diff --git a/matlab/optimization/analytic_gradient_wrapper.m b/matlab/optimization/analytic_gradient_wrapper.m
new file mode 100644
index 0000000000000000000000000000000000000000..8ef31deaff85f1815695bab04a9f6396d969a7a8
--- /dev/null
+++ b/matlab/optimization/analytic_gradient_wrapper.m
@@ -0,0 +1,37 @@
+function [fval, grad, hess, exit_flag]=analytic_gradient_wrapper(x, fcn, varargin)
+%function [fval, grad, hess, exitflag]=analytic_gradient_wrapper(x, fcn, varargin)
+% Encapsulates an objective function to be minimized for use with Matlab
+% optimizers
+%
+% INPUTS
+% - x             [double]    n*1 vector of instrument values.
+% - fcn           [fhandle]   objective function.
+% - varagin       [cell]      additional parameters for fcn.
+%
+% OUTPUTS
+% - fval          [double]    scalar, value of the objective function at x.
+% - grad                      gradient of the objective function
+% - hess                      Hessian of the objective function
+% - exit_flag     [integer]   scalar, flag returned by
+
+% Copyright (C) 2021 Dynare Team
+%
+% This file is part of Dynare.
+%
+% Dynare is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% Dynare is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
+
+[fval, info, exit_flag, grad, hess] = fcn(x, varargin{:});
+if size(grad,2)==1
+    grad=grad'; %should be row vector for Matlab; exception lsqnonlin where Jacobian is required
+end
\ No newline at end of file
diff --git a/matlab/optimization/dynare_minimize_objective.m b/matlab/optimization/dynare_minimize_objective.m
index 6e1a773d39c8d0a4572c5f054cc15a481b31abb1..1e6100512e0848c71c3270efba6795ae022a91da 100644
--- a/matlab/optimization/dynare_minimize_objective.m
+++ b/matlab/optimization/dynare_minimize_objective.m
@@ -77,24 +77,37 @@ switch minimizer_algorithm
         % is not able to even move away from the initial point.
         optim_options = optimoptions(optim_options, 'Algorithm','active-set');
     end
+    if options_.analytic_derivation || (isfield(options_,'mom') && options_.mom.analytic_jacobian==1)
+        optim_options = optimoptions(optim_options,'GradObj','on','TolX',1e-7); %alter default TolX
+    end
     if ~isempty(options_.optim_opt)
         eval(['optim_options = optimoptions(optim_options,' options_.optim_opt ');']);
     end
     if options_.silent_optimizer
         optim_options = optimoptions(optim_options,'display','off');
     end
-    if options_.analytic_derivation
-        optim_options = optimoptions(optim_options,'GradObj','on','TolX',1e-7); %alter default TolX
-    end
-    if ~isoctave
-        [opt_par_values,fval,exitflag,output,lamdba,grad,hessian_mat] = ...
-            fmincon(objective_function,start_par_value,[],[],[],[],bounds(:,1),bounds(:,2),[],optim_options,varargin{:});
+    if options_.analytic_derivation || (isfield(options_,'mom') && options_.mom.analytic_jacobian==1) %use wrapper
+        func = @(x) analytic_gradient_wrapper(x,objective_function,varargin{:});
+        if ~isoctave
+            [opt_par_values,fval,exitflag,output,lamdba,grad,hessian_mat] = ...
+                fmincon(func,start_par_value,[],[],[],[],bounds(:,1),bounds(:,2),[],optim_options);
+        else
+            % Under Octave, use a wrapper, since fmincon() does not have an 11th
+            % arg. Also, only the first 4 output arguments are available.
+            [opt_par_values,fval,exitflag,output] = ...
+                fmincon(func,start_par_value,[],[],[],[],bounds(:,1),bounds(:,2),[],optim_options);
+        end
     else
-        % Under Octave, use a wrapper, since fmincon() does not have an 11th
-        % arg. Also, only the first 4 output arguments are available.
-        func = @(x) objective_function(x,varargin{:});
-        [opt_par_values,fval,exitflag,output] = ...
-            fmincon(func,start_par_value,[],[],[],[],bounds(:,1),bounds(:,2),[],optim_options);
+        if ~isoctave
+            [opt_par_values,fval,exitflag,output,lamdba,grad,hessian_mat] = ...
+                fmincon(objective_function,start_par_value,[],[],[],[],bounds(:,1),bounds(:,2),[],optim_options,varargin{:});
+        else
+            % Under Octave, use a wrapper, since fmincon() does not have an 11th
+            % arg. Also, only the first 4 output arguments are available.
+            func = @(x) objective_function(x,varargin{:});
+            [opt_par_values,fval,exitflag,output] = ...
+                fmincon(func,start_par_value,[],[],[],[],bounds(:,1),bounds(:,2),[],optim_options);
+        end    
     end
     
   case 2
@@ -159,20 +172,28 @@ switch minimizer_algorithm
     if ~isempty(options_.optim_opt)
         eval(['optim_options = optimoptions(optim_options,' options_.optim_opt ');']);
     end
-    if options_.analytic_derivation
-        optim_options = optimoptions(optim_options,'GradObj','on');
-    end
     if options_.silent_optimizer
         optim_options = optimoptions(optim_options,'display','off');
     end
-    if ~isoctave
-        [opt_par_values,fval,exitflag] = fminunc(objective_function,start_par_value,optim_options,varargin{:});
+    if options_.analytic_derivation || (isfield(options_,'mom') && options_.mom.analytic_jacobian==1)
+        optim_options = optimoptions(optim_options,'GradObj','on');
+        if ~isoctave
+            func = @(x) analytic_gradient_wrapper(x,objective_function,varargin{:});
+            [opt_par_values,fval,exitflag] = fminunc(func,start_par_value,optim_options);
+        else
+            % Under Octave, use a wrapper, since fminunc() does not have a 4th arg
+            func = @(x) analytic_gradient_wrapper(x,objective_function,varargin{:});
+            [opt_par_values,fval,exitflag] = fminunc(func,start_par_value,optim_options);
+        end
     else
-        % Under Octave, use a wrapper, since fminunc() does not have a 4th arg
-        func = @(x) objective_function(x,varargin{:});
-        [opt_par_values,fval,exitflag] = fminunc(func,start_par_value,optim_options);
+        if ~isoctave
+            [opt_par_values,fval,exitflag] = fminunc(objective_function,start_par_value,optim_options,varargin{:});
+        else
+            % Under Octave, use a wrapper, since fminunc() does not have a 4th arg
+            func = @(x) objective_function(x,varargin{:});
+            [opt_par_values,fval,exitflag] = fminunc(func,start_par_value,optim_options);
+        end
     end
-    
   case 4
     % Set default options.
     H0 = 1e-4*eye(n_params);
@@ -500,7 +521,12 @@ switch minimizer_algorithm
     if options_.silent_optimizer
         solveoptoptions.verbosity = 0;
     end
-    [opt_par_values,fval]=solvopt(start_par_value,objective_function,[],[],[],solveoptoptions,varargin{:});
+    if options_.analytic_derivation || (isfield(options_,'mom') && options_.mom.analytic_jacobian==1)
+        func = @(x) analytic_gradient_wrapper(x,objective_function,varargin{:});
+        [opt_par_values,fval]=solvopt(start_par_value,func,1,[],[],solveoptoptions);
+    else
+        [opt_par_values,fval]=solvopt(start_par_value,objective_function,[],[],[],solveoptoptions,varargin{:});
+    end
   case 102
     if isoctave
         error('Optimization algorithm 2 is not available under Octave')