1 at the end initializes persistent variables save([IdentifDirectoryName '/' fname '_identif.mat'], 'ide_hess_min', 'ide_moments_min','ide_spectrum_min','ide_minimal_min','ide_reducedform_min', 'ide_dynamic_min', 'jmin', '-append'); end advanced0 = options_ident.advanced; options_ident.advanced = 1; % make sure advanced setting is on - disp_identification(pdraws(jmin,:), ide_reducedform_min, ide_moments_min, ide_spectrum_min, ide_minimal_min, name, options_ident); + identification.display(pdraws(jmin,:), ide_reducedform_min, ide_moments_min, ide_spectrum_min, ide_minimal_min, name, options_ident); options_ident.advanced = advanced0; %reset advanced setting if ~options_.nograph && ~error_indicator_min.identification_strength && ~error_indicator_min.identification_moments % plot (i) identification strength and sensitivity measure based on the sample information matrix and (ii) advanced analysis graphs - plot_identification(M_, pdraws(jmin,:),ide_moments_min,ide_hess_min,ide_reducedform_min,ide_dynamic_min,1,tittxt,name,... + identification.plot(M_, pdraws(jmin,:),ide_moments_min,ide_hess_min,ide_reducedform_min,ide_dynamic_min,1,tittxt,name,... IdentifDirectoryName, M_.fname, options_, estim_params_, bayestopt_, tittxt,name_tex); end % reset nodisplay option @@ -954,14 +954,14 @@ if SampleSize > 1 if ~iload options_ident.tittxt = tittxt; %title text for graphs and figures [ide_moments_(j), ide_spectrum_(j), ide_minimal_(j), ide_hess_(j), ide_reducedform_(j), ide_dynamic_(j), derivatives_info_(j), info_resolve, error_indicator_j] = ... - identification_analysis(M_,options_,oo_,bayestopt_,estim_params_,pdraws(jcrit(j),:), indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); + identification.analysis(M_,options_,oo_,bayestopt_,estim_params_,pdraws(jcrit(j),:), indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); end advanced0 = options_ident.advanced; options_ident.advanced = 1; %make sure advanced setting is on - disp_identification(pdraws(jcrit(j),:), ide_reducedform_(j), ide_moments_(j), ide_spectrum_(j), ide_minimal_(j), name, options_ident); + identification.display(pdraws(jcrit(j),:), ide_reducedform_(j), ide_moments_(j), ide_spectrum_(j), ide_minimal_(j), name, options_ident); options_ident.advanced = advanced0; % reset advanced if ~options_.nograph && ~error_indicator_j.identification_strength && ~error_indicator_j.identification_moments % plot (i) identification strength and sensitivity measure based on the sample information matrix and (ii) advanced analysis graphs - plot_identification(M_, pdraws(jcrit(j),:), ide_moments_(j), ide_hess_(j), ide_reducedform_(j), ide_dynamic_(j), 1, tittxt, name, ... + identification.plot(M_, pdraws(jcrit(j),:), ide_moments_(j), ide_hess_(j), ide_reducedform_(j), ide_dynamic_(j), 1, tittxt, name, ... IdentifDirectoryName, M_.fname, options_, estim_params_, bayestopt_, tittxt, name_tex); end end diff --git a/matlab/simulated_moment_uncertainty.m b/matlab/+identification/simulated_moment_uncertainty.m similarity index 100% rename from matlab/simulated_moment_uncertainty.m rename to matlab/+identification/simulated_moment_uncertainty.m diff --git a/matlab/commutation.m b/matlab/commutation.m index f0c8c6aa5b..1fffe85e8c 100644 --- a/matlab/commutation.m +++ b/matlab/commutation.m @@ -14,7 +14,7 @@ function k = commutation(n, m, sparseflag) % ------------------------------------------------------------------------- % This function is called by % * get_perturbation_params_derivs.m (previously getH.m) -% * get_identification_jacobians.m (previously getJJ.m) +% * identification.get_jacobians.m (previously getJJ.m) % * pruned_state_space_system.m % ------------------------------------------------------------------------- % This function calls diff --git a/matlab/duplication.m b/matlab/duplication.m index 9afecf5203..c69a6719f7 100644 --- a/matlab/duplication.m +++ b/matlab/duplication.m @@ -11,7 +11,7 @@ function [Dp,DpMPinv] = duplication(p) % DpMPinv: Moore-Penroze inverse of Dp % ------------------------------------------------------------------------- % This function is called by -% * get_identification_jacobians.m (previously getJJ.m) +% * identification.get_jacobians.m (previously getJJ.m) % ========================================================================= % Copyright © 1997 Tom Minka <minka@microsoft.com> % Copyright © 2019 Dynare Team diff --git a/matlab/fjaco.m b/matlab/fjaco.m index 3d41787b15..b020ed2698 100644 --- a/matlab/fjaco.m +++ b/matlab/fjaco.m @@ -30,7 +30,7 @@ function fjac = fjaco(f,x,varargin) ff=feval(f,x,varargin{:}); tol = eps.^(1/3); %some default value -if strcmp(func2str(f),'get_perturbation_params_derivs_numerical_objective') || strcmp(func2str(f),'identification_numerical_objective') +if strcmp(func2str(f),'get_perturbation_params_derivs_numerical_objective') || strcmp(func2str(f),'identification.numerical_objective') tol= varargin{4}.dynatol.x; end h = tol.*max(abs(x),1); @@ -40,12 +40,12 @@ fjac = NaN(length(ff),length(x)); for j=1:length(x) xx = x; xx(j) = xh1(j); f1=feval(f,xx,varargin{:}); - if isempty(f1) && (strcmp(func2str(f),'get_perturbation_params_derivs_numerical_objective') || strcmp(func2str(f),'identification_numerical_objective') ) + if isempty(f1) && (strcmp(func2str(f),'get_perturbation_params_derivs_numerical_objective') || strcmp(func2str(f),'identification.numerical_objective') ) [~,info]=feval(f,xx,varargin{:}); disp_info_error_identification_perturbation(info,j); end xx(j) = xh0(j); f0=feval(f,xx,varargin{:}); - if isempty(f0) && (strcmp(func2str(f),'get_perturbation_params_derivs_numerical_objective') || strcmp(func2str(f),'identification_numerical_objective') ) + if isempty(f0) && (strcmp(func2str(f),'get_perturbation_params_derivs_numerical_objective') || strcmp(func2str(f),'identification.numerical_objective') ) [~,info]=feval(f,xx,varargin{:}); disp_info_error_identification_perturbation(info,j) end diff --git a/matlab/get_minimal_state_representation.m b/matlab/get_minimal_state_representation.m index 277717f3bc..deb6d43bbc 100644 --- a/matlab/get_minimal_state_representation.m +++ b/matlab/get_minimal_state_representation.m @@ -53,7 +53,7 @@ function [CheckCO,minns,minSYS] = get_minimal_state_representation(SYS, derivs_f % Jacobian (wrt to all parameters) of measurement matrix minD % ------------------------------------------------------------------------- % This function is called by -% * get_identification_jacobians.m (previously getJJ.m) +% * identification.get_jacobians.m (previously getJJ.m) % ------------------------------------------------------------------------- % This function calls % * check_minimality (embedded) diff --git a/matlab/get_perturbation_params_derivs.m b/matlab/get_perturbation_params_derivs.m index fab20ef031..6721b3a42a 100644 --- a/matlab/get_perturbation_params_derivs.m +++ b/matlab/get_perturbation_params_derivs.m @@ -88,7 +88,7 @@ function DERIVS = get_perturbation_params_derivs(M_, options_, estim_params_, dr % ------------------------------------------------------------------------- % This function is called by % * dsge_likelihood.m -% * get_identification_jacobians.m +% * identification.get_jacobians.m % ------------------------------------------------------------------------- % This function calls % * [fname,'.dynamic'] diff --git a/matlab/list_of_functions_to_be_cleared.m b/matlab/list_of_functions_to_be_cleared.m index 78a18484ba..200478bb2b 100644 --- a/matlab/list_of_functions_to_be_cleared.m +++ b/matlab/list_of_functions_to_be_cleared.m @@ -1,2 +1,2 @@ -list_of_functions = {'discretionary_policy_1', 'dsge_var_likelihood', 'dyn_first_order_solver', 'dyn_waitbar', 'ep_residuals', 'evaluate_likelihood', 'prior_draw_gsa', 'identification_analysis', 'computeDLIK', 'univariate_computeDLIK', 'metropolis_draw', 'flag_implicit_skip_nan', 'mr_hessian', 'masterParallel', 'auxiliary_initialization', 'auxiliary_particle_filter', 'conditional_filter_proposal', 'conditional_particle_filter', 'gaussian_filter', 'gaussian_filter_bank', 'gaussian_mixture_filter', 'gaussian_mixture_filter_bank', 'Kalman_filter', 'online_auxiliary_filter', 'pruned_state_space_system', 'sequential_importance_particle_filter', 'solve_model_for_online_filter', 'prior_draw', 'priordens',... +list_of_functions = {'discretionary_policy_1', 'dsge_var_likelihood', 'dyn_first_order_solver', 'dyn_waitbar', 'ep_residuals', 'evaluate_likelihood', '+gsa/prior_draw.m', '+identification/analysis.m', 'computeDLIK', 'univariate_computeDLIK', 'metropolis_draw', 'flag_implicit_skip_nan', 'mr_hessian', 'masterParallel', 'auxiliary_initialization', 'auxiliary_particle_filter', 'conditional_filter_proposal', 'conditional_particle_filter', 'gaussian_filter', 'gaussian_filter_bank', 'gaussian_mixture_filter', 'gaussian_mixture_filter_bank', 'Kalman_filter', 'online_auxiliary_filter', 'pruned_state_space_system', 'sequential_importance_particle_filter', 'solve_model_for_online_filter', 'prior_draw', 'priordens',... '+occbin/solver.m','+occbin/mkdatap_anticipated_dyn.m','+occbin/mkdatap_anticipated_2constraints_dyn.m','+occbin/match_function.m','+occbin/solve_one_constraint.m','+occbin/solve_two_constraint.m','+occbin/plot/shock_decomposition.m'}; diff --git a/matlab/pruned_state_space_system.m b/matlab/pruned_state_space_system.m index 3f1f51a143..40d974ca93 100644 --- a/matlab/pruned_state_space_system.m +++ b/matlab/pruned_state_space_system.m @@ -80,8 +80,8 @@ function pruned_state_space = pruned_state_space_system(M_, options_, dr, indy, % parameter Jacobian of E_y % ------------------------------------------------------------------------- % This function is called by -% * get_identification_jacobians.m -% * identification_numerical_objective.m +% * identification.get_jacobians.m +% * identification.numerical_objective.m % ------------------------------------------------------------------------- % This function calls % * allVL1.m diff --git a/matlab/set_all_parameters.m b/matlab/set_all_parameters.m index c97f98aa26..ed090a1768 100644 --- a/matlab/set_all_parameters.m +++ b/matlab/set_all_parameters.m @@ -26,7 +26,7 @@ function M_ = set_all_parameters(xparam1,estim_params_,M_) %! @sp 2 %! @strong{This function is called by:} %! @sp 1 -%! @ref{DsgeSmoother}, @ref{dynare_estimation_1}, @ref{@@gsa/filt_mc_}, @ref{identification_analysis}, @ref{PosteriorFilterSmootherAndForecast}, @ref{prior_posterior_statistics_core}, @ref{prior_sampler} +%! @ref{DsgeSmoother}, @ref{dynare_estimation_1}, @ref{@@gsa.monte_carlo_filtering}, @ref{identification.analysis}, @ref{PosteriorFilterSmootherAndForecast}, @ref{prior_posterior_statistics_core}, @ref{prior_sampler} %! @sp 2 %! @strong{This function calls:} %! @sp 2 diff --git a/preprocessor b/preprocessor index 3dadac8f19..8d0e8cca5c 160000 --- a/preprocessor +++ b/preprocessor @@ -1 +1 @@ -Subproject commit 3dadac8f191dfa1dd660442d5bc4526c4c218149 +Subproject commit 8d0e8cca5cb78b9dde0ecc867ffb0c64d06dd338 -- GitLab