diff --git a/tests/pruning/AnSchorfheide_pruned_state_space.mod b/tests/pruning/AnSchorfheide_pruned_state_space.mod
index 9afd133b825973e6b69847a90519c44475c81c10..4858f73182499d0df44536d94b81dc085fb1fdb9 100644
--- a/tests/pruning/AnSchorfheide_pruned_state_space.mod
+++ b/tests/pruning/AnSchorfheide_pruned_state_space.mod
@@ -143,51 +143,51 @@ for iorder = 1:3
         error('Something wrong with pruned_state_space.m compared to Andreasen et al 2018 Toolbox v2 at order %d.',iorder);
     end
 end
-skipline();
-fprintf('Note that at third order, there is an error in the computation of Var_z in Andreasen et al (2018)''s toolbox, @wmutschl is in contact to clarify this.\n');
-fprintf('EXAMPLE:\n')
-fprintf('  Consider Var[kron(kron(xf,xf),xf)] = E[kron(kron(kron(kron(kron(xf,xf),xf),xf),xf),xf)] - E[kron(kron(xf,xf),xf)]*E[kron(kron(xf,xf),xf)].''\n');
-fprintf('  Now note that xf=hx*xf(-1)+hu*u is Gaussian, that is E[kron(kron(xf,xf),xf)]=0, and Var[kron(kron(xf,xf),xf)] are the sixth-order product moments\n');
-fprintf('  which can be computed using the prodmom.m function by providing E[xf*xf''] as covariance matrix.\n');
-fprintf('  In order to replicate this you have to change UnconditionalMoments_3rd_Lyap.m to also output Var_z.\n')
-
-dynare_nx    = M_.nspred;
-dynare_E_xf2 = pruned_state_space.order_3.Var_z(1:dynare_nx,1:dynare_nx);
-dynare_E_xf6 = pruned_state_space.order_3.Var_z((end-dynare_nx^3+1):end,(end-dynare_nx^3+1):end);
-dynare_E_xf6 = dynare_E_xf6(:);
-        
-Andreasen_nx    = M_.nspred+M_.exo_nbr;
-Andreasen_E_xf2 = outAndreasenetal.order_3.Var_z(1:Andreasen_nx,1:Andreasen_nx);
-Andreasen_E_xf6 = outAndreasenetal.order_3.Var_z((end-Andreasen_nx^3+1):end,(end-Andreasen_nx^3+1):end);
-Andreasen_E_xf6 = Andreasen_E_xf6(:);
-
-fprintf('Second-order product moments of xf and u are the same:\n')
-norm_E_xf2 = norm(dynare_E_xf2-Andreasen_E_xf2(1:M_.nspred,1:M_.nspred),Inf)
-norm_E_uu  = norm(M_.Sigma_e-Andreasen_E_xf2(M_.nspred+(1:M_.exo_nbr),M_.nspred+(1:M_.exo_nbr)),Inf)
-
-% Compute unique sixth-order product moments of xf, i.e. unique(E[kron(kron(kron(kron(kron(xf,xf),xf),xf),xf),xf)],'stable')
-dynare_nx6     = dynare_nx*(dynare_nx+1)/2*(dynare_nx+2)/3*(dynare_nx+3)/4*(dynare_nx+4)/5*(dynare_nx+5)/6;
-dynare_Q6Px    = Q6_plication(dynare_nx);
-dynare_COMBOS6 = flipud(allVL1(dynare_nx, 6)); %all possible (unique) combinations of powers that sum up to six
-dynare_true_E_xf6 = zeros(dynare_nx6,1); %only unique entries
-for j6 = 1:size(dynare_COMBOS6,1)
-    dynare_true_E_xf6(j6) = prodmom(dynare_E_xf2, 1:dynare_nx, dynare_COMBOS6(j6,:));
-end
-dynare_true_E_xf6 = dynare_Q6Px*dynare_true_E_xf6; %add duplicate entries
-norm_dynare_E_xf6 = norm(dynare_true_E_xf6 - dynare_E_xf6, Inf);
-
-Andreasen_nx6     = Andreasen_nx*(Andreasen_nx+1)/2*(Andreasen_nx+2)/3*(Andreasen_nx+3)/4*(Andreasen_nx+4)/5*(Andreasen_nx+5)/6;
-Andreasen_Q6Px    = Q6_plication(Andreasen_nx);
-Andreasen_COMBOS6 = flipud(allVL1(Andreasen_nx, 6)); %all possible (unique) combinations of powers that sum up to six
-Andreasen_true_E_xf6   = zeros(Andreasen_nx6,1); %only unique entries
-for j6 = 1:size(Andreasen_COMBOS6,1)
-    Andreasen_true_E_xf6(j6) = prodmom(Andreasen_E_xf2, 1:Andreasen_nx, Andreasen_COMBOS6(j6,:));
-end
-Andreasen_true_E_xf6 = Andreasen_Q6Px*Andreasen_true_E_xf6; %add duplicate entries
-norm_Andreasen_E_xf6 = norm(Andreasen_true_E_xf6 - Andreasen_E_xf6, Inf);
-
-fprintf('Sixth-order product moments of xf and u are not the same!\n');
-fprintf('    Dynare maximum absolute deviations of sixth-order product moments of xf: %d\n',norm_dynare_E_xf6)
-fprintf('    Andreasen et al maximum absolute deviations of sixth-order product moments of xf: %d\n',norm_Andreasen_E_xf6)
-skipline();
-fprintf('Note that the standard deviations are set quite high to make the numerical differences more apparent.\n');
+% skipline();
+% fprintf('Note that at third order, there is an error in the computation of Var_z in Andreasen et al (2018)''s toolbox, @wmutschl is in contact to clarify this.\n');
+% fprintf('EXAMPLE:\n')
+% fprintf('  Consider Var[kron(kron(xf,xf),xf)] = E[kron(kron(kron(kron(kron(xf,xf),xf),xf),xf),xf)] - E[kron(kron(xf,xf),xf)]*E[kron(kron(xf,xf),xf)].''\n');
+% fprintf('  Now note that xf=hx*xf(-1)+hu*u is Gaussian, that is E[kron(kron(xf,xf),xf)]=0, and Var[kron(kron(xf,xf),xf)] are the sixth-order product moments\n');
+% fprintf('  which can be computed using the prodmom.m function by providing E[xf*xf''] as covariance matrix.\n');
+% fprintf('  In order to replicate this you have to change UnconditionalMoments_3rd_Lyap.m to also output Var_z.\n')
+% 
+% dynare_nx    = M_.nspred;
+% dynare_E_xf2 = pruned_state_space.order_3.Var_z(1:dynare_nx,1:dynare_nx);
+% dynare_E_xf6 = pruned_state_space.order_3.Var_z((end-dynare_nx^3+1):end,(end-dynare_nx^3+1):end);
+% dynare_E_xf6 = dynare_E_xf6(:);
+%         
+% Andreasen_nx    = M_.nspred+M_.exo_nbr;
+% Andreasen_E_xf2 = outAndreasenetal.order_3.Var_z(1:Andreasen_nx,1:Andreasen_nx);
+% Andreasen_E_xf6 = outAndreasenetal.order_3.Var_z((end-Andreasen_nx^3+1):end,(end-Andreasen_nx^3+1):end);
+% Andreasen_E_xf6 = Andreasen_E_xf6(:);
+% 
+% fprintf('Second-order product moments of xf and u are the same:\n')
+% norm_E_xf2 = norm(dynare_E_xf2-Andreasen_E_xf2(1:M_.nspred,1:M_.nspred),Inf)
+% norm_E_uu  = norm(M_.Sigma_e-Andreasen_E_xf2(M_.nspred+(1:M_.exo_nbr),M_.nspred+(1:M_.exo_nbr)),Inf)
+% 
+% % Compute unique sixth-order product moments of xf, i.e. unique(E[kron(kron(kron(kron(kron(xf,xf),xf),xf),xf),xf)],'stable')
+% dynare_nx6     = dynare_nx*(dynare_nx+1)/2*(dynare_nx+2)/3*(dynare_nx+3)/4*(dynare_nx+4)/5*(dynare_nx+5)/6;
+% dynare_Q6Px    = Q6_plication(dynare_nx);
+% dynare_COMBOS6 = flipud(allVL1(dynare_nx, 6)); %all possible (unique) combinations of powers that sum up to six
+% dynare_true_E_xf6 = zeros(dynare_nx6,1); %only unique entries
+% for j6 = 1:size(dynare_COMBOS6,1)
+%     dynare_true_E_xf6(j6) = prodmom(dynare_E_xf2, 1:dynare_nx, dynare_COMBOS6(j6,:));
+% end
+% dynare_true_E_xf6 = dynare_Q6Px*dynare_true_E_xf6; %add duplicate entries
+% norm_dynare_E_xf6 = norm(dynare_true_E_xf6 - dynare_E_xf6, Inf);
+% 
+% Andreasen_nx6     = Andreasen_nx*(Andreasen_nx+1)/2*(Andreasen_nx+2)/3*(Andreasen_nx+3)/4*(Andreasen_nx+4)/5*(Andreasen_nx+5)/6;
+% Andreasen_Q6Px    = Q6_plication(Andreasen_nx);
+% Andreasen_COMBOS6 = flipud(allVL1(Andreasen_nx, 6)); %all possible (unique) combinations of powers that sum up to six
+% Andreasen_true_E_xf6   = zeros(Andreasen_nx6,1); %only unique entries
+% for j6 = 1:size(Andreasen_COMBOS6,1)
+%     Andreasen_true_E_xf6(j6) = prodmom(Andreasen_E_xf2, 1:Andreasen_nx, Andreasen_COMBOS6(j6,:));
+% end
+% Andreasen_true_E_xf6 = Andreasen_Q6Px*Andreasen_true_E_xf6; %add duplicate entries
+% norm_Andreasen_E_xf6 = norm(Andreasen_true_E_xf6 - Andreasen_E_xf6, Inf);
+% 
+% fprintf('Sixth-order product moments of xf and u are not the same!\n');
+% fprintf('    Dynare maximum absolute deviations of sixth-order product moments of xf: %d\n',norm_dynare_E_xf6)
+% fprintf('    Andreasen et al maximum absolute deviations of sixth-order product moments of xf: %d\n',norm_Andreasen_E_xf6)
+% skipline();
+% fprintf('Note that the standard deviations are set quite high to make the numerical differences more apparent.\n');