diff --git a/matlab/cli/prior.m b/matlab/cli/prior.m
index c5c25330e435b8443406fd6450eac67301da7fd3..1fb8a01b2e926038c8d601b20cff841e318060c5 100644
--- a/matlab/cli/prior.m
+++ b/matlab/cli/prior.m
@@ -59,7 +59,7 @@ if (size(estim_params_.var_endo,1) || size(estim_params_.corrn,1))
 end
 
 % Fill or update bayestopt_ structure
-[xparam1,estim_params_,bayestopt_,lb,ub,M_] = set_prior(estim_params_,M_,options_);
+[xparam1, EstimatedParams, BayesOptions, lb, ub, Model] = set_prior(estim_params_, M_, options_);
 
 
 % Temporarly change qz_criterium option value
@@ -69,24 +69,24 @@ if isempty(options_.qz_criterium)
     changed_qz_criterium_flag  = 1;
 end
 
-M_.dname = M_.fname;
+Model.dname = Model.fname;
 
 % Temporarly set options_.order equal to one
 order = options_.order;
 options_.order = 1;
 
 if ismember('plot', varargin)
-    plot_priors(bayestopt_,M_,estim_params_,options_)
+    plot_priors(BayesOptions, Model, EstimatedParams, options_)
     donesomething = true;
 end
 
 if ismember('table', varargin)
-    print_table_prior(lb, ub, options_, M_, bayestopt_, estim_params_);
+    print_table_prior(lb, ub, options_, Model, BayesOptions, EstimatedParams);
     donesomething = true;
 end
 
 if ismember('simulate', varargin) % Prior simulations (BK).
-    results = prior_sampler(0,M_,bayestopt_,options_,oo_,estim_params_);
+    results = prior_sampler(0, Model, BayesOptions, options_, oo_, EstimatedParams);
     % Display prior mass info
     skipline(2)
     disp(['Prior mass = ' num2str(results.prior.mass)])
@@ -103,26 +103,27 @@ if ismember('simulate', varargin) % Prior simulations (BK).
 end
 
 if ismember('optimize', varargin) % Prior optimization.
-    optimize_prior(options_, M_, oo_, bayestopt_, estim_params_);
+    optimize_prior(options_, Model, oo_, BayesOptions, EstimatedParams);
     donesomething = true;
 end
 
 if ismember('moments', varargin) % Prior simulations (2nd order moments).
     % Set estimated parameters to the prior mode...
-    xparam1 = bayestopt_.p5;
+    xparam1 = BayesOptions.p5;
     % ... Except for uniform priors!
     k = find(isnan(xparam1));
-    xparam1(k) = bayestopt_.p5(k);
+    xparam1(k) = BayesOptions.p5(k);
     % Update vector of parameters and covariance matrices
-    M_ = set_all_parameters(xparam1,estim_params_,M_);
+    Model = set_all_parameters(xparam1, EstimatedParams, Model);
     % Check model.
-    check_model(M_);
+    check_model(Model);
     % Compute state space representation of the model.
-    oo_.dr=set_state_space(oo_.dr, M_, options_);
+    oo__ = oo_;
+    oo__.dr = set_state_space(oo__.dr, Model, options_);
     % Solve model
-    [dr,info, M_ ,options_ , oo_] = resol(0, M_ , options_ ,oo_);
+    [dr, info, Model , options__ , oo__] = resol(0, Model , options_ ,oo__);
     % Compute and display second order moments
-    oo_=disp_th_moments(oo_.dr,[],M_,options_,oo_);
+    oo__ = disp_th_moments(oo__.dr, [], Model, options__, oo__);
     skipline(2)
     donesomething = true;
 end
@@ -137,7 +138,7 @@ if ~donesomething
     error('prior: Unexpected arguments!')
 end
 
-function format_string = build_format_string(PriorStandardDeviation,LowerBound,UpperBound)
+function format_string = build_format_string(PriorStandardDeviation, LowerBound, UpperBound)
 format_string = ['%s & %s & %6.4f &'];
 if ~isnumeric(PriorStandardDeviation)
     format_string = [ format_string , ' %s &'];
diff --git a/matlab/write_latex_prior_table.m b/matlab/write_latex_prior_table.m
index 8d841605db0de04a467bec0e731ccc2a5ae2ef99..46a5e3bf5258d6f955c93fbfffb6794369869493 100644
--- a/matlab/write_latex_prior_table.m
+++ b/matlab/write_latex_prior_table.m
@@ -45,16 +45,16 @@ if (size(estim_params_.var_endo,1) || size(estim_params_.corrn,1))
 end
 
 % Fill or update bayestopt_ structure
-[xparam1, estim_params_, bayestopt_, lb, ub, M_] = set_prior(estim_params_, M_, options_);
+[xparam1, EstimatedParameters, BayesOptions, lb, ub, Model] = set_prior(estim_params_, M_, options_);
 
 % Get untruncated bounds
-bounds = prior_bounds(bayestopt_, options_.prior_trunc);
+bounds = prior_bounds(BayesOptions, options_.prior_trunc);
 lb=bounds.lb;
 ub=bounds.ub;
 
 PriorNames = { 'Beta' , 'Gamma' , 'Gaussian' , 'Inv. Gamma' , 'Uniform' , 'Inv. Gamma -- 2', '', 'Weibull' };
 
-fidTeX = fopen([M_.fname '_priors_table.tex'],'w+');
+fidTeX = fopen([Model.fname '_priors_table.tex'],'w+');
 fprintf(fidTeX,'%% TeX-table generated by Dynare write_latex_prior_table.m.\n');
 fprintf(fidTeX,'%% Prior Information\n');
 fprintf(fidTeX,['%% ' datestr(now,0)]);
@@ -107,17 +107,17 @@ fprintf(fidTeX,'\\endlastfoot\n');
 % Column 6: the upper bound of the prior density support.
 % Column 7: the lower bound of the interval containing 90% of the prior mass.
 % Column 8: the upper bound of the interval containing 90% of the prior mass.
-PriorIntervals = prior_bounds(bayestopt_,(1-options_.prior_interval)/2) ;
-for i=1:size(bayestopt_.name,1)
-    [tmp,TexName] = get_the_name(i,1,M_,estim_params_,options_);
-    PriorShape = PriorNames{ bayestopt_.pshape(i) };
-    PriorMean = bayestopt_.p1(i);
-    PriorMode = bayestopt_.p5(i);
-    PriorStandardDeviation = bayestopt_.p2(i);
-    switch bayestopt_.pshape(i)
+PriorIntervals = prior_bounds(BayesOptions,(1-options_.prior_interval)/2) ;
+for i=1:size(BayesOptions.name,1)
+    [tmp,TexName] = get_the_name(i, 1, Model, EstimatedParameters, options_);
+    PriorShape = PriorNames{ BayesOptions.pshape(i) };
+    PriorMean = BayesOptions.p1(i);
+    PriorMode = BayesOptions.p5(i);
+    PriorStandardDeviation = BayesOptions.p2(i);
+    switch BayesOptions.pshape(i)
         case { 1 , 5 }
-            LowerBound = bayestopt_.p3(i);
-            UpperBound = bayestopt_.p4(i);
+            LowerBound = BayesOptions.p3(i);
+            UpperBound = BayesOptions.p4(i);
             if ~isinf(lb(i))
                 LowerBound=max(LowerBound,lb(i));
             end
@@ -125,7 +125,7 @@ for i=1:size(bayestopt_.name,1)
                 UpperBound=min(UpperBound,ub(i));
             end
         case { 2 , 4 , 6, 8 }
-            LowerBound = bayestopt_.p3(i);
+            LowerBound = BayesOptions.p3(i);
             if ~isinf(lb(i))
                 LowerBound=max(LowerBound,lb(i));
             end
@@ -135,18 +135,18 @@ for i=1:size(bayestopt_.name,1)
                 UpperBound = '$\infty$';
             end
         case 3
-            if isinf(bayestopt_.p3(i)) && isinf(lb(i))
+            if isinf(BayesOptions.p3(i)) && isinf(lb(i))
                 LowerBound = '$-\infty$';
             else
-                LowerBound = bayestopt_.p3(i);
+                LowerBound = BayesOptions.p3(i);
                 if ~isinf(lb(i))
                     LowerBound=max(LowerBound,lb(i));
                 end
             end
-            if isinf(bayestopt_.p4(i)) && isinf(ub(i))
+            if isinf(BayesOptions.p4(i)) && isinf(ub(i))
                 UpperBound = '$\infty$';
             else
-                UpperBound = bayestopt_.p4(i);
+                UpperBound = BayesOptions.p4(i);
                 if ~isinf(ub(i))
                     UpperBound=min(UpperBound,ub(i));
                 end