diff --git a/matlab/Q6_plication.m b/matlab/Q6_plication.m
index 0692364f1357c8a0bd7d2269cade9c229f947327..153ee8ccd85ea9552b4225e368fcb36b8b3da08d 100644
--- a/matlab/Q6_plication.m
+++ b/matlab/Q6_plication.m
@@ -63,7 +63,9 @@ for i1=1:p
         end
     end
 end
+if nargout==2
 DP6inv = (transpose(DP6)*DP6)\transpose(DP6);
+end
 
 function m = mue(p,i1,i2,i3,i4,i5,i6)
 % Auxiliary expression, see page 122 of Meijer (2005)
diff --git a/matlab/list_of_functions_to_be_cleared.m b/matlab/list_of_functions_to_be_cleared.m
index 8dc0d90fd1890b64d8095b236be0706d60e6c1b2..82ee94b5a81d035866ab83a943d29b5c34cd9885 100644
--- a/matlab/list_of_functions_to_be_cleared.m
+++ b/matlab/list_of_functions_to_be_cleared.m
@@ -1 +1 @@
-list_of_functions = {'discretionary_policy_1', 'dsge_var_likelihood', 'dyn_first_order_solver', 'dyn_waitbar', 'ep_residuals', 'evaluate_likelihood', 'prior_draw_gsa', 'identification_analysis', 'computeDLIK', 'univariate_computeDLIK', 'metropolis_draw', 'flag_implicit_skip_nan', 'moment_function', 'mr_hessian', 'masterParallel', 'auxiliary_initialization', 'auxiliary_particle_filter', 'conditional_filter_proposal', 'conditional_particle_filter', 'gaussian_filter', 'gaussian_filter_bank', 'gaussian_mixture_filter', 'gaussian_mixture_filter_bank', 'Kalman_filter', 'online_auxiliary_filter', 'sequential_importance_particle_filter', 'solve_model_for_online_filter', 'perfect_foresight_simulation', 'prior_draw', 'priordens'};
+list_of_functions = {'discretionary_policy_1', 'dsge_var_likelihood', 'dyn_first_order_solver', 'dyn_waitbar', 'ep_residuals', 'evaluate_likelihood', 'prior_draw_gsa', 'identification_analysis', 'computeDLIK', 'univariate_computeDLIK', 'metropolis_draw', 'flag_implicit_skip_nan', 'moment_function', 'mr_hessian', 'masterParallel', 'auxiliary_initialization', 'auxiliary_particle_filter', 'conditional_filter_proposal', 'conditional_particle_filter', 'gaussian_filter', 'gaussian_filter_bank', 'gaussian_mixture_filter', 'gaussian_mixture_filter_bank', 'Kalman_filter', 'online_auxiliary_filter', 'pruned_state_space_system', 'sequential_importance_particle_filter', 'solve_model_for_online_filter', 'perfect_foresight_simulation', 'prior_draw', 'priordens'};
diff --git a/matlab/pruned_state_space_system.m b/matlab/pruned_state_space_system.m
index 4395f109cc9e0879c6012bf54d5f78327c5f84fa..d82bfd6777dd8295b46ad8ffd2d76e5ed82d05b2 100644
--- a/matlab/pruned_state_space_system.m
+++ b/matlab/pruned_state_space_system.m
@@ -10,12 +10,13 @@ function pruned_state_space = pruned_state_space_system(M, options, dr, indy, nl
 %   Econometrics and Statistics, Volume 6, Pages 44-56.
 % =========================================================================
 % INPUTS
-%   M:            [structure] storing the model information
-%   options:      [structure] storing the options
-%   dr:           [structure] storing the results from perturbation approximation
-%   indy:         [vector]    index of control variables in DR order
-%   nlags:        [integer]   number of lags in autocovariances and autocorrelations
-%   useautocorr:  [boolean]   true: compute autocorrelations
+%   M:              [structure] storing the model information
+%   options:        [structure] storing the options
+%   dr:             [structure] storing the results from perturbation approximation
+%   indy:           [vector]    index of control variables in DR order
+%   nlags:          [integer]   number of lags in autocovariances and autocorrelations
+%   useautocorr:    [boolean]   true: compute autocorrelations
+%   compute_derivs: [boolean]   true: compute derivatives
 % -------------------------------------------------------------------------
 % OUTPUTS
 % pruned_state_space: [structure] with the following fields:
@@ -240,6 +241,7 @@ function pruned_state_space = pruned_state_space_system(M, options, dr, indy, nl
 % See code below how z and inov are defined at first, second, and third order,
 % and how to set up A, B, C, D and compute unconditional first and second moments of inov, z and y
 
+persistent QPu COMBOS4 Q6Pu COMBOS6 K_u_xx K_u_ux K_xx_x
 
 %% Auxiliary indices and objects
 order = options.order;
@@ -418,8 +420,10 @@ if order > 1
 
     %Compute unique fourth order product moments of u, i.e. unique(E[kron(kron(kron(u,u),u),u)],'stable')
     u_nbr4    = u_nbr*(u_nbr+1)/2*(u_nbr+2)/3*(u_nbr+3)/4;
-    QPu       = quadruplication(u_nbr);
-    COMBOS4   = flipud(allVL1(u_nbr, 4)); %all possible (unique) combinations of powers that sum up to four
+    if isempty(QPu)
+        QPu       = quadruplication(u_nbr);
+        COMBOS4   = flipud(allVL1(u_nbr, 4)); %all possible (unique) combinations of powers that sum up to four
+    end
     E_u_u_u_u = zeros(u_nbr4,1); %only unique entries
     if compute_derivs && (stderrparam_nbr+corrparam_nbr>0)
         dE_u_u_u_u = zeros(u_nbr4,stderrparam_nbr+corrparam_nbr);
@@ -588,8 +592,11 @@ if order > 1
 
     if order > 2
         % Some common and useful objects for order > 2
-        K_u_xx   = commutation(u_nbr,x_nbr^2,1);
-        K_u_ux   = commutation(u_nbr,u_nbr*x_nbr,1);
+        if isempty(K_u_xx)
+            K_u_xx   = commutation(u_nbr,x_nbr^2,1);
+            K_u_ux   = commutation(u_nbr,u_nbr*x_nbr,1);
+            K_xx_x   = commutation(x_nbr^2,x_nbr);
+        end
         hx_hss2  = kron(hx,1/2*hss);
         hu_hss2  = kron(hu,1/2*hss);
         hx_hxx2  = kron(hx,1/2*hxx);
@@ -658,9 +665,11 @@ if order > 1
         end
 
         % Compute unique sixth-order product moments of u, i.e. unique(E[kron(kron(kron(kron(kron(u,u),u),u),u),u)],'stable')
-        u_nbr6        = u_nbr*(u_nbr+1)/2*(u_nbr+2)/3*(u_nbr+3)/4*(u_nbr+4)/5*(u_nbr+5)/6;
-        Q6Pu          = Q6_plication(u_nbr);
-        COMBOS6       = flipud(allVL1(u_nbr, 6)); %all possible (unique) combinations of powers that sum up to six
+        u_nbr6        = u_nbr*(u_nbr+1)/2*(u_nbr+2)/3*(u_nbr+3)/4*(u_nbr+4)/5*(u_nbr+5)/6;       
+        if isempty(Q6Pu)
+            Q6Pu          = Q6_plication(u_nbr);
+            COMBOS6       = flipud(allVL1(u_nbr, 6)); %all possible (unique) combinations of powers that sum up to six
+        end
         E_u_u_u_u_u_u = zeros(u_nbr6,1); %only unique entries
         if compute_derivs && (stderrparam_nbr+corrparam_nbr>0)
             dE_u_u_u_u_u_u = zeros(u_nbr6,stderrparam_nbr+corrparam_nbr);
@@ -798,7 +807,7 @@ if order > 1
         E_inovzlag1 = zeros(inov_nbr,z_nbr); % Attention: E[inov*z(-1)'] is not equal to zero for a third-order approximation due to kron(kron(xf(-1),u),u)
         E_inovzlag1(id_inov6_xf_u_u , id_z1_xf       ) = kron(E_xfxf,E_uu(:));
         E_inovzlag1(id_inov6_xf_u_u , id_z4_xrd      ) = kron(E_xrdxf',E_uu(:));
-        E_inovzlag1(id_inov6_xf_u_u , id_z5_xf_xs    ) = kron(reshape(commutation(x_nbr^2,x_nbr)*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(E_uu)) ;
+        E_inovzlag1(id_inov6_xf_u_u , id_z5_xf_xs    ) = kron(reshape(K_xx_x*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(E_uu)) ;
         E_inovzlag1(id_inov6_xf_u_u , id_z6_xf_xf_xf ) = kron(reshape(E_xf_xfxf_xf,x_nbr,x_nbr^3),E_uu(:));
 
         Binovzlag1A= B*E_inovzlag1*transpose(A);
@@ -980,7 +989,7 @@ if order > 1
 
                 dE_inovzlag1(id_inov6_xf_u_u , id_z1_xf       , jp3) = kron(dE_xfxf_jp3,E_uu(:)) + kron(E_xfxf,dE_uu_jp3(:));
                 dE_inovzlag1(id_inov6_xf_u_u , id_z4_xrd      , jp3) = kron(dE_xrdxf_jp3',E_uu(:)) + kron(E_xrdxf',dE_uu_jp3(:));
-                dE_inovzlag1(id_inov6_xf_u_u , id_z5_xf_xs    , jp3) = kron(reshape(commutation(x_nbr^2,x_nbr)*vec(dE_xsxf_xf_jp3),x_nbr,x_nbr^2),vec(E_uu)) + kron(reshape(commutation(x_nbr^2,x_nbr)*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(dE_uu_jp3)) ;
+                dE_inovzlag1(id_inov6_xf_u_u , id_z5_xf_xs    , jp3) = kron(reshape(K_xx_x*vec(dE_xsxf_xf_jp3),x_nbr,x_nbr^2),vec(E_uu)) + kron(reshape(K_xx_x*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(dE_uu_jp3)) ;
                 dE_inovzlag1(id_inov6_xf_u_u , id_z6_xf_xf_xf , jp3) = kron(reshape(dE_xf_xfxf_xf_jp3,x_nbr,x_nbr^3),E_uu(:)) + kron(reshape(E_xf_xfxf_xf,x_nbr,x_nbr^3),dE_uu_jp3(:));
 
                 dBinovzlag1A_jp3 = dB(:,:,jp3)*E_inovzlag1*transpose(A) + B*dE_inovzlag1(:,:,jp3)*transpose(A) + B*E_inovzlag1*transpose(dA(:,:,jp3));
@@ -1029,8 +1038,8 @@ else
                                            + C(stationary_vars,:)*transpose(E_inovzlag1)*D(stationary_vars,:)'...
                                            + D(stationary_vars,:)*Varinov*D(stationary_vars,:)';
 end
-indzeros = find(abs(Var_y) < 1e-12); %find values that are numerical zero
-Var_y(indzeros) = 0;
+
+Var_y(abs(Var_y) < 1e-12) = 0; %find values that are numerical zero
 if useautocorr
     sdy = sqrt(diag(Var_y)); %theoretical standard deviation
     sdy = sdy(stationary_vars);
@@ -1056,8 +1065,7 @@ if compute_derivs
                                                         + dC(stationary_vars,:,jpV)*transpose(E_inovzlag1)*D(stationary_vars,:)' + C(stationary_vars,:)*transpose(dE_inovzlag1(:,:,jpV))*D(stationary_vars,:)' + C(stationary_vars,:)*transpose(E_inovzlag1)*dD(stationary_vars,:,jpV)'...
                                                         + dD(stationary_vars,:,jpV)*Varinov*D(stationary_vars,:)' + D(stationary_vars,:)*dVarinov(:,:,jpV)*D(stationary_vars,:)' + D(stationary_vars,:)*Varinov*dD(stationary_vars,:,jpV)';
         end
-        indzeros = find(abs(dVar_y_tmp) < 1e-12); %find values that are numerical zero
-        dVar_y_tmp(indzeros) = 0;        
+        dVar_y_tmp(abs(dVar_y_tmp) < 1e-12) = 0; %find values that are numerical zero       
         dVar_y(stationary_vars,stationary_vars,jpV) = dVar_y_tmp;
         if useautocorr
             dsy = 1/2./sdy.*diag(dVar_y(:,:,jpV));
@@ -1089,7 +1097,7 @@ for i = 1:nlags
         E_inovzlagi = zeros(inov_nbr,z_nbr);
         E_inovzlagi(id_inov6_xf_u_u , id_z1_xf       ) = kron(hxi*E_xfxf,E_uu(:));
         E_inovzlagi(id_inov6_xf_u_u , id_z4_xrd      ) = kron(hxi*E_xrdxf',E_uu(:));
-        E_inovzlagi(id_inov6_xf_u_u , id_z5_xf_xs    ) = kron(hxi*reshape(commutation(x_nbr^2,x_nbr)*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(E_uu));
+        E_inovzlagi(id_inov6_xf_u_u , id_z5_xf_xs    ) = kron(hxi*reshape(K_xx_x*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(E_uu));
         E_inovzlagi(id_inov6_xf_u_u , id_z6_xf_xf_xf ) = kron(hxi*reshape(E_xf_xfxf_xf,x_nbr,x_nbr^3),E_uu(:));
         Var_yi(stationary_vars,stationary_vars,i)      = C(stationary_vars,:)*Var_zi*C(stationary_vars,:)' + C(stationary_vars,:)*Ai*tmp + D(stationary_vars,:)*E_inovzlagi*C(stationary_vars,:)';
     end    
@@ -1125,12 +1133,12 @@ if compute_derivs
                 E_inovzlagi = zeros(inov_nbr,z_nbr);
                 E_inovzlagi(id_inov6_xf_u_u , id_z1_xf       ) = kron(hxi*E_xfxf,E_uu(:));
                 E_inovzlagi(id_inov6_xf_u_u , id_z4_xrd      ) = kron(hxi*E_xrdxf',E_uu(:));
-                E_inovzlagi(id_inov6_xf_u_u , id_z5_xf_xs    ) = kron(hxi*reshape(commutation(x_nbr^2,x_nbr)*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(E_uu));
+                E_inovzlagi(id_inov6_xf_u_u , id_z5_xf_xs    ) = kron(hxi*reshape(K_xx_x*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(E_uu));
                 E_inovzlagi(id_inov6_xf_u_u , id_z6_xf_xf_xf ) = kron(hxi*reshape(E_xf_xfxf_xf,x_nbr,x_nbr^3),E_uu(:));
                 dE_inovzlagi_jpVi = zeros(inov_nbr,z_nbr);
                 dE_inovzlagi_jpVi(id_inov6_xf_u_u , id_z1_xf       ) = kron(dhxi_jpVi*E_xfxf,E_uu(:)) + kron(hxi*dE_xfxf(:,:,jpVi),E_uu(:)) + kron(hxi*E_xfxf,vec(dE_uu(:,:,jpVi)));
                 dE_inovzlagi_jpVi(id_inov6_xf_u_u , id_z4_xrd      ) = kron(dhxi_jpVi*E_xrdxf',E_uu(:)) + kron(hxi*dE_xrdxf(:,:,jpVi)',E_uu(:)) + kron(hxi*E_xrdxf',vec(dE_uu(:,:,jpVi)));
-                dE_inovzlagi_jpVi(id_inov6_xf_u_u , id_z5_xf_xs    ) = kron(dhxi_jpVi*reshape(commutation(x_nbr^2,x_nbr)*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(E_uu)) + kron(hxi*reshape(commutation(x_nbr^2,x_nbr)*vec(dE_xsxf_xf(:,:,jpVi)),x_nbr,x_nbr^2),vec(E_uu)) + kron(hxi*reshape(commutation(x_nbr^2,x_nbr)*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(dE_uu(:,:,jpVi)));
+                dE_inovzlagi_jpVi(id_inov6_xf_u_u , id_z5_xf_xs    ) = kron(dhxi_jpVi*reshape(K_xx_x*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(E_uu)) + kron(hxi*reshape(K_xx_x*vec(dE_xsxf_xf(:,:,jpVi)),x_nbr,x_nbr^2),vec(E_uu)) + kron(hxi*reshape(K_xx_x*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(dE_uu(:,:,jpVi)));
                 dE_inovzlagi_jpVi(id_inov6_xf_u_u , id_z6_xf_xf_xf ) = kron(dhxi_jpVi*reshape(E_xf_xfxf_xf,x_nbr,x_nbr^3),E_uu(:)) + kron(hxi*reshape(dE_xf_xfxf_xf(:,:,jpVi),x_nbr,x_nbr^3),E_uu(:)) + kron(hxi*reshape(E_xf_xfxf_xf,x_nbr,x_nbr^3),vec(dE_uu(:,:,jpVi)));
                 dVar_yi(stationary_vars,stationary_vars,i,jpVi) = dC(stationary_vars,:,jpVi)*Var_zi*C(stationary_vars,:)' + C(stationary_vars,:)*dVar_zi_jpVi*C(stationary_vars,:)' + C(stationary_vars,:)*Var_zi*dC(stationary_vars,:,jpVi)'...
                                                                 + dC(stationary_vars,:,jpVi)*Ai*tmp + C(stationary_vars,:)*dAi_jpVi*tmp + C(stationary_vars,:)*Ai*dtmp_jpVi...
@@ -1179,7 +1187,7 @@ if compute_derivs
         end
     end
 end
-non_stationary_vars = setdiff(1:y_nbr,stationary_vars);
+non_stationary_vars = ~ismember((1:y_nbr)',stationary_vars);
 E_y(non_stationary_vars) = NaN;
 if compute_derivs
     dE_y(non_stationary_vars,:) = NaN;
@@ -1195,7 +1203,7 @@ pruned_state_space.D = D;
 pruned_state_space.c = c;
 pruned_state_space.d = d;
 pruned_state_space.Varinov = Varinov;
-pruned_state_space.Var_z  = Var_z; %remove in future [@wmutschl]
+% pruned_state_space.Var_z  = Var_z; %
 pruned_state_space.Var_y  = Var_y;
 pruned_state_space.Var_yi = Var_yi;
 if useautocorr
diff --git a/tests/pruning/AnSchorfheide_pruned_state_space.mod b/tests/pruning/AnSchorfheide_pruned_state_space.mod
index 9afd133b825973e6b69847a90519c44475c81c10..4858f73182499d0df44536d94b81dc085fb1fdb9 100644
--- a/tests/pruning/AnSchorfheide_pruned_state_space.mod
+++ b/tests/pruning/AnSchorfheide_pruned_state_space.mod
@@ -143,51 +143,51 @@ for iorder = 1:3
         error('Something wrong with pruned_state_space.m compared to Andreasen et al 2018 Toolbox v2 at order %d.',iorder);
     end
 end
-skipline();
-fprintf('Note that at third order, there is an error in the computation of Var_z in Andreasen et al (2018)''s toolbox, @wmutschl is in contact to clarify this.\n');
-fprintf('EXAMPLE:\n')
-fprintf('  Consider Var[kron(kron(xf,xf),xf)] = E[kron(kron(kron(kron(kron(xf,xf),xf),xf),xf),xf)] - E[kron(kron(xf,xf),xf)]*E[kron(kron(xf,xf),xf)].''\n');
-fprintf('  Now note that xf=hx*xf(-1)+hu*u is Gaussian, that is E[kron(kron(xf,xf),xf)]=0, and Var[kron(kron(xf,xf),xf)] are the sixth-order product moments\n');
-fprintf('  which can be computed using the prodmom.m function by providing E[xf*xf''] as covariance matrix.\n');
-fprintf('  In order to replicate this you have to change UnconditionalMoments_3rd_Lyap.m to also output Var_z.\n')
-
-dynare_nx    = M_.nspred;
-dynare_E_xf2 = pruned_state_space.order_3.Var_z(1:dynare_nx,1:dynare_nx);
-dynare_E_xf6 = pruned_state_space.order_3.Var_z((end-dynare_nx^3+1):end,(end-dynare_nx^3+1):end);
-dynare_E_xf6 = dynare_E_xf6(:);
-        
-Andreasen_nx    = M_.nspred+M_.exo_nbr;
-Andreasen_E_xf2 = outAndreasenetal.order_3.Var_z(1:Andreasen_nx,1:Andreasen_nx);
-Andreasen_E_xf6 = outAndreasenetal.order_3.Var_z((end-Andreasen_nx^3+1):end,(end-Andreasen_nx^3+1):end);
-Andreasen_E_xf6 = Andreasen_E_xf6(:);
-
-fprintf('Second-order product moments of xf and u are the same:\n')
-norm_E_xf2 = norm(dynare_E_xf2-Andreasen_E_xf2(1:M_.nspred,1:M_.nspred),Inf)
-norm_E_uu  = norm(M_.Sigma_e-Andreasen_E_xf2(M_.nspred+(1:M_.exo_nbr),M_.nspred+(1:M_.exo_nbr)),Inf)
-
-% Compute unique sixth-order product moments of xf, i.e. unique(E[kron(kron(kron(kron(kron(xf,xf),xf),xf),xf),xf)],'stable')
-dynare_nx6     = dynare_nx*(dynare_nx+1)/2*(dynare_nx+2)/3*(dynare_nx+3)/4*(dynare_nx+4)/5*(dynare_nx+5)/6;
-dynare_Q6Px    = Q6_plication(dynare_nx);
-dynare_COMBOS6 = flipud(allVL1(dynare_nx, 6)); %all possible (unique) combinations of powers that sum up to six
-dynare_true_E_xf6 = zeros(dynare_nx6,1); %only unique entries
-for j6 = 1:size(dynare_COMBOS6,1)
-    dynare_true_E_xf6(j6) = prodmom(dynare_E_xf2, 1:dynare_nx, dynare_COMBOS6(j6,:));
-end
-dynare_true_E_xf6 = dynare_Q6Px*dynare_true_E_xf6; %add duplicate entries
-norm_dynare_E_xf6 = norm(dynare_true_E_xf6 - dynare_E_xf6, Inf);
-
-Andreasen_nx6     = Andreasen_nx*(Andreasen_nx+1)/2*(Andreasen_nx+2)/3*(Andreasen_nx+3)/4*(Andreasen_nx+4)/5*(Andreasen_nx+5)/6;
-Andreasen_Q6Px    = Q6_plication(Andreasen_nx);
-Andreasen_COMBOS6 = flipud(allVL1(Andreasen_nx, 6)); %all possible (unique) combinations of powers that sum up to six
-Andreasen_true_E_xf6   = zeros(Andreasen_nx6,1); %only unique entries
-for j6 = 1:size(Andreasen_COMBOS6,1)
-    Andreasen_true_E_xf6(j6) = prodmom(Andreasen_E_xf2, 1:Andreasen_nx, Andreasen_COMBOS6(j6,:));
-end
-Andreasen_true_E_xf6 = Andreasen_Q6Px*Andreasen_true_E_xf6; %add duplicate entries
-norm_Andreasen_E_xf6 = norm(Andreasen_true_E_xf6 - Andreasen_E_xf6, Inf);
-
-fprintf('Sixth-order product moments of xf and u are not the same!\n');
-fprintf('    Dynare maximum absolute deviations of sixth-order product moments of xf: %d\n',norm_dynare_E_xf6)
-fprintf('    Andreasen et al maximum absolute deviations of sixth-order product moments of xf: %d\n',norm_Andreasen_E_xf6)
-skipline();
-fprintf('Note that the standard deviations are set quite high to make the numerical differences more apparent.\n');
+% skipline();
+% fprintf('Note that at third order, there is an error in the computation of Var_z in Andreasen et al (2018)''s toolbox, @wmutschl is in contact to clarify this.\n');
+% fprintf('EXAMPLE:\n')
+% fprintf('  Consider Var[kron(kron(xf,xf),xf)] = E[kron(kron(kron(kron(kron(xf,xf),xf),xf),xf),xf)] - E[kron(kron(xf,xf),xf)]*E[kron(kron(xf,xf),xf)].''\n');
+% fprintf('  Now note that xf=hx*xf(-1)+hu*u is Gaussian, that is E[kron(kron(xf,xf),xf)]=0, and Var[kron(kron(xf,xf),xf)] are the sixth-order product moments\n');
+% fprintf('  which can be computed using the prodmom.m function by providing E[xf*xf''] as covariance matrix.\n');
+% fprintf('  In order to replicate this you have to change UnconditionalMoments_3rd_Lyap.m to also output Var_z.\n')
+% 
+% dynare_nx    = M_.nspred;
+% dynare_E_xf2 = pruned_state_space.order_3.Var_z(1:dynare_nx,1:dynare_nx);
+% dynare_E_xf6 = pruned_state_space.order_3.Var_z((end-dynare_nx^3+1):end,(end-dynare_nx^3+1):end);
+% dynare_E_xf6 = dynare_E_xf6(:);
+%         
+% Andreasen_nx    = M_.nspred+M_.exo_nbr;
+% Andreasen_E_xf2 = outAndreasenetal.order_3.Var_z(1:Andreasen_nx,1:Andreasen_nx);
+% Andreasen_E_xf6 = outAndreasenetal.order_3.Var_z((end-Andreasen_nx^3+1):end,(end-Andreasen_nx^3+1):end);
+% Andreasen_E_xf6 = Andreasen_E_xf6(:);
+% 
+% fprintf('Second-order product moments of xf and u are the same:\n')
+% norm_E_xf2 = norm(dynare_E_xf2-Andreasen_E_xf2(1:M_.nspred,1:M_.nspred),Inf)
+% norm_E_uu  = norm(M_.Sigma_e-Andreasen_E_xf2(M_.nspred+(1:M_.exo_nbr),M_.nspred+(1:M_.exo_nbr)),Inf)
+% 
+% % Compute unique sixth-order product moments of xf, i.e. unique(E[kron(kron(kron(kron(kron(xf,xf),xf),xf),xf),xf)],'stable')
+% dynare_nx6     = dynare_nx*(dynare_nx+1)/2*(dynare_nx+2)/3*(dynare_nx+3)/4*(dynare_nx+4)/5*(dynare_nx+5)/6;
+% dynare_Q6Px    = Q6_plication(dynare_nx);
+% dynare_COMBOS6 = flipud(allVL1(dynare_nx, 6)); %all possible (unique) combinations of powers that sum up to six
+% dynare_true_E_xf6 = zeros(dynare_nx6,1); %only unique entries
+% for j6 = 1:size(dynare_COMBOS6,1)
+%     dynare_true_E_xf6(j6) = prodmom(dynare_E_xf2, 1:dynare_nx, dynare_COMBOS6(j6,:));
+% end
+% dynare_true_E_xf6 = dynare_Q6Px*dynare_true_E_xf6; %add duplicate entries
+% norm_dynare_E_xf6 = norm(dynare_true_E_xf6 - dynare_E_xf6, Inf);
+% 
+% Andreasen_nx6     = Andreasen_nx*(Andreasen_nx+1)/2*(Andreasen_nx+2)/3*(Andreasen_nx+3)/4*(Andreasen_nx+4)/5*(Andreasen_nx+5)/6;
+% Andreasen_Q6Px    = Q6_plication(Andreasen_nx);
+% Andreasen_COMBOS6 = flipud(allVL1(Andreasen_nx, 6)); %all possible (unique) combinations of powers that sum up to six
+% Andreasen_true_E_xf6   = zeros(Andreasen_nx6,1); %only unique entries
+% for j6 = 1:size(Andreasen_COMBOS6,1)
+%     Andreasen_true_E_xf6(j6) = prodmom(Andreasen_E_xf2, 1:Andreasen_nx, Andreasen_COMBOS6(j6,:));
+% end
+% Andreasen_true_E_xf6 = Andreasen_Q6Px*Andreasen_true_E_xf6; %add duplicate entries
+% norm_Andreasen_E_xf6 = norm(Andreasen_true_E_xf6 - Andreasen_E_xf6, Inf);
+% 
+% fprintf('Sixth-order product moments of xf and u are not the same!\n');
+% fprintf('    Dynare maximum absolute deviations of sixth-order product moments of xf: %d\n',norm_dynare_E_xf6)
+% fprintf('    Andreasen et al maximum absolute deviations of sixth-order product moments of xf: %d\n',norm_Andreasen_E_xf6)
+% skipline();
+% fprintf('Note that the standard deviations are set quite high to make the numerical differences more apparent.\n');