From d68698ffe9d5ea0e899967cb507ae6cd3d297ec2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?St=C3=A9phane=20Adjemian=28Charybdis=29?= <stephane.adjemian@univ-lemans.fr> Date: Thu, 21 Jun 2018 18:53:57 +0200 Subject: [PATCH] Added example with estimation of the PAC equation by NLS. --- examples/9/clean | 8 ++++ examples/9/example.mod | 100 +++++++++++++++++++++++++++++++++++++++++ 2 files changed, 108 insertions(+) create mode 100755 examples/9/clean create mode 100644 examples/9/example.mod diff --git a/examples/9/clean b/examples/9/clean new file mode 100755 index 0000000000..a0fd4a44a2 --- /dev/null +++ b/examples/9/clean @@ -0,0 +1,8 @@ +#!/bin/sh + +rm -rf example +rm -f example*.json +rm -f example*.m +rm -f example*.mat +rm -f example.log +rm -f ssr_zpac.m diff --git a/examples/9/example.mod b/examples/9/example.mod new file mode 100644 index 0000000000..1febd61218 --- /dev/null +++ b/examples/9/example.mod @@ -0,0 +1,100 @@ +// --+ options: json=compute, stochastic +-- + +var x1 x2 x1bar x2bar z y; + +varexo ex1 ex2 ex1bar ex2bar ez ey; + +parameters + rho_1 rho_2 + a_x1_0 a_x1_1 a_x1_2 a_x1_x2_1 a_x1_x2_2 + a_x2_0 a_x2_1 a_x2_2 a_x2_x1_1 a_x2_x1_2 + e_c_m c_z_1 c_z_2 gamma beta ; + +rho_1 = .9; +rho_2 = -.2; + +a_x1_0 = -.9; +a_x1_1 = .4; +a_x1_2 = .3; +a_x1_x2_1 = .1; +a_x1_x2_2 = .2; + + +a_x2_0 = -.9; +a_x2_1 = .2; +a_x2_2 = -.1; +a_x2_x1_1 = -.1; +a_x2_x1_2 = .2; + +beta = .2; +e_c_m = .5; +c_z_1 = .2; +c_z_2 = -.1; + +gamma = .7; + +var_model(model_name=toto, eqtags=['eq:x1', 'eq:x2', 'eq:x1bar', 'eq:x2bar']); + +pac_model(var_model_name=toto, discount=beta, model_name=pacman, undiff('eq:x1', 1), undiff('eq:x2', 1)); + +model; + +[name='eq:y'] +y = rho_1*y(-1) + rho_2*y(-2) + ey; + +[name='eq:x1', data_type='nonstationary'] +diff(x1) = a_x1_0*(x1(-1)-x1bar(-1)) + a_x1_1*diff(x1(-1)) + a_x1_2*diff(x1(-2)) + a_x1_x2_1*diff(x2(-1)) + a_x1_x2_2*diff(x2(-2)) + ex1; + +[name='eq:x2', data_type='nonstationary'] +diff(x2) = a_x2_0*(x2(-1)-x2bar(-1)) + a_x2_1*diff(x1(-1)) + a_x2_2*diff(x1(-2)) + a_x2_x1_1*diff(x2(-1)) + a_x2_x1_2*diff(x2(-2)) + ex2; + +[name='eq:x1bar', data_type='nonstationary'] +x1bar = x1bar(-1) + ex1bar; + +[name='eq:x2bar', data_type='nonstationary'] +x2bar = x2bar(-1) + ex2bar; + +[name='zpac'] +diff(z) = gamma*(e_c_m*(x1(-1)-z(-1)) + c_z_1*diff(z(-1)) + c_z_2*diff(z(-2)) + pac_expectation(pacman)) + (1-gamma)*y + ez; + +end; + +shocks; + var ex1 = 1.0; + var ex2 = 1.0; + var ex1bar = 1.0; + var ex2bar = 1.0; + var ez = 1.0; + var ey = 0.1; +end; + +// Build the companion matrix of the VAR model (toto). +get_companion_matrix('toto', 'pacman'); + +// Update the parameters of the PAC expectation model (h0 and h1 vectors). +pac.update.expectation('pacman'); + +// Set initial conditions to zero. Please use more sensible values if any... +initialconditions = dseries(zeros(10, M_.endo_nbr+M_.exo_nbr), 2000Q1, vertcat(M_.endo_names,M_.exo_names)); + +// Simulate the model for 500 periods +TrueData = simul_backward_model(initialconditions, 500); + +//[pnames, enames, xnames, pid, eid, xid] = get_variables_and_parameters_in_equation('zpac', M_) + +// Define a structure describing the parameters to be estimated (with initial conditions). +eparams.e_c_m = .9; +eparams.c_z_1 = .5; +eparams.c_z_2 = .2; +eparams.gamma = .1; + +// Define the dataset used for estimation +edata = TrueData; +edata.ez = dseries(NaN(TrueData.nobs, 1), 200Q1, 'ez'); + +pac.estimate('zpac', eparams, edata, 2005Q1:2120Q1); + +disp(sprintf('Estimate of e_c_m: %f', M_.params(strmatch('e_c_m', M_.param_names, 'exact')))) +disp(sprintf('Estimate of c_z_1: %f', M_.params(strmatch('c_z_1', M_.param_names, 'exact')))) +disp(sprintf('Estimate of c_z_2: %f', M_.params(strmatch('c_z_2', M_.param_names, 'exact')))) +disp(sprintf('Estimate of gamma: %f', M_.params(strmatch('gamma', M_.param_names, 'exact')))) -- GitLab