diff --git a/matlab/kalman/likelihood/univariate_kalman_filter.m b/matlab/kalman/likelihood/univariate_kalman_filter.m index 43c86035902533fbf46ef58d1957e9ce55250b71..37ce2063114a2eebfa957548904698bf5ebdfccf 100644 --- a/matlab/kalman/likelihood/univariate_kalman_filter.m +++ b/matlab/kalman/likelihood/univariate_kalman_filter.m @@ -126,7 +126,6 @@ QQ = R*Q*transpose(R); % Variance of R times the vector of structural innova t = start; % Initialization of the time index. lik = zeros(smpl,pp); % Initialization of the matrix gathering the densities at each time and each observable LIK = Inf; % Default value of the log likelihood. -oldP = Inf; l2pi = log(2*pi); notsteady = 1; @@ -149,11 +148,9 @@ else else C=Z; end - dC = zeros(pp,mm,k); % either selection matrix or schur have zero derivatives if analytic_derivation==2 Hess = zeros(k,k); % Initialization of the Hessian D2a = zeros(mm,k,k); % State vector. - d2C = zeros(pp,mm,k,k); else asy_hess=D2T; Hess=[]; @@ -178,7 +175,6 @@ while notsteady && t<=last %loop over t else z = Z(d_index); end - oldP = P(:); for i=1:rows(z) %loop over i if Zflag prediction_error = Y(d_index(i),t) - z(i,:)*a; % nu_{t,i} in 6.13 in DK (2012)