diff --git a/doc/dynare.texi b/doc/dynare.texi
index 3473c1c1f51ffe35d11145681b2a80e11a053c38..943b9b7ff184247ff66e0eba3c4494925fe5b427 100644
--- a/doc/dynare.texi
+++ b/doc/dynare.texi
@@ -10746,6 +10746,7 @@ plotted in levels.
 
 @end deffn
 
+
 @deffn Command dynatype (@var{FILENAME}) [@var{VARIABLE_NAME}@dots{}];
 This command prints the listed variables in a text file named
 @var{FILENAME}. If no @var{VARIABLE_NAME} is listed, all endogenous
diff --git a/dynare++/extern/matlab/dynare_simul.m b/dynare++/extern/matlab/dynare_simul.m
index a77fc458bda3e290d705cbe22d04feb990c3fee9..32ac8dc57e081cd243b8ba5c8e92f6623815b145 100644
--- a/dynare++/extern/matlab/dynare_simul.m
+++ b/dynare++/extern/matlab/dynare_simul.m
@@ -80,71 +80,71 @@ eval(['load ' fname]);
 
 % set prefix, shocks, ystart
 if ischar(varargin{2})
-    prefix = varargin{2};
-    if length(varargin) == 3
-        shocks = varargin{3};
-        ystart = NaN;
-    elseif length(varargin) == 4
-        shocks = varargin{3};
-        ystart = varargin{4};
-    else
-        error('Wrong number of parameters.');
-    end
+  prefix = varargin{2};
+  if length(varargin) == 3
+    shocks = varargin{3};
+    ystart = NaN;
+  elseif length(varargin) == 4
+    shocks = varargin{3};
+    ystart = varargin{4};
+  else
+    error('Wrong number of parameters.');
+  end
 else
-    prefix = 'dyn';
-    if length(varargin) == 2
-        shocks = varargin{2};
-        ystart = NaN;
-    elseif length(varargin) == 3
-        shocks = varargin{2};
-        ystart = varargin{3};
-    else
-        error('Wrong number of parameters.');
-    end
+  prefix = 'dyn';
+  if length(varargin) == 2
+    shocks = varargin{2};
+    ystart = NaN;
+  elseif length(varargin) == 3
+    shocks = varargin{2};
+    ystart = varargin{3};
+  else
+    error('Wrong number of parameters.');
+  end
 end
 
 % load all needed variables but prefix_g_*
 if (exist([prefix '_nstat']))
-    nstat = eval([prefix '_nstat']);
+  nstat = eval([prefix '_nstat']);
 else
-    error(['Could not find variable ' prefix '_nstat in workspace']);
+  error(['Could not find variable ' prefix '_nstat in workspace']);
 end
 if (exist([prefix '_npred']))
-    npred = eval([prefix '_npred']);
+  npred = eval([prefix '_npred']);
 else
-    error(['Could not find variable ' prefix '_npred in workspace']);
+  error(['Could not find variable ' prefix '_npred in workspace']);
 end
 if (exist([prefix '_nboth']))
-    nboth = eval([prefix '_nboth']);
+  nboth = eval([prefix '_nboth']);
 else
-    error(['Could not find variable ' prefix '_nboth in workspace']);
+  error(['Could not find variable ' prefix '_nboth in workspace']);
 end
 if (exist([prefix '_nforw']))
-    nforw = eval([prefix '_nforw']);
+  nforw = eval([prefix '_nforw']);
 else
-    error(['Could not find variable ' prefix '_nforw in workspace']);
+  error(['Could not find variable ' prefix '_nforw in workspace']);
 end
 if (exist([prefix '_ss']))
-    ss = eval([prefix '_ss']);
+  ss = eval([prefix '_ss']);
 else
-    error(['Could not find variable ' prefix '_ss in workspace']);
+  error(['Could not find variable ' prefix '_ss in workspace']);
 end
 if (exist([prefix '_vcov_exo']))
-    vcov_exo = eval([prefix '_vcov_exo']);
+  vcov_exo = eval([prefix '_vcov_exo']);
 else
-    error(['Could not find variable ' prefix '_vcov_exo in workspace']);
+  error(['Could not find variable ' prefix '_vcov_exo in workspace']);
 end
 nexog = size(vcov_exo,1);
 
 if isnan(ystart)
-    ystart = ss;
+  ystart = ss;
 end
 
 % newer version of dynare++ doesn't return prefix_g_0, we make it here if
 % it does not exist in workspace
 g_zero = [prefix '_g_0'];
 if (~ exist(g_zero))
-    eval([ g_zero '= zeros(nstat+npred+nboth+nforw,1);']);
+  eval([ g_zero '= zeros(nstat+npred+nboth+nforw,1);']);
 end
 
 % make derstr a string of comma seperated existing prefix_g_*
@@ -152,13 +152,13 @@ derstr = [',' g_zero];
 order = 1;
 cont = 1;
 while cont == 1
-    g_ord = [prefix '_g_' num2str(order)];
-    if (exist(g_ord))
-        derstr = [derstr ',' g_ord];
-        order = order + 1;
-    else
-        cont = 0;
-    end
+  g_ord = [prefix '_g_' num2str(order)];
+  if (exist(g_ord))
+    derstr = [derstr ',' g_ord];
+    order = order + 1;
+  else
+    cont = 0;
+  end
 end
 
 % set seed
diff --git a/dynare++/sylv/matlab/gensylv.m b/dynare++/sylv/matlab/gensylv.m
index d16bde364042bf7eeb26525de1c5472043e9a41e..56f5f0e73b78018bb5147455656c06250fd799de 100644
--- a/dynare++/sylv/matlab/gensylv.m
+++ b/dynare++/sylv/matlab/gensylv.m
@@ -58,18 +58,19 @@ function [err, X, varargout] = gensylv(order, A, B, C, D)
 % in Windows, ensure that aa_gensylv.dll is loaded, this prevents
 % clearing the function and a successive Matlab crash
 if strcmp('PCWIN', computer)
-    if ~ libisloaded('aa_gensylv') 
-        loadlibrary('aa_gensylv', 'dummy');
-    end
+  if ~ libisloaded('aa_gensylv') 
+    loadlibrary('aa_gensylv', 'dummy');
+  end
 end
 
 % launch aa_gensylv
 if nargout == 2
-    X = aa_gensylv(order, A, B, C, D);
+  X = aa_gensylv(order, A, B, C, D);
 elseif nargout == 3
-    [X, par] = aa_gensylv(order, A, B, C, D);
-    varargout(1) = {par};
+  [X, par] = aa_gensylv(order, A, B, C, D);
+  varargout(1) = {par};
 else
-    error('Must have 2 or 3 output arguments.');
+  error('Must have 2 or 3 output arguments.');
 end
 err = 0;
+  
\ No newline at end of file
diff --git a/examples/NK_baseline_steadystate.m b/examples/NK_baseline_steadystate.m
index d55422921676e189999e68977e2d92f3a42a6ae8..7398303d750dc086cf385f8a3c1b8418ef02dd28 100644
--- a/examples/NK_baseline_steadystate.m
+++ b/examples/NK_baseline_steadystate.m
@@ -17,8 +17,8 @@ global M_
 % read out parameters to access them with their name
 NumberOfParameters = M_.param_nbr;
 for ii = 1:NumberOfParameters
-    paramname = M_.param_names{ii};
-    eval([ paramname ' = M_.params(' int2str(ii) ');']);
+  paramname = M_.param_names{ii};
+  eval([ paramname ' = M_.params(' int2str(ii) ');']);
 end
 % initialize indicator
 check = 0;
@@ -69,8 +69,8 @@ vw=(1-thetaw)/(1-thetaw*PI^((1-chiw)*eta)*mu_z^eta)*PIstarw^(-eta);
 tempvaromega=alppha/(1-alppha)*w/r*mu_z*mu_I;
 
 [ld,fval,exitflag]=fzero(@(ld)(1-betta*thetaw*mu_z^(eta-1)*PI^(-(1-chiw)*(1-eta)))/(1-betta*thetaw*mu_z^(eta*(1+gammma))*PI^(eta*(1-chiw)*(1+gammma)))...
-                         -(eta-1)/eta*wstar/(varpsi*PIstarw^(-eta*gammma)*ld^gammma)*((1-h*mu_z^(-1))^(-1)-betta*h*(mu_z-h)^(-1))*...
-                         ((mu_A*mu_z^(-1)*vp^(-1)*tempvaromega^alppha-tempvaromega*(1-(1-delta)*(mu_z*mu_I)^(-1)))*ld-vp^(-1)*Phi)^(-1),0.25,options);
+-(eta-1)/eta*wstar/(varpsi*PIstarw^(-eta*gammma)*ld^gammma)*((1-h*mu_z^(-1))^(-1)-betta*h*(mu_z-h)^(-1))*...
+((mu_A*mu_z^(-1)*vp^(-1)*tempvaromega^alppha-tempvaromega*(1-(1-delta)*(mu_z*mu_I)^(-1)))*ld-vp^(-1)*Phi)^(-1),0.25,options);
 if exitflag <1
     %indicate the SS computation was not sucessful; this would also be detected by Dynare
     %setting the indicator here shows how to use this functionality to
diff --git a/examples/fsdat_simul.m b/examples/fsdat_simul.m
index f6ad30c85be4e71227913664bd14cce25ac504eb..56c0e4cd56a8bb96fb579587fb4218afb626c56e 100644
--- a/examples/fsdat_simul.m
+++ b/examples/fsdat_simul.m
@@ -1,416 +1,416 @@
 % Generated data, used by fs2000.mod
 
 gy_obs          =[
-    1.0030045
-    1.0002599
-    0.99104664
-    1.0321162
-    1.0223545
-    1.0043614
-    0.98626929
-    1.0092127
-    1.0357197
-    1.0150827
-    1.0051548
-    0.98465775
-    0.99132132
-    0.99904153
-    1.0044641
-    1.0179198
-    1.0113462
-    0.99409421
-    0.99904293
-    1.0448336
-    0.99932433
-    1.0057004
-    0.99619787
-    1.0267504
-    1.0077645
-    1.0058026
-    1.0025891
-    0.9939097
-    0.99604693
-    0.99908569
-    1.0151094
-    0.99348134
-    1.0039124
-    1.0145805
-    0.99800868
-    0.98578138
-    1.0065771
-    0.99843919
-    0.97979062
-    0.98413351
-    0.96468174
-    1.0273857
-    1.0225211
-    0.99958667
-    1.0111157
-    1.0099585
-    0.99480311
-    1.0079265
-    0.98924573
-    1.0070613
-    1.0075706
-    0.9937151
-    1.0224711
-    1.0018891
-    0.99051863
-    1.0042944
-    1.0184055
-    0.99419508
-    0.99756624
-    1.0015983
-    0.9845772
-    1.0004407
-    1.0116237
-    0.9861885
-    1.0073094
-    0.99273355
-    1.0013224
-    0.99777979
-    1.0301686
-    0.96809556
-    0.99917088
-    0.99949253
-    0.96590004
-    1.0083938
-    0.96662298
-    1.0221454
-    1.0069792
-    1.0343996
-    1.0066531
-    1.0072525
-    0.99743563
-    0.99723703
-    1.000372
-    0.99013917
-    1.0095223
-    0.98864268
-    0.98092242
-    0.98886488
-    1.0030341
-    1.01894
-    0.99155059
-    0.99533235
-    0.99734316
-    1.0047356
-    1.0082737
-    0.98425116
-    0.99949212
-    1.0055899
-    1.0065075
-    0.99385069
-    0.98867975
-    0.99804843
-    1.0184038
-    0.99301902
-    1.0177222
-    1.0051924
-    1.0187852
-    1.0098985
-    1.0097172
-    1.0145811
-    0.98721038
-    1.0361722
-    1.0105821
-    0.99469309
-    0.98626785
-    1.013871
-    0.99858924
-    0.99302637
-    1.0042186
-    0.99623745
-    0.98545708
-    1.0225435
-    1.0011861
-    1.0130321
-    0.97861347
-    1.0228193
-    0.99627435
-    1.0272779
-    1.0075172
-    1.0096762
-    1.0129306
-    0.99966549
-    1.0262882
-    1.0026914
-    1.0061475
-    1.009523
-    1.0036127
-    0.99762992
-    0.99092634
-    1.0058469
-    0.99887292
-    1.0060653
-    0.98673557
-    0.98895709
-    0.99111967
-    0.990118
-    0.99788054
-    0.97054709
-    1.0099157
-    1.0107431
-    0.99518695
-    1.0114048
-    0.99376019
-    1.0023369
-    0.98783327
-    1.0051727
-    1.0100462
-    0.98607387
-    1.0000064
-    0.99692442
-    1.012225
-    0.99574078
-    0.98642833
-    0.99008207
-    1.0197359
-    1.0112849
-    0.98711069
-    0.99402748
-    1.0242141
-    1.0135349
-    0.99842505
-    1.0130714
-    0.99887044
-    1.0059058
-    1.0185998
-    1.0073314
-    0.98687706
-    1.0084551
-    0.97698964
-    0.99482714
-    1.0015302
-    1.0105331
-    1.0261767
-    1.0232822
-    1.0084176
-    0.99785167
-    0.99619733
-    1.0055223
-    1.0076326
-    0.99205461
-    1.0030587
-    1.0137012
-    1.0145878
-    1.0190297
-    1.0000681
-    1.0153894
-    1.0140649
-    1.0007236
-    0.97961463
-    1.0125257
-    1.0169503
-    1.0197363
-    1.0221185
+      1.0030045
+      1.0002599
+     0.99104664
+      1.0321162
+      1.0223545
+      1.0043614
+     0.98626929
+      1.0092127
+      1.0357197
+      1.0150827
+      1.0051548
+     0.98465775
+     0.99132132
+     0.99904153
+      1.0044641
+      1.0179198
+      1.0113462
+     0.99409421
+     0.99904293
+      1.0448336
+     0.99932433
+      1.0057004
+     0.99619787
+      1.0267504
+      1.0077645
+      1.0058026
+      1.0025891
+      0.9939097
+     0.99604693
+     0.99908569
+      1.0151094
+     0.99348134
+      1.0039124
+      1.0145805
+     0.99800868
+     0.98578138
+      1.0065771
+     0.99843919
+     0.97979062
+     0.98413351
+     0.96468174
+      1.0273857
+      1.0225211
+     0.99958667
+      1.0111157
+      1.0099585
+     0.99480311
+      1.0079265
+     0.98924573
+      1.0070613
+      1.0075706
+      0.9937151
+      1.0224711
+      1.0018891
+     0.99051863
+      1.0042944
+      1.0184055
+     0.99419508
+     0.99756624
+      1.0015983
+      0.9845772
+      1.0004407
+      1.0116237
+      0.9861885
+      1.0073094
+     0.99273355
+      1.0013224
+     0.99777979
+      1.0301686
+     0.96809556
+     0.99917088
+     0.99949253
+     0.96590004
+      1.0083938
+     0.96662298
+      1.0221454
+      1.0069792
+      1.0343996
+      1.0066531
+      1.0072525
+     0.99743563
+     0.99723703
+       1.000372
+     0.99013917
+      1.0095223
+     0.98864268
+     0.98092242
+     0.98886488
+      1.0030341
+        1.01894
+     0.99155059
+     0.99533235
+     0.99734316
+      1.0047356
+      1.0082737
+     0.98425116
+     0.99949212
+      1.0055899
+      1.0065075
+     0.99385069
+     0.98867975
+     0.99804843
+      1.0184038
+     0.99301902
+      1.0177222
+      1.0051924
+      1.0187852
+      1.0098985
+      1.0097172
+      1.0145811
+     0.98721038
+      1.0361722
+      1.0105821
+     0.99469309
+     0.98626785
+       1.013871
+     0.99858924
+     0.99302637
+      1.0042186
+     0.99623745
+     0.98545708
+      1.0225435
+      1.0011861
+      1.0130321
+     0.97861347
+      1.0228193
+     0.99627435
+      1.0272779
+      1.0075172
+      1.0096762
+      1.0129306
+     0.99966549
+      1.0262882
+      1.0026914
+      1.0061475
+       1.009523
+      1.0036127
+     0.99762992
+     0.99092634
+      1.0058469
+     0.99887292
+      1.0060653
+     0.98673557
+     0.98895709
+     0.99111967
+       0.990118
+     0.99788054
+     0.97054709
+      1.0099157
+      1.0107431
+     0.99518695
+      1.0114048
+     0.99376019
+      1.0023369
+     0.98783327
+      1.0051727
+      1.0100462
+     0.98607387
+      1.0000064
+     0.99692442
+       1.012225
+     0.99574078
+     0.98642833
+     0.99008207
+      1.0197359
+      1.0112849
+     0.98711069
+     0.99402748
+      1.0242141
+      1.0135349
+     0.99842505
+      1.0130714
+     0.99887044
+      1.0059058
+      1.0185998
+      1.0073314
+     0.98687706
+      1.0084551
+     0.97698964
+     0.99482714
+      1.0015302
+      1.0105331
+      1.0261767
+      1.0232822
+      1.0084176
+     0.99785167
+     0.99619733
+      1.0055223
+      1.0076326
+     0.99205461
+      1.0030587
+      1.0137012
+      1.0145878
+      1.0190297
+      1.0000681
+      1.0153894
+      1.0140649
+      1.0007236
+     0.97961463
+      1.0125257
+      1.0169503
+      1.0197363
+      1.0221185
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0115853
-    1.0167502
-    1.0068957
-    1.0138189
-    1.0258364
-    1.0243817
-    1.017373
-    1.0020171
-    1.0003742
-    1.0008974
-    1.0104804
-    1.0116393
-    1.0114294
-    0.99932124
-    0.99461459
-    1.0170349
-    1.0051446
-    1.020639
-    1.0051964
-    1.0093042
-    1.007068
-    1.01086
-    0.99590086
-    1.0014883
-    1.0117332
-    0.9990095
-    1.0108284
-    1.0103672
-    1.0036722
-    1.0005124
-    1.0190331
-    1.0130978
-    1.007842
-    1.0285436
-    1.0322054
-    1.0213403
-    1.0246486
-    1.0419306
-    1.0258867
-    1.0156316
-    0.99818589
-    0.9894107
-    1.0127584
-    1.0146882
-    1.0136529
-    1.0340107
-    1.0343652
-    1.02971
-    1.0077932
-    1.0198114
-    1.013971
-    1.0061083
-    1.0089573
-    1.0037926
-    1.0082071
-    0.99498155
-    0.99735772
-    0.98765026
-    1.006465
-    1.0196088
-    1.0053233
-    1.0119974
-    1.0188066
-    1.0029302
-    1.0183459
-    1.0034218
-    1.0158799
-    0.98824798
-    1.0274357
-    1.0168832
-    1.0180641
-    1.0294657
-    0.98864091
-    1.0358326
-    0.99889969
-    1.0178322
-    0.99813566
-    1.0073549
-    1.0215985
-    1.0084245
-    1.0080939
-    1.0157021
-    1.0075815
-    1.0032633
-    1.0117871
-    1.0209276
-    1.0077569
-    0.99680958
-    1.0120266
-    1.0017625
-    1.0138811
-    1.0198358
-    1.0059629
-    1.0115416
-    1.0319473
-    1.0167074
-    1.0116111
-    1.0048627
-    1.0217622
-    1.0125221
-    1.0142045
-    0.99792469
-    0.99823971
-    0.99561547
-    0.99850373
-    0.9898464
-    1.0030963
-    1.0051373
-    1.0004213
-    1.0144117
-    0.97185592
-    0.9959518
-    1.0073529
-    1.0051603
-    0.98642572
-    0.99433423
-    1.0112131
-    1.0007695
-    1.0176867
-    1.0134363
-    0.99926191
-    0.99879835
-    0.99878754
-    1.0331374
-    1.0077797
-    1.0127221
-    1.0047393
-    1.0074106
-    0.99784213
-    1.0056495
-    1.0057708
-    0.98817494
-    0.98742176
-    0.99930555
-    1.0000687
-    1.0129754
-    1.009529
-    1.0226731
-    1.0149534
-    1.0164295
-    1.0239469
-    1.0293458
-    1.026199
-    1.0197525
-    1.0126818
-    1.0054473
-    1.0254423
-    1.0069461
-    1.0153135
-    1.0337515
-    1.0178187
-    1.0240469
-    1.0079489
-    1.0186953
-    1.0008628
-    1.0113799
-    1.0140118
-    1.0168007
-    1.011441
-    0.98422774
-    0.98909729
-    1.0157859
-    1.0151586
-    0.99756232
-    0.99497777
-    1.0102841
-    1.0221659
-    0.9937759
-    0.99877193
-    1.0079433
-    0.99667692
-    1.0095959
-    1.0128804
-    1.0156949
-    1.0111951
-    1.0228887
-    1.0122083
-    1.0190197
-    1.0074927
-    1.0268096
-    0.99689352
-    0.98948474
-    1.0024938
-    1.0105543
-    1.014116
-    1.0141217
-    1.0056504
-    1.0101026
-    1.0105069
-    0.99619053
-    1.0059439
-    0.99449473
-    0.99482458
-    1.0037702
-    1.0068087
-    0.99575975
-    1.0030815
-    1.0334014
-    0.99879386
-    0.99625634
-    1.0171195
-    0.99233844
+      1.0079715
+      1.0115853
+      1.0167502
+      1.0068957
+      1.0138189
+      1.0258364
+      1.0243817
+       1.017373
+      1.0020171
+      1.0003742
+      1.0008974
+      1.0104804
+      1.0116393
+      1.0114294
+     0.99932124
+     0.99461459
+      1.0170349
+      1.0051446
+       1.020639
+      1.0051964
+      1.0093042
+       1.007068
+        1.01086
+     0.99590086
+      1.0014883
+      1.0117332
+      0.9990095
+      1.0108284
+      1.0103672
+      1.0036722
+      1.0005124
+      1.0190331
+      1.0130978
+       1.007842
+      1.0285436
+      1.0322054
+      1.0213403
+      1.0246486
+      1.0419306
+      1.0258867
+      1.0156316
+     0.99818589
+      0.9894107
+      1.0127584
+      1.0146882
+      1.0136529
+      1.0340107
+      1.0343652
+        1.02971
+      1.0077932
+      1.0198114
+       1.013971
+      1.0061083
+      1.0089573
+      1.0037926
+      1.0082071
+     0.99498155
+     0.99735772
+     0.98765026
+       1.006465
+      1.0196088
+      1.0053233
+      1.0119974
+      1.0188066
+      1.0029302
+      1.0183459
+      1.0034218
+      1.0158799
+     0.98824798
+      1.0274357
+      1.0168832
+      1.0180641
+      1.0294657
+     0.98864091
+      1.0358326
+     0.99889969
+      1.0178322
+     0.99813566
+      1.0073549
+      1.0215985
+      1.0084245
+      1.0080939
+      1.0157021
+      1.0075815
+      1.0032633
+      1.0117871
+      1.0209276
+      1.0077569
+     0.99680958
+      1.0120266
+      1.0017625
+      1.0138811
+      1.0198358
+      1.0059629
+      1.0115416
+      1.0319473
+      1.0167074
+      1.0116111
+      1.0048627
+      1.0217622
+      1.0125221
+      1.0142045
+     0.99792469
+     0.99823971
+     0.99561547
+     0.99850373
+      0.9898464
+      1.0030963
+      1.0051373
+      1.0004213
+      1.0144117
+     0.97185592
+      0.9959518
+      1.0073529
+      1.0051603
+     0.98642572
+     0.99433423
+      1.0112131
+      1.0007695
+      1.0176867
+      1.0134363
+     0.99926191
+     0.99879835
+     0.99878754
+      1.0331374
+      1.0077797
+      1.0127221
+      1.0047393
+      1.0074106
+     0.99784213
+      1.0056495
+      1.0057708
+     0.98817494
+     0.98742176
+     0.99930555
+      1.0000687
+      1.0129754
+       1.009529
+      1.0226731
+      1.0149534
+      1.0164295
+      1.0239469
+      1.0293458
+       1.026199
+      1.0197525
+      1.0126818
+      1.0054473
+      1.0254423
+      1.0069461
+      1.0153135
+      1.0337515
+      1.0178187
+      1.0240469
+      1.0079489
+      1.0186953
+      1.0008628
+      1.0113799
+      1.0140118
+      1.0168007
+       1.011441
+     0.98422774
+     0.98909729
+      1.0157859
+      1.0151586
+     0.99756232
+     0.99497777
+      1.0102841
+      1.0221659
+      0.9937759
+     0.99877193
+      1.0079433
+     0.99667692
+      1.0095959
+      1.0128804
+      1.0156949
+      1.0111951
+      1.0228887
+      1.0122083
+      1.0190197
+      1.0074927
+      1.0268096
+     0.99689352
+     0.98948474
+      1.0024938
+      1.0105543
+       1.014116
+      1.0141217
+      1.0056504
+      1.0101026
+      1.0105069
+     0.99619053
+      1.0059439
+     0.99449473
+     0.99482458
+      1.0037702
+      1.0068087
+     0.99575975
+      1.0030815
+      1.0334014
+     0.99879386
+     0.99625634
+      1.0171195
+     0.99233844
 
-                 ];
+];
 
diff --git a/matlab/AHessian.m b/matlab/AHessian.m
index 890dc92d773a2b75f44ba0cfe8cb32ccf40f828f..f9d9db6e0ca667eb13c3da412dd412207f9aeb55 100644
--- a/matlab/AHessian.m
+++ b/matlab/AHessian.m
@@ -66,7 +66,9 @@ while notsteady && t<smpl
         iF     = inv(F);
         K      = P(:,mf)*iF;
         lik(t) = log(det(F))+transpose(v)*iF*v;
+
         [DK,DF,DP1] = computeDKalman(T,DT,DOm,P,DP,DH,mf,iF,K);
+
         for ii = 1:k
             Dv(:,ii)   = -Da(mf,ii) - DYss(mf,ii);
             Da(:,ii)   = DT(:,:,ii)*(a+K*v) + T*(Da(:,ii)+DK(:,:,ii)*v + K*Dv(:,ii));
@@ -147,4 +149,4 @@ for ii = 1:k
     DP1(:,:,ii) = DT(:,:,ii)*tmp*T' + T*Dtmp*T' + T*tmp*DT(:,:,ii)' + DOm(:,:,ii);
 end
 
-% end of computeDKalman
\ No newline at end of file
+% end of computeDKalman
diff --git a/matlab/block_bytecode_mfs_steadystate.m b/matlab/block_bytecode_mfs_steadystate.m
index 26bd0fac57417eb34dc81b5c7fd1b2996bfe14a6..a34b15c197196a4d31dd342812c36d76856b14e8 100644
--- a/matlab/block_bytecode_mfs_steadystate.m
+++ b/matlab/block_bytecode_mfs_steadystate.m
@@ -1,5 +1,5 @@
 function [r, g1] = block_bytecode_mfs_steadystate(y, b, y_all, exo, params, M)
-% Wrapper around the static.m file, for use with dynare_solve,
+% Wrapper around the *_static.m file, for use with dynare_solve,
 % when block_mfs option is given to steady.
 
 % Copyright (C) 2009-2012 Dynare Team
diff --git a/matlab/block_mfs_steadystate.m b/matlab/block_mfs_steadystate.m
index 4ba49ef39b306f43427bae5da01d1010e31e0826..a0793e674d99e79e15125a8a530f85d5ef3b80b5 100644
--- a/matlab/block_mfs_steadystate.m
+++ b/matlab/block_mfs_steadystate.m
@@ -1,5 +1,5 @@
 function [r, g1] = block_mfs_steadystate(y, b, y_all, exo, params, M)
-% Wrapper around the static.m file, for use with dynare_solve,
+% Wrapper around the *_static.m file, for use with dynare_solve,
 % when block_mfs option is given to steady.
 
 % Copyright (C) 2009-2012 Dynare Team
diff --git a/matlab/bytecode_steadystate.m b/matlab/bytecode_steadystate.m
index 49c619fe8aea003f88facc53163b6e75dd3c4ab8..4c3e2f46f9e4883d906171c038add32e5e15ada7 100644
--- a/matlab/bytecode_steadystate.m
+++ b/matlab/bytecode_steadystate.m
@@ -1,5 +1,5 @@
 function [r, g1] = bytecode_steadystate(y, exo, params)
-% Wrapper around the static.m file, for use with dynare_solve,
+% Wrapper around the *_static.m file, for use with dynare_solve,
 % when block_mfs option is given to steady.
 
 % Copyright (C) 2009-2011 Dynare Team
diff --git a/matlab/convergence_diagnostics/geweke_chi2_test.m b/matlab/convergence_diagnostics/geweke_chi2_test.m
index 6c543a8ca9095993ac5db6879affd96193485759..8acf673993479e8e99880ba71c0eeca12f48d076 100644
--- a/matlab/convergence_diagnostics/geweke_chi2_test.m
+++ b/matlab/convergence_diagnostics/geweke_chi2_test.m
@@ -64,6 +64,7 @@ for k=1:length(options.convergence.geweke.taper_steps)+1
     sum_of_weights=sum(1./(NSE.^2),2);
     pooled_mean=sum(means./(NSE.^2),2)./sum_of_weights;
     pooled_NSE=1./sqrt(sum_of_weights);
+
     test_stat=diff_Means.^2./sum(NSE.^2,2);
     p = 1-chi2cdf(test_stat,1);
     results_struct.pooled_mean(:,k) = pooled_mean;
diff --git a/matlab/dr_block.m b/matlab/dr_block.m
index a37169a1097781250d40677e9a86a5984a5f2d80..c0209d527fd892a567cdceeec8b765729cd4ab0f 100644
--- a/matlab/dr_block.m
+++ b/matlab/dr_block.m
@@ -685,6 +685,7 @@ for i = 1:Size
         dr.ghu(endo, exo) = ghu;
         data(i).pol.i_ghu = exo;
     end
+
     if (verbose)
         disp('dr.ghx');
         dr.ghx
diff --git a/matlab/endogenous_prior_restrictions.m b/matlab/endogenous_prior_restrictions.m
index b738ab0918b0f04282d855679979b62f08bcedff..63db7b0be73b9a5248b93b3a85eae1fcc205548e 100644
--- a/matlab/endogenous_prior_restrictions.m
+++ b/matlab/endogenous_prior_restrictions.m
@@ -1,5 +1,4 @@
 function [info, info_irf, info_moment, data_irf, data_moment] = endogenous_prior_restrictions(T,R,Model,DynareOptions,DynareResults)
-
 % Check for prior (sign) restrictions on irf's and theoretical moments
 %
 % INPUTS
diff --git a/matlab/flip_plan.m b/matlab/flip_plan.m
index 14b470ab448777df638a40767ba67939b2f52f16..5daf19fc7dc76edebb41eb91b61092df175c320f 100644
--- a/matlab/flip_plan.m
+++ b/matlab/flip_plan.m
@@ -98,4 +98,4 @@ plan.constrained_int_date_{i_ix} = [date(i1) - plan.date(1) + 1; plan.constraine
 plan.constrained_paths_{i_ix} = [value(i1)'; plan.constrained_paths_{i_ix}(i2)];
 else
     error(['impossible case you have two conditional forecasts:\n - one involving ' plan.endo_names{plan.options_cond_fcst_.controlled_varexo(i_ix),:} ' as control and ' plan_exo_names{plan.constrained_vars_(ix_)} ' as constrined endogenous\n - the other involving  ' plan.endo_names{plan.options_cond_fcst_.controlled_varexo(iy),:} ' as control and ' plan_exo_names{plan.constrained_vars_(ix)} ' as constrined endogenous\n']);
-end
\ No newline at end of file
+end
diff --git a/matlab/getH.m b/matlab/getH.m
index 359e061320682a80a0e4c6a7172973c1868962b4..895c9dcc4ae03e3fbe796e96de2f808e4b7d6680 100644
--- a/matlab/getH.m
+++ b/matlab/getH.m
@@ -194,8 +194,8 @@ else
         [U,T] = ordschur(U,T,e1);
         T = T(k+1:end,k+1:end);
         dyssdtheta = -U(:,k+1:end)*(T\U(:,k+1:end)')*df;
-        if nargout>5,
-            for j=1:length(indx),
+        if nargout>5
+            for j=1:length(indx)
                 d2yssdtheta(:,:,j) = -U(:,k+1:end)*(T\U(:,k+1:end)')*d2f(:,:,j);
             end
         end
diff --git a/matlab/gsa/pick.m b/matlab/gsa/pick.m
index fb5ccbfe56c798f177c231e31952d8e94b50786f..ed50f60cfe706953ef418216b16d107377f95929 100644
--- a/matlab/gsa/pick.m
+++ b/matlab/gsa/pick.m
@@ -2,7 +2,7 @@ function pick
 %
 % Copyright (C) 2001-2017 European Commission
 % Copyright (C) 2017 DynareTeam
-%
+    
 % This file is part of GLUEWIN
 % GLUEWIN is a MATLAB code designed for analysing the output
 % of Monte Carlo runs when empirical observations of the model output are available
diff --git a/matlab/gsa/prior_draw_gsa.m b/matlab/gsa/prior_draw_gsa.m
index 1c3a187a8ad8345eb30ab60524c633525741ae5e..d772ae22a88a6ade4b631df1eed5c487883496cf 100644
--- a/matlab/gsa/prior_draw_gsa.m
+++ b/matlab/gsa/prior_draw_gsa.m
@@ -117,4 +117,4 @@ for i = 1:npar
       otherwise
         % Nothing to do here.
     end
-end
\ No newline at end of file
+end
diff --git a/matlab/init_plan.m b/matlab/init_plan.m
index 2759dc9f169aba46cf3327d7dacd4c6f166a66ab..2ae80178479e5f90182aa8dc4692b076fc3518e4 100644
--- a/matlab/init_plan.m
+++ b/matlab/init_plan.m
@@ -46,4 +46,4 @@ plan.shock_perfect_foresight_ = [];
 plan.options_cond_fcst_ = struct();
 plan.options_cond_fcst_.parameter_set = 'calibration';
 plan.options_cond_fcst_.simulation_type = 'deterministic';
-plan.options_cond_fcst_.controlled_varexo = [];
\ No newline at end of file
+plan.options_cond_fcst_.controlled_varexo = [];
diff --git a/matlab/k_order_pert.m b/matlab/k_order_pert.m
index 86763b9b3e0cd640c59f2ceb19cecc27be5546b8..596dc100fdd20d9f662bc3df621e9d5bdc1255bb 100644
--- a/matlab/k_order_pert.m
+++ b/matlab/k_order_pert.m
@@ -207,4 +207,4 @@ for i=1:n1
             m = m + 1;
         end
     end
-end
\ No newline at end of file
+end
diff --git a/matlab/lmmcp/catstruct.m b/matlab/lmmcp/catstruct.m
index 3f1784367baa86f25d64c4fdbefdd874a49240ba..df4a9c05b500bbaac74a356d6aa3eebdd10ad050 100644
--- a/matlab/lmmcp/catstruct.m
+++ b/matlab/lmmcp/catstruct.m
@@ -168,4 +168,4 @@ else
 
     A = cell2struct(VAL, FN);
     A = reshape(A, sz0) ; % reshape into original format
-end
\ No newline at end of file
+end
diff --git a/matlab/ms-sbvar/msstart_setup.m b/matlab/ms-sbvar/msstart_setup.m
index 08d502a683c116bc4af6010d6aacceab14ff0107..b32b92da41a074345282998f7e71e9688a912a9d 100644
--- a/matlab/ms-sbvar/msstart_setup.m
+++ b/matlab/ms-sbvar/msstart_setup.m
@@ -153,4 +153,4 @@ ndraws2=10*ndraws1;        % 2nd part of Monte Carlo draws
                            % end
                            %  nstarts=1         % number of starting points
                            %  imndraws = nstarts*ndraws2;   % total draws for impulse responses or forecasts
-                           %<<<<<<<<<<<<<<<<<<<
\ No newline at end of file
+                           %<<<<<<<<<<<<<<<<<<<
diff --git a/matlab/occbin/map_regime.m b/matlab/occbin/map_regime.m
index 1a8b8e796d6c47b88841096a92a37238dd1572fb..702b011f9fb516114539a7c6530ba44fec2bd378 100755
--- a/matlab/occbin/map_regime.m
+++ b/matlab/occbin/map_regime.m
@@ -21,4 +21,4 @@ end
 
 if (regime(end)==1)
     warning('Increase nperiods');
-endx
\ No newline at end of file
+end
diff --git a/matlab/occbin/solve_no_constraint.m b/matlab/occbin/solve_no_constraint.m
index f86d2c597f7dd72b0cefc577c980f6597e455e4a..db3d457455af0754b2290ef37d404c9658799f7e 100755
--- a/matlab/occbin/solve_no_constraint.m
+++ b/matlab/occbin/solve_no_constraint.m
@@ -46,4 +46,4 @@ wishlist = endog_;
 nwishes = length(wishlist);
 
 
-zdata_ = mkdata(nperiods,decrulea,decruleb,endog_,exog_,wishlist,irfshock,shockssequence);
\ No newline at end of file
+zdata_ = mkdata(nperiods,decrulea,decruleb,endog_,exog_,wishlist,irfshock,shockssequence);
diff --git a/matlab/occbin/solve_two_constraints.m b/matlab/occbin/solve_two_constraints.m
index 06de6d46a8e288bbaf5309837c63616864012e15..33fea1c728b7ae17b019a1ec8310806d78ef3c3f 100755
--- a/matlab/occbin/solve_two_constraints.m
+++ b/matlab/occbin/solve_two_constraints.m
@@ -301,4 +301,4 @@ end
 
 zdatapiecewise_(ishock_+1:end,:)=zdatalinear_(2:nperiods_-ishock_+1,:);
 
-zdatalinear_ = mkdata(nperiods_,decrulea,decruleb,endog_,exog_,wishlist_,irfshock_,shockssequence_,init_orig_);
\ No newline at end of file
+zdatalinear_ = mkdata(nperiods_,decrulea,decruleb,endog_,exog_,wishlist_,irfshock_,shockssequence_,init_orig_);
diff --git a/matlab/occbin/tokenize.m b/matlab/occbin/tokenize.m
index 1789d095a5a7539d72647891c193b46eedc402ce..2cd8fb41031491d0a9d812a6d42e55fb2f02c07f 100755
--- a/matlab/occbin/tokenize.m
+++ b/matlab/occbin/tokenize.m
@@ -51,4 +51,4 @@ else
         end
     end
 
-end
\ No newline at end of file
+end
diff --git a/matlab/perfect-foresight-models/perfect_foresight_mcp_problem.m b/matlab/perfect-foresight-models/perfect_foresight_mcp_problem.m
index 8679a262724e4326aad2f4fc8214b7c9152e8e8e..000fff50f370fe9c7aa68e2f09f20e445cd07cd5 100644
--- a/matlab/perfect-foresight-models/perfect_foresight_mcp_problem.m
+++ b/matlab/perfect-foresight-models/perfect_foresight_mcp_problem.m
@@ -13,7 +13,7 @@ function [residuals,JJacobian] = perfect_foresight_mcp_problem(y, dynamic_functi
 %
 % INPUTS
 %   y                   [double] N*1 array, terminal conditions for the endogenous variables
-%   dynamic_function    [handle] function handle to the dynamic routine
+%   dynamic_function    [handle] function handle to _dynamic-file
 %   Y0                  [double] N*1 array, initial conditions for the endogenous variables
 %   YT                  [double] N*1 array, terminal conditions for the endogenous variables
 %   exo_simul           [double] nperiods*M_.exo_nbr matrix of exogenous variables (in declaration order)
@@ -24,7 +24,7 @@ function [residuals,JJacobian] = perfect_foresight_mcp_problem(y, dynamic_functi
 %   T                   [scalar] number of simulation periods
 %   ny                  [scalar] number of endogenous variables
 %   i_cols              [double] indices of variables appearing in M.lead_lag_incidence
-%                                and that need to be passed to the dynamic routine
+%                                and that need to be passed to _dynamic-file
 %   i_cols_J1           [double] indices of contemporaneous and forward looking variables
 %                                appearing in M.lead_lag_incidence
 %   i_cols_1            [double] indices of contemporaneous and forward looking variables in
diff --git a/matlab/perfect-foresight-models/perfect_foresight_problem.m b/matlab/perfect-foresight-models/perfect_foresight_problem.m
index 00f78203847518bf2bf08f5eb82b742825f328e8..c6c6f77a71476242387e85b039612d2cf4098f4f 100644
--- a/matlab/perfect-foresight-models/perfect_foresight_problem.m
+++ b/matlab/perfect-foresight-models/perfect_foresight_problem.m
@@ -12,7 +12,7 @@ function [residuals,JJacobian] = perfect_foresight_problem(y, dynamic_function,
 %
 % INPUTS
 %   y                   [double] N*1 array, terminal conditions for the endogenous variables
-%   dynamic_function    [handle] function handle to the dynamic routine
+%   dynamic_function    [handle] function handle to _dynamic-file
 %   Y0                  [double] N*1 array, initial conditions for the endogenous variables
 %   YT                  [double] N*1 array, terminal conditions for the endogenous variables
 %   exo_simul           [double] nperiods*M_.exo_nbr matrix of exogenous variables (in declaration order)
@@ -23,7 +23,7 @@ function [residuals,JJacobian] = perfect_foresight_problem(y, dynamic_function,
 %   T                   [scalar] number of simulation periods
 %   ny                  [scalar] number of endogenous variables
 %   i_cols              [double] indices of variables appearing in M.lead_lag_incidence
-%                                and that need to be passed to the dynamic routine
+%                                and that need to be passed to _dynamic-file
 %   i_cols_J1           [double] indices of contemporaneous and forward looking variables
 %                                appearing in M.lead_lag_incidence
 %   i_cols_1            [double] indices of contemporaneous and forward looking variables in
diff --git a/matlab/perfect-foresight-models/private/initialize_stacked_problem.m b/matlab/perfect-foresight-models/private/initialize_stacked_problem.m
index 4ef51c3ba993d1d50cbdf9c16f3044dbaca021d1..f019805dc907a030375dc6f81c09edd8dba0f259 100644
--- a/matlab/perfect-foresight-models/private/initialize_stacked_problem.m
+++ b/matlab/perfect-foresight-models/private/initialize_stacked_problem.m
@@ -15,7 +15,7 @@ function [options, y0, yT, z, i_cols, i_cols_J1, i_cols_T, i_cols_j, i_cols_1, .
 % - yT                  [double] N*1 array, terminal conditions for the endogenous variables
 % - z                   [double] T*M array, paths for the exogenous variables.
 % - i_cols              [double] indices of variables appearing in M.lead_lag_incidence
-%                                and that need to be passed to the dynamic routine
+%                                and that need to be passed to _dynamic-file
 % - i_cols_J1           [double] indices of contemporaneous and forward looking variables
 %                                appearing in M.lead_lag_incidence
 % - i_cols_T            [double] columns of dynamic Jacobian related to
@@ -25,7 +25,7 @@ function [options, y0, yT, z, i_cols, i_cols_J1, i_cols_T, i_cols_j, i_cols_1, .
 %                                in dynamic Jacobian (relevant in intermediate periods)
 % - i_cols_1            [double] indices of contemporaneous and forward looking variables in
 %                                M.lead_lag_incidence in dynamic Jacobian (relevant in first period)
-% - dynamicmodel        [handle] function handle to the dynamic routine
+% - dynamicmodel        [handle] function handle to _dynamic-file
 
 % Copyright (C) 2015-2017 Dynare Team
 %
diff --git a/matlab/perfect-foresight-models/sim1.m b/matlab/perfect-foresight-models/sim1.m
index 243f076fc8a34728ad01b5face6cc4e0137ac0d6..f43d6df0d07144f4d4483e7398d0a13486f886d6 100644
--- a/matlab/perfect-foresight-models/sim1.m
+++ b/matlab/perfect-foresight-models/sim1.m
@@ -330,4 +330,4 @@ if any(~isreal(dyy))
     disp('Last iteration provided complex number for the following variables:')
     fprintf('%s, ', endo_names{:}),
     fprintf('\n'),
-end
\ No newline at end of file
+end
diff --git a/matlab/rotated_slice_sampler.m b/matlab/rotated_slice_sampler.m
index 79f4b267fbcef9d113a3c4c6c0f187398cb66c34..6dbfded0f461b2492fc4e64e5ecb32bee4f3014e 100644
--- a/matlab/rotated_slice_sampler.m
+++ b/matlab/rotated_slice_sampler.m
@@ -180,4 +180,4 @@ end
 %         fxsim=[];
 %     end
 % end
-end
\ No newline at end of file
+end
diff --git a/matlab/score.m b/matlab/score.m
index 89d4b512b98ebaaa5293b14c9d5f0bb5f46b44ca..06c01cc0d7dcd36ad525def1d6cff869a7792832 100644
--- a/matlab/score.m
+++ b/matlab/score.m
@@ -120,4 +120,4 @@ for ii = 1:k
     DP1(:,:,ii) = DT(:,:,ii)*tmp*T' + T*Dtmp*T' + T*tmp*DT(:,:,ii)' + DOm(:,:,ii);
 end
 
-% end of computeDKalman
\ No newline at end of file
+% end of computeDKalman
diff --git a/matlab/slice_sampler.m b/matlab/slice_sampler.m
index 84ee4a6dede97fd50bf051ebb365dcd189095560..8aa18fb1d4bf727d6bcd80d3b9e118ae6bbffb6d 100644
--- a/matlab/slice_sampler.m
+++ b/matlab/slice_sampler.m
@@ -66,7 +66,7 @@ for it=1:npar
 
 
     % -------------------------------------------------------
-   % 1. DRAW Z = ln[f(X0)] - EXP(1) where EXP(1)=-ln(U(0,1))
+    % 1. DRAW Z = ln[f(X0)] - EXP(1) where EXP(1)=-ln(U(0,1))
     %    THIS DEFINES THE SLICE S={x: z < ln(f(x))}
     % -------------------------------------------------------
     fxold = -feval(objective_function,theta,varargin{:});
diff --git a/matlab/utilities/dataset/quarterly2annual.m b/matlab/utilities/dataset/quarterly2annual.m
index f5d8bd7c8f0d9de20bfd0e5f75b9b2f56a3dcd9e..13c6bafd9432312d05071cb2875b5c17c21a15b3 100644
--- a/matlab/utilities/dataset/quarterly2annual.m
+++ b/matlab/utilities/dataset/quarterly2annual.m
@@ -146,4 +146,4 @@ if islog
     ya=log(ya+yass);
     yass=log(yass);
     ya=ya-yass;
-end
\ No newline at end of file
+end
diff --git a/mex/sources/bytecode/testing/bytecode_debug.m b/mex/sources/bytecode/testing/bytecode_debug.m
index e13535841b866ef58b504ef9325c92eaafa05799..7f2e8f9e597123365e5ba32d8e4b8dedc5890b05 100644
--- a/mex/sources/bytecode/testing/bytecode_debug.m
+++ b/mex/sources/bytecode/testing/bytecode_debug.m
@@ -4,18 +4,18 @@ fid = fopen([M_.fname '_options.txt'],'wt');
 nfields = fieldnames(options_);
 fprintf(fid, '%d %d %d\n',size(nfields,1), size(options_,1), size(options_,2));
 for i=1:size(nfields, 1)
-    disp(nfields(i));
-    if iscell(nfields(i))
-        AA = cell2mat(nfields(i));
-    else
-        AA = nfields(i);
-    end;
-    if iscell(AA)
-        AA = cell2mat(AA);
-    end;
-    fprintf(fid, '%s\n', AA);
-    Z = getfield(options_, AA);
-    print_object(fid, Z);
+  disp(nfields(i));
+  if iscell(nfields(i))
+    AA = cell2mat(nfields(i));
+  else
+    AA = nfields(i);
+  end;
+  if iscell(AA)
+    AA = cell2mat(AA);
+  end;
+  fprintf(fid, '%s\n', AA);
+  Z = getfield(options_, AA);
+  print_object(fid, Z);
 end;
 fclose(fid);
 
@@ -23,14 +23,14 @@ fid = fopen([M_.fname '_M.txt'],'wt');
 nfields = fields(M_);
 fprintf(fid, '%d %d %d\n',size(nfields,1), size(M_,1), size(M_,2));
 for i=1:size(nfields, 1)
-    disp(nfields(i));
-    if iscell(nfields(i))
-        AA = cell2mat(nfields(i));
-    else
-        AA = nfields(i);
-    end;
-    fprintf(fid, '%s\n', AA);
-    print_object(fid, getfield(M_, AA));
+  disp(nfields(i));
+  if iscell(nfields(i))
+    AA = cell2mat(nfields(i));
+  else
+    AA = nfields(i);
+  end;
+  fprintf(fid, '%s\n', AA);
+  print_object(fid, getfield(M_, AA));
 end;
 fclose(fid);
 
@@ -39,65 +39,65 @@ fid = fopen([M_.fname '_oo.txt'],'wt');
 nfields = fields(oo_);
 fprintf(fid, '%d %d %d\n',size(nfields,1), size(oo_,1), size(oo_,2));
 for i=1:size(nfields, 1)
-    disp(nfields(i));
-    if iscell(nfields(i))
-        AA = cell2mat(nfields(i));
-    else
-        AA = nfields(i);
-    end;
-    if iscell(AA)
-        AA = cell2mat(AA);
-    end;
-    fprintf(fid, '%s\n', AA);
-    print_object(fid, getfield(oo_, AA));
+  disp(nfields(i));
+  if iscell(nfields(i))
+    AA = cell2mat(nfields(i));
+  else
+    AA = nfields(i);
+  end;
+  if iscell(AA)
+    AA = cell2mat(AA);
+  end;
+  fprintf(fid, '%s\n', AA);
+  print_object(fid, getfield(oo_, AA));
 end;
 fclose(fid);
 
 function print_object(fid, object_arg)
-if iscell(object_arg)
-    object = cell2mat(object_arg);
-else
-    object = object_arg;
-end;
-if isa(object,'float') == 1
-    fprintf(fid, '%d ', 0);
-    fprintf(fid, '%d %d\n',size(object,1), size(object,2));
-    fprintf(fid, '%f\n', object);
-    %for i=1:size(object, 2) 
-    %for j=1:size(object, 1)
-    %fprintf(fid, '%f\n', object(i,j));
-    %end;
-    %end;
-elseif isa(object,'char') == 1
-    fprintf(fid, '%d ', 3);
-    fprintf(fid, '%d %d\n',size(object,1), size(object,2));
-    %object
-    for i=1:size(object, 1)
-        %for i=1:size(object, 2)
-        fprintf(fid, '%s ', object(i,:));
-        %end;
-        %fprintf(fid, '\n');
-    end;
-    fprintf(fid, '\n');
-elseif isa(object,'struct') == 1
-    fprintf(fid, '%d ', 5);
-    nfields = fields(object);
-    fprintf(fid, '%d %d %d\n',size(nfields,1), size(object,1), size(object,2));
-    for j=1:size(object, 1) * size(object, 2)
-        nfields = fields(object(j));
-        for i=1:size(nfields, 1)
-            if iscell(nfields(i))
-                AA = cell2mat(nfields(i));
-            else
-                AA = nfields(i);
-            end;
-            fprintf(fid, '%s\n', AA);
-            print_object(fid, getfield(object, AA));
-        end;
-    end;
-else
-    disp(['type ' object  'note handle']);
-end;
+ if iscell(object_arg)
+   object = cell2mat(object_arg);
+ else
+   object = object_arg;
+ end;
+ if isa(object,'float') == 1
+   fprintf(fid, '%d ', 0);
+   fprintf(fid, '%d %d\n',size(object,1), size(object,2));
+   fprintf(fid, '%f\n', object);
+   %for i=1:size(object, 2) 
+     %for j=1:size(object, 1)
+       %fprintf(fid, '%f\n', object(i,j));
+     %end;
+   %end;
+ elseif isa(object,'char') == 1
+   fprintf(fid, '%d ', 3);
+   fprintf(fid, '%d %d\n',size(object,1), size(object,2));
+   %object
+   for i=1:size(object, 1)
+     %for i=1:size(object, 2)
+       fprintf(fid, '%s ', object(i,:));
+     %end;
+     %fprintf(fid, '\n');
+   end;
+   fprintf(fid, '\n');
+ elseif isa(object,'struct') == 1
+   fprintf(fid, '%d ', 5);
+   nfields = fields(object);
+   fprintf(fid, '%d %d %d\n',size(nfields,1), size(object,1), size(object,2));
+   for j=1:size(object, 1) * size(object, 2)
+     nfields = fields(object(j));
+     for i=1:size(nfields, 1)
+       if iscell(nfields(i))
+         AA = cell2mat(nfields(i));
+       else
+         AA = nfields(i);
+       end;
+       fprintf(fid, '%s\n', AA);
+       print_object(fid, getfield(object, AA));
+     end;
+   end;
+ else
+   disp(['type ' object  'note handle']);
+ end;
 
 
 
diff --git a/mex/sources/bytecode/testing/simulate_debug.m b/mex/sources/bytecode/testing/simulate_debug.m
index 4c3e818f143216cde0d9c797b6e1ef9fb8f48c49..9384eb7fe9daf8ea26986203162fec8cf1212fb0 100644
--- a/mex/sources/bytecode/testing/simulate_debug.m
+++ b/mex/sources/bytecode/testing/simulate_debug.m
@@ -2,7 +2,7 @@ function simulate_debug(steady_state)
 global M_ oo_ options_;
 fid = fopen([M_.fname '_options.txt'],'wt');
 if steady_state~=1
-    fprintf(fid,'%d\n',options_.periods);
+  fprintf(fid,'%d\n',options_.periods);
 end;
 fprintf(fid,'%d\n',options_.simul.maxit);
 fprintf(fid,'%6.20f\n',options_.slowc);
@@ -17,11 +17,11 @@ fprintf(fid,'%d\n',M_.maximum_lead);
 fprintf(fid,'%d\n',M_.maximum_endo_lag);
 fprintf(fid,'%d\n',M_.param_nbr);
 if steady_state==1
-    fprintf(fid,'%d\n',size(oo_.exo_steady_state, 1));
-    fprintf(fid,'%d\n',size(oo_.exo_steady_state, 2));
+  fprintf(fid,'%d\n',size(oo_.exo_steady_state, 1));
+  fprintf(fid,'%d\n',size(oo_.exo_steady_state, 2));
 else
-    fprintf(fid,'%d\n',size(oo_.exo_simul, 1));
-    fprintf(fid,'%d\n',size(oo_.exo_simul, 2));
+  fprintf(fid,'%d\n',size(oo_.exo_simul, 1));
+  fprintf(fid,'%d\n',size(oo_.exo_simul, 2));
 end;
 fprintf(fid,'%d\n',M_.endo_nbr);
 if steady_state==1
@@ -41,11 +41,11 @@ fprintf(fid,'%6.20f\n',M_.params);
 fclose(fid);
 fid = fopen([M_.fname '_oo.txt'],'wt');
 if steady_state==1
-    fprintf(fid,'%6.20f\n',oo_.steady_state);
-    fprintf(fid,'%6.20f\n',oo_.exo_steady_state);
+  fprintf(fid,'%6.20f\n',oo_.steady_state);
+  fprintf(fid,'%6.20f\n',oo_.exo_steady_state);
 else
-    fprintf(fid,'%6.20f\n',oo_.endo_simul);
-    fprintf(fid,'%6.20f\n',oo_.exo_simul);
+  fprintf(fid,'%6.20f\n',oo_.endo_simul);
+  fprintf(fid,'%6.20f\n',oo_.exo_simul);
 end;
 fprintf(fid,'%6.20f\n',oo_.steady_state);
 fprintf(fid,'%6.20f\n',oo_.exo_steady_state);
diff --git a/mex/sources/k_order_perturbation/tests/first_order.m b/mex/sources/k_order_perturbation/tests/first_order.m
index a282ae3c3b50d9516d41e34ca44f8ba0bb61c603..f46631c220260266dc87fcb98ad22cf34c9c872c 100644
--- a/mex/sources/k_order_perturbation/tests/first_order.m
+++ b/mex/sources/k_order_perturbation/tests/first_order.m
@@ -51,20 +51,20 @@ off=off+ nu;
 n= ypart.ny+ypart.nboth;
 %TwoDMatrix 
 matD=zeros(n,n);
-%       matD.place(fypzero,0,0);
+%	matD.place(fypzero,0,0);
 matD(1:n-ypart.nboth,1:ypart.npred)= fypzero;
-%       matD.place(fybzero,0,ypart.npred);
+%	matD.place(fybzero,0,ypart.npred);
 matD(1:n-ypart.nboth,ypart.npred+1:ypart.npred+ypart.nboth)=fybzero;
-%       matD.place(fyplus,0,ypart.nys()+ypart.nstat);
+%	matD.place(fyplus,0,ypart.nys()+ypart.nstat);
 matD(1:n-ypart.nboth,ypart.nys+ypart.nstat+1:ypart.nys+ypart.nstat+ypart.nyss)=fyplus;
 for i=1:ypart.nboth
     matD(ypart.ny()+i,ypart.npred+i)= 1.0;
 end
 
 matE=[fymins, fyszero, zeros(n-ypart.nboth,ypart.nboth), fyfzero; zeros(ypart.nboth,n)];
-%       matE.place(fymins;
-%       matE.place(fyszero,0,ypart.nys());
-%       matE.place(fyfzero,0,ypart.nys()+ypart.nstat+ypart.nboth);
+%	matE.place(fymins;
+%	matE.place(fyszero,0,ypart.nys());
+%	matE.place(fyfzero,0,ypart.nys()+ypart.nstat+ypart.nboth);
 
 for i= 1:ypart.nboth
     matE(ypart.ny()+i,ypart.nys()+ypart.nstat+i)= -1.0;
@@ -72,39 +72,39 @@ end
 matE=-matE; %matE.mult(-1.0);
 
 %    vsl=zeros(n,n);
-%       vsr=zeros(n,n);
-%       lwork= 100*n+16;
-%       work=zeros(1,lwork);
-%       bwork=zeros(1,n);
+%	vsr=zeros(n,n);
+%	lwork= 100*n+16;
+%	work=zeros(1,lwork);
+%	bwork=zeros(1,n);
 %int info;
 
-%       LAPACK_dgges("N","V","S",order_eigs,&n,matE.getData().base(),&n,
-%               matD.getData().base(),&n,&sdim,alphar.base(),alphai.base(),
-%               beta.base(),vsl.getData().base(),&n,vsr.getData().base(),&n,
-%               work.base(),&lwork,&(bwork[0]),&info);
+%    	LAPACK_dgges("N","V","S",order_eigs,&n,matE.getData().base(),&n,
+%		matD.getData().base(),&n,&sdim,alphar.base(),alphai.base(),
+%		beta.base(),vsl.getData().base(),&n,vsr.getData().base(),&n,
+%		work.base(),&lwork,&(bwork[0]),&info);
 
 [matE1,matD1,vsr,sdim,dr.eigval,info] = mjdgges(matE,matD,1);
 
 bk_cond= (sdim==ypart.nys);
 
-%       ConstGeneralMatrix z11(vsr,0,0,ypart.nys(),ypart.nys());
+%  	ConstGeneralMatrix z11(vsr,0,0,ypart.nys(),ypart.nys());
 z11=vsr(1:ypart.nys,1:ypart.nys);
-%       ConstGeneralMatrix z12(vsr,0,ypart.nys(),ypart.nys(),n-ypart.nys());
+%	ConstGeneralMatrix z12(vsr,0,ypart.nys(),ypart.nys(),n-ypart.nys());
 z12=vsr(1:ypart.nys(),ypart.nys+1:end);%, n-ypart.nys);
-                                       %        ConstGeneralMatrix z21(vsr,ypart.nys(),0,n-ypart.nys(),ypart.nys());
+                                       %	ConstGeneralMatrix z21(vsr,ypart.nys(),0,n-ypart.nys(),ypart.nys());
 z21=vsr(ypart.nys+1:end,1:ypart.nys);
-%       ConstGeneralMatrix z22(vsr,ypart.nys(),ypart.nys(),n-ypart.nys(),n-ypart.nys());
+%	ConstGeneralMatrix z22(vsr,ypart.nys(),ypart.nys(),n-ypart.nys(),n-ypart.nys());
 z22=vsr(ypart.nys+1:end,ypart.nys+1:end);
 
-%       GeneralMatrix sfder(z12,"transpose");
+% 	GeneralMatrix sfder(z12,"transpose");
 sfder=z12';%,"transpose");
-           %    z22.multInvLeftTrans(sfder);
+           %	z22.multInvLeftTrans(sfder);
 sfder=z22'\sfder;
 sfder=-sfder;% .mult(-1);
 
 %s11(matE,0,0,ypart.nys(),ypart.nys());
 s11=matE1(1:ypart.nys,1:ypart.nys);
-%        t11=(matD1,0,0,ypart.nys(),ypart.nys());
+%	 t11=(matD1,0,0,ypart.nys(),ypart.nys());
 t11=matD1(1:ypart.nys,1:ypart.nys);
 dumm=(s11');%,"transpose");
             %z11.multInvLeftTrans(dumm);
@@ -115,15 +115,15 @@ preder=t11\preder;
 %preder.multLeft(z11);
 preder= z11*preder;
 
-%       gy.place(preder,ypart.nstat,0);
-%       gy=(zeros(ypart.nstat,size(preder,2)) ;preder);
-%        sder(sfder,0,0,ypart.nstat,ypart.nys());
+%	gy.place(preder,ypart.nstat,0);
+%	gy=(zeros(ypart.nstat,size(preder,2)) ;preder);
+%	 sder(sfder,0,0,ypart.nstat,ypart.nys());
 sder=sfder(1:ypart.nstat,1:ypart.nys);
-%       gy.place(sder,0,0);
-%       gy(1:ypart.nstat, 1:ypart.nys)=sder;
+%	gy.place(sder,0,0);
+%	gy(1:ypart.nstat, 1:ypart.nys)=sder;
 %    gy=[sder;preder];
-%        fder(sfder,ypart.nstat+ypart.nboth,0,ypart.nforw,ypart.nys());
+%	 fder(sfder,ypart.nstat+ypart.nboth,0,ypart.nforw,ypart.nys());
 fder=sfder(ypart.nstat+ypart.nboth+1:ypart.nstat+ypart.nboth+ypart.nforw,1:ypart.nys);
-%       gy.place(fder,ypart.nstat+ypart.nys(),0);
-%       gy(ypart.nstat+ypart.nys,1)=fder;
+%	gy.place(fder,ypart.nstat+ypart.nys(),0);
+%	gy(ypart.nstat+ypart.nys,1)=fder;
 gy=[sder;preder;fder];
diff --git a/tests/AIM/data_ca1.m b/tests/AIM/data_ca1.m
index ca003056bded971e9bf00232802e453a096e9cdf..c28fae1a2800e83eda0e6343196e8aeafad2935f 100644
--- a/tests/AIM/data_ca1.m
+++ b/tests/AIM/data_ca1.m
@@ -1,98 +1,98 @@
 data = [0.928467646476  11.8716889412   20  0.418037507392  0.227382377518 ...
-        -0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
-        -0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
-        -0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
-        -0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
-        -0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
-        -0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
-        1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
-        2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
-        1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
-        1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
-        1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
-        1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
-        0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
-        1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
-        1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
-        0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
-        1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
-        1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
-        -0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
-        0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
-        0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
-        -0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
-        2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
-        1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
-        1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
-        1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
-        1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
-        1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
-        0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
-        0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
-        1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
-        0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
-        0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
-        0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
-        0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
-        -0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
-        -0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
-        -0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
-        -1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
-        0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
-        0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
-        0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
-        -0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
-        0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
-        0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
-        0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
-        0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
-        0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
-        0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
-        0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
-        1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
-        1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
-        1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
-        0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
-        0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
-        -0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
-        0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
-        0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
-        0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
-        0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
-        1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
-        0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
-        0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
-        1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
-        1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
-        0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
-        1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
-        0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
-        1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
-        1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
-        1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
-        1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
-        1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
-        1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
-        1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
-        0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
-        1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
-        0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
-        0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
-        0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
-        -0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
-        0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
-        1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
-        1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
-        0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
-       ]; 
-
+-0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
+-0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
+-0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
+-0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
+-0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
+-0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
+1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
+2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
+1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
+1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
+1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
+1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
+0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
+1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
+1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
+0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
+1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
+1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
+-0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
+0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
+0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
+-0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
+2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
+1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
+1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
+1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
+1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
+1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
+0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
+0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
+1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
+0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
+0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
+0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
+0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
+-0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
+-0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
+-0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
+-1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
+0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
+0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
+0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
+-0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
+0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
+0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
+0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
+0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
+0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
+0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
+0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
+1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
+1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
+1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
+0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
+0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
+-0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
+0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
+0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
+0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
+0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
+1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
+0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
+0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
+1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
+1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
+0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
+1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
+0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
+1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
+1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
+1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
+1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
+1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
+1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
+1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
+0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
+1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
+0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
+0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
+0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
+-0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
+0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
+1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
+1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
+0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
+]; 
+ 
 data = reshape(data,5,86)'; 
 y_obs = data(:,1); 
 pie_obs = data(:,2); 
 R_obs = data(:,3); 
 de = data(:,4); 
 dq = data(:,5); 
-
+ 
 %Country: Canada 
 %Sample Range: 1981:2 to 2002:3 
 %Observations: 86 
diff --git a/tests/AIM/fsdat.m b/tests/AIM/fsdat.m
index ef1279c0b39764c26ded95083e89500f17aeb45d..aba209b908a794044e570302331b8efe9eaac673 100644
--- a/tests/AIM/fsdat.m
+++ b/tests/AIM/fsdat.m
@@ -1,198 +1,198 @@
 data_q = [
-    18.02 1474.5 150.2
-    17.94 1538.2 150.9
-    18.01 1584.5 151.4
-    18.42 1644.1 152
-    18.73 1678.6 152.7
-    19.46 1693.1 153.3
-    19.55 1724   153.9
-    19.56 1758.2 154.7
-    19.79 1760.6 155.4
-    19.77 1779.2 156
-    19.82 1778.8 156.6
-    20.03 1790.9 157.3
-    20.12 1846   158
-    20.1  1882.6 158.6
-    20.14 1897.3 159.2
-    20.22 1887.4 160
-    20.27 1858.2 160.7
-    20.34 1849.9 161.4
-    20.39 1848.5 162
-    20.42 1868.9 162.8
-    20.47 1905.6 163.6
-    20.56 1959.6 164.3
-    20.62 1994.4 164.9
-    20.78 2020.1 165.7
-    21    2030.5 166.5
-    21.2  2023.6 167.2
-    21.33 2037.7 167.9
-    21.62 2033.4 168.7
-    21.71 2066.2 169.5
-    22.01 2077.5 170.2
-    22.15 2071.9 170.9
-    22.27 2094   171.7
-    22.29 2070.8 172.5
-    22.56 2012.6 173.1
-    22.64 2024.7 173.8
-    22.77 2072.3 174.5
-    22.88 2120.6 175.3
-    22.92 2165   176.045
-    22.91 2223.3  176.727
-    22.94 2221.4  177.481
-    23.03 2230.95 178.268
-    23.13 2279.22 179.694
-    23.22 2265.48 180.335
-    23.32 2268.29 181.094
-    23.4  2238.57 181.915
-    23.45 2251.68 182.634
-    23.51 2292.02 183.337
-    23.56 2332.61 184.103
-    23.63 2381.01 184.894
-    23.75 2422.59 185.553
-    23.81 2448.01 186.203
-    23.87 2471.86 186.926
-    23.94 2476.67 187.68
-    24    2508.7  188.299
-    24.07 2538.05 188.906
-    24.12 2586.26 189.631
-    24.29 2604.62 190.362
-    24.35 2666.69 190.954
-    24.41 2697.54 191.56
-    24.52 2729.63 192.256
-    24.64 2739.75 192.938
-    24.77 2808.88 193.467
-    24.88 2846.34 193.994
-    25.01 2898.79 194.647
-    25.17 2970.48 195.279
-    25.32 3042.35 195.763
-    25.53 3055.53 196.277
-    25.79 3076.51 196.877
-    26.02 3102.36 197.481
-    26.14 3127.15 197.967
-    26.31 3129.53 198.455
-    26.6  3154.19 199.012
-    26.9  3177.98 199.572
-    27.21 3236.18 199.995
-    27.49 3292.07 200.452
-    27.75 3316.11 200.997
-    28.12 3331.22 201.538
-    28.39 3381.86 201.955
-    28.73 3390.23 202.419
-    29.14 3409.65 202.986
-    29.51 3392.6  203.584
-    29.94 3386.49 204.086
-    30.36 3391.61 204.721
-    30.61 3422.95 205.419
-    31.02 3389.36 206.13
-    31.5  3481.4  206.763
-    31.93 3500.95 207.362
-    32.27 3523.8  208
-    32.54 3533.79 208.642
-    33.02 3604.73 209.142
-    33.2  3687.9  209.637
-    33.49 3726.18 210.181
-    33.95 3790.44 210.737
-    34.36 3892.22 211.192
-    34.94 3919.01 211.663
-    35.61 3907.08 212.191
-    36.29 3947.11 212.708
-    37.01 3908.15 213.144
-    37.79 3922.57 213.602
-    38.96 3879.98 214.147
-    40.13 3854.13 214.7
-    41.05 3800.93 215.135
-    41.66 3835.21 215.652
-    42.41 3907.02 216.289
-    43.19 3952.48 216.848
-    43.69 4044.59 217.314
-    44.15 4072.19 217.776
-    44.77 4088.49 218.338
-    45.57 4126.39 218.917
-    46.32 4176.28 219.427
-    47.07 4260.08 219.956
-    47.66 4329.46 220.573
-    48.63 4328.33 221.201
-    49.42 4345.51 221.719
-    50.41 4510.73 222.281
-    51.27 4552.14 222.933
-    52.35 4603.65 223.583
-    53.51 4605.65 224.152
-    54.65 4615.64 224.737
-    55.82 4644.93 225.418
-    56.92 4656.23 226.117
-    58.18 4678.96 226.754
-    59.55 4566.62 227.389
-    61.01 4562.25 228.07
-    62.59 4651.86 228.689
-    64.15 4739.16 229.155
-    65.37 4696.82 229.674
-    66.65 4753.02 230.301
-    67.87 4693.76 230.903
-    68.86 4615.89 231.395
-    69.72 4634.88 231.906
-    70.66 4612.08 232.498
-    71.44 4618.26 233.074
-    72.08 4662.97 233.546
-    72.83 4763.57 234.028
-    73.48 4849    234.603
-    74.19 4939.23 235.153
-    75.02 5053.56 235.605
-    75.58 5132.87 236.082
-    76.25 5170.34 236.657
-    76.81 5203.68 237.232
-    77.63 5257.26 237.673
-    78.25 5283.73 238.176
-    78.76 5359.6  238.789
-    79.45 5393.57 239.387
-    79.81 5460.83 239.861
-    80.22 5466.95 240.368
-    80.84 5496.29 240.962
-    81.45 5526.77 241.539
-    82.09 5561.8  242.009
-    82.68 5618    242.52
-    83.33 5667.39 243.12
-    84.09 5750.57 243.721
-    84.67 5785.29 244.208
-    85.56 5844.05 244.716
-    86.66 5878.7  245.354
-    87.44 5952.83 245.966
-    88.45 6010.96 246.46
-    89.39 6055.61 247.017
-    90.13 6087.96 247.698
-    90.88 6093.51 248.374
-    92    6152.59 248.928
-    93.18 6171.57 249.564
-    94.14 6142.1  250.299
-    95.11 6078.96 251.031
-    96.27 6047.49 251.65
-    97    6074.66 252.295
-    97.7  6090.14 253.033
-    98.31 6105.25 253.743
-    99.13 6175.69 254.338
-    99.79 6214.22 255.032
-    100.17 6260.74 255.815
-    100.88 6327.12 256.543
-    101.84 6327.93 257.151
-    102.35 6359.9  257.785
-    102.83 6393.5  258.516
-    103.51 6476.86 259.191
-    104.13 6524.5  259.738
-    104.71 6600.31 260.351
-    105.39 6629.47 261.04
-    106.09 6688.61 261.692
-    106.75 6717.46 262.236
-    107.24 6724.2  262.847
-    107.75 6779.53 263.527
-    108.29 6825.8  264.169
-    108.91 6882    264.681
-    109.24 6983.91 265.258
-    109.74 7020    265.887
-    110.23 7093.12 266.491
-    111    7166.68 266.987
-    111.43 7236.5  267.545
-    111.76 7311.24 268.171
-    112.08 7364.63 268.815
-         ];
+18.02 1474.5 150.2
+17.94 1538.2 150.9
+18.01 1584.5 151.4
+18.42 1644.1 152
+18.73 1678.6 152.7
+19.46 1693.1 153.3
+19.55 1724   153.9
+19.56 1758.2 154.7
+19.79 1760.6 155.4
+19.77 1779.2 156
+19.82 1778.8 156.6
+20.03 1790.9 157.3
+20.12 1846   158
+20.1  1882.6 158.6
+20.14 1897.3 159.2
+20.22 1887.4 160
+20.27 1858.2 160.7
+20.34 1849.9 161.4
+20.39 1848.5 162
+20.42 1868.9 162.8
+20.47 1905.6 163.6
+20.56 1959.6 164.3
+20.62 1994.4 164.9
+20.78 2020.1 165.7
+21    2030.5 166.5
+21.2  2023.6 167.2
+21.33 2037.7 167.9
+21.62 2033.4 168.7
+21.71 2066.2 169.5
+22.01 2077.5 170.2
+22.15 2071.9 170.9
+22.27 2094   171.7
+22.29 2070.8 172.5
+22.56 2012.6 173.1
+22.64 2024.7 173.8
+22.77 2072.3 174.5
+22.88 2120.6 175.3
+22.92 2165   176.045
+22.91 2223.3  176.727
+22.94 2221.4  177.481
+23.03 2230.95 178.268
+23.13 2279.22 179.694
+23.22 2265.48 180.335
+23.32 2268.29 181.094
+23.4  2238.57 181.915
+23.45 2251.68 182.634
+23.51 2292.02 183.337
+23.56 2332.61 184.103
+23.63 2381.01 184.894
+23.75 2422.59 185.553
+23.81 2448.01 186.203
+23.87 2471.86 186.926
+23.94 2476.67 187.68
+24    2508.7  188.299
+24.07 2538.05 188.906
+24.12 2586.26 189.631
+24.29 2604.62 190.362
+24.35 2666.69 190.954
+24.41 2697.54 191.56
+24.52 2729.63 192.256
+24.64 2739.75 192.938
+24.77 2808.88 193.467
+24.88 2846.34 193.994
+25.01 2898.79 194.647
+25.17 2970.48 195.279
+25.32 3042.35 195.763
+25.53 3055.53 196.277
+25.79 3076.51 196.877
+26.02 3102.36 197.481
+26.14 3127.15 197.967
+26.31 3129.53 198.455
+26.6  3154.19 199.012
+26.9  3177.98 199.572
+27.21 3236.18 199.995
+27.49 3292.07 200.452
+27.75 3316.11 200.997
+28.12 3331.22 201.538
+28.39 3381.86 201.955
+28.73 3390.23 202.419
+29.14 3409.65 202.986
+29.51 3392.6  203.584
+29.94 3386.49 204.086
+30.36 3391.61 204.721
+30.61 3422.95 205.419
+31.02 3389.36 206.13
+31.5  3481.4  206.763
+31.93 3500.95 207.362
+32.27 3523.8  208
+32.54 3533.79 208.642
+33.02 3604.73 209.142
+33.2  3687.9  209.637
+33.49 3726.18 210.181
+33.95 3790.44 210.737
+34.36 3892.22 211.192
+34.94 3919.01 211.663
+35.61 3907.08 212.191
+36.29 3947.11 212.708
+37.01 3908.15 213.144
+37.79 3922.57 213.602
+38.96 3879.98 214.147
+40.13 3854.13 214.7
+41.05 3800.93 215.135
+41.66 3835.21 215.652
+42.41 3907.02 216.289
+43.19 3952.48 216.848
+43.69 4044.59 217.314
+44.15 4072.19 217.776
+44.77 4088.49 218.338
+45.57 4126.39 218.917
+46.32 4176.28 219.427
+47.07 4260.08 219.956
+47.66 4329.46 220.573
+48.63 4328.33 221.201
+49.42 4345.51 221.719
+50.41 4510.73 222.281
+51.27 4552.14 222.933
+52.35 4603.65 223.583
+53.51 4605.65 224.152
+54.65 4615.64 224.737
+55.82 4644.93 225.418
+56.92 4656.23 226.117
+58.18 4678.96 226.754
+59.55 4566.62 227.389
+61.01 4562.25 228.07
+62.59 4651.86 228.689
+64.15 4739.16 229.155
+65.37 4696.82 229.674
+66.65 4753.02 230.301
+67.87 4693.76 230.903
+68.86 4615.89 231.395
+69.72 4634.88 231.906
+70.66 4612.08 232.498
+71.44 4618.26 233.074
+72.08 4662.97 233.546
+72.83 4763.57 234.028
+73.48 4849    234.603
+74.19 4939.23 235.153
+75.02 5053.56 235.605
+75.58 5132.87 236.082
+76.25 5170.34 236.657
+76.81 5203.68 237.232
+77.63 5257.26 237.673
+78.25 5283.73 238.176
+78.76 5359.6  238.789
+79.45 5393.57 239.387
+79.81 5460.83 239.861
+80.22 5466.95 240.368
+80.84 5496.29 240.962
+81.45 5526.77 241.539
+82.09 5561.8  242.009
+82.68 5618    242.52
+83.33 5667.39 243.12
+84.09 5750.57 243.721
+84.67 5785.29 244.208
+85.56 5844.05 244.716
+86.66 5878.7  245.354
+87.44 5952.83 245.966
+88.45 6010.96 246.46
+89.39 6055.61 247.017
+90.13 6087.96 247.698
+90.88 6093.51 248.374
+92    6152.59 248.928
+93.18 6171.57 249.564
+94.14 6142.1  250.299
+95.11 6078.96 251.031
+96.27 6047.49 251.65
+97    6074.66 252.295
+97.7  6090.14 253.033
+98.31 6105.25 253.743
+99.13 6175.69 254.338
+99.79 6214.22 255.032
+100.17 6260.74 255.815
+100.88 6327.12 256.543
+101.84 6327.93 257.151
+102.35 6359.9  257.785
+102.83 6393.5  258.516
+103.51 6476.86 259.191
+104.13 6524.5  259.738
+104.71 6600.31 260.351
+105.39 6629.47 261.04
+106.09 6688.61 261.692
+106.75 6717.46 262.236
+107.24 6724.2  262.847
+107.75 6779.53 263.527
+108.29 6825.8  264.169
+108.91 6882    264.681
+109.24 6983.91 265.258
+109.74 7020    265.887
+110.23 7093.12 266.491
+111    7166.68 266.987
+111.43 7236.5  267.545
+111.76 7311.24 268.171
+112.08 7364.63 268.815
+];
 %GDPD  GDPQ   GPOP
 
 series = zeros(193,2);
diff --git a/tests/analytic_derivatives/fsdat_simul.m b/tests/analytic_derivatives/fsdat_simul.m
index 159612e577c3b91d585970404c9cf576c0e8a8d6..d4f4a8066f17ba49faad004256693ebc1b9b01e9 100644
--- a/tests/analytic_derivatives/fsdat_simul.m
+++ b/tests/analytic_derivatives/fsdat_simul.m
@@ -1,828 +1,828 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/block_bytecode/run_ls2003.m b/tests/block_bytecode/run_ls2003.m
index d59d64cd2e0302926b895ff4ca5b030badaa37d1..892f842290dbb987fca53d6c07e8e22d303bc731 100644
--- a/tests/block_bytecode/run_ls2003.m
+++ b/tests/block_bytecode/run_ls2003.m
@@ -20,12 +20,12 @@ function run_ls2003(block, bytecode, solve_algo, stack_solve_algo)
   disp(['TEST: ls2003 (block=' num2str(block) ', bytecode=' ...
       num2str(bytecode) ', solve_algo=' num2str(solve_algo) ...
       ', stack_solve_algo=' num2str(stack_solve_algo) ')...']);
-fid = fopen('ls2003_tmp.mod', 'w');
-assert(fid > 0);
-fprintf(fid, ['@#define block = %d\n@#define bytecode = %d\n' ...
-              '@#define solve_algo = %d\n@#define stack_solve_algo = %d\n' ...
-              '@#include \"ls2003.mod\"\n'], block, bytecode, ...
-        solve_algo, stack_solve_algo);
-fclose(fid);
-dynare('ls2003_tmp.mod','console')
+  fid = fopen('ls2003_tmp.mod', 'w');
+  assert(fid > 0);
+  fprintf(fid, ['@#define block = %d\n@#define bytecode = %d\n' ...
+      '@#define solve_algo = %d\n@#define stack_solve_algo = %d\n' ...
+      '@#include \"ls2003.mod\"\n'], block, bytecode, ...
+      solve_algo, stack_solve_algo);
+  fclose(fid);
+  dynare('ls2003_tmp.mod','console')
 end
diff --git a/tests/bvar_a_la_sims/bvar_sample.m b/tests/bvar_a_la_sims/bvar_sample.m
index 3dd002e3b84d7150e1da8de9d1d9574ca090da40..8093afe18fb67fa91306cf6e7b07262ae3911133 100644
--- a/tests/bvar_a_la_sims/bvar_sample.m
+++ b/tests/bvar_a_la_sims/bvar_sample.m
@@ -1,1006 +1,1006 @@
 bvar_data = [
-    0.00000000000, 0.00000000000;
-    -0.00485199480, -0.00034195121;
-    -0.00369702440, -0.01212953600;
-    0.01577573000, -0.00131845390;
-    -0.01132415000, -0.00364839770;
-    0.01158109800, -0.00262917340;
-    -0.00385969150, -0.00374515890;
-    -0.00605244640, 0.00760215990;
-    -0.00027881367, -0.01014485600;
-    0.00328156560, -0.00358791610;
-    -0.01152432500, -0.00064990774;
-    -0.00417541420, -0.02726543200;
-    0.01165937200, -0.01565713900;
-    0.00327415420, -0.01403374100;
-    -0.00262015080, -0.01667459700;
-    -0.01146453600, -0.01088215300;
-    0.00521521470, -0.02177149300;
-    0.00767451980, -0.01671285200;
-    0.01259883800, 0.00306304710;
-    -0.01790411600, -0.01240549400;
-    0.00451096210, 0.00713706070;
-    0.02171339100, -0.00405944740;
-    -0.00984485920, -0.00280935440;
-    0.00303833090, -0.00658279110;
-    0.00496516950, -0.00329239970;
-    0.01425115100, -0.01417161800;
-    -0.00848068480, -0.01036798700;
-    0.01384593500, 0.00307931740;
-    -0.00911261030, -0.00409005360;
-    0.00104231040, -0.00503950650;
-    -0.01669998300, -0.00919063320;
-    0.02192734300, -0.00900963420;
-    0.00895830410, 0.00889444930;
-    -0.00078210473, 0.00303194750;
-    -0.00369206110, 0.00307427120;
-    0.01569838000, -0.00494547550;
-    -0.00518999260, -0.02284842300;
-    0.01668021700, -0.02845341900;
-    -0.02568046200, -0.03263100900;
-    0.00662056690, -0.00759856640;
-    -0.00051553622, -0.00266545800;
-    0.00588163920, 0.00553735730;
-    0.00496782960, -0.00439611810;
-    -0.00917153500, -0.02059437900;
-    0.01824072100, -0.01633834000;
-    0.01007005900, -0.02248933700;
-    -0.00560011310, -0.02417716500;
-    -0.00769812730, -0.00017818698;
-    0.00133784330, -0.00149211110;
-    -0.01435760300, 0.00692602660;
-    0.00404759460, -0.01017014800;
-    -0.00663831950, -0.00315748290;
-    -0.00085548858, -0.02827386400;
-    0.00421366420, -0.02999430500;
-    0.00228340080, 0.00351766350;
-    0.00067972662, 0.00394969830;
-    0.00010249414, -0.00227112120;
-    0.01352092200, 0.00054581385;
-    -0.01119695100, 0.01346546700;
-    0.03037738600, 0.01926781500;
-    -0.00648092580, 0.03341492100;
-    0.00742909040, 0.03054532700;
-    0.00348382550, 0.01877144600;
-    0.00246629280, 0.00970566090;
-    0.01095858000, 0.01093582600;
-    -0.01513041900, 0.02512391700;
-    0.00903471840, 0.03498919400;
-    -0.00618408790, 0.02227141800;
-    0.01096205900, -0.00920153520;
-    0.00262835580, -0.00765528570;
-    0.01114218200, 0.00619863290;
-    -0.00919430790, 0.01755913200;
-    0.01006375400, 0.01441648800;
-    -0.01990465700, 0.00916741770;
-    0.00855497720, -0.00323036000;
-    -0.01369815600, 0.00361482240;
-    -0.00712474120, 0.01056456100;
-    -0.01264778000, 0.00232601930;
-    -0.01423405400, -0.00320915910;
-    -0.00016743283, 0.00840220560;
-    0.00285416310, 0.01212758900;
-    -0.00345522980, -0.01240091400;
-    -0.01061054000, -0.00392867620;
-    -0.01603832900, 0.00257474180;
-    0.00324895860, 0.01867151600;
-    -0.00291754020, 0.01065674500;
-    0.02361004800, 0.01609781500;
-    -0.00318450010, 0.00712827010;
-    0.02139297300, 0.01445064800;
-    0.01460282300, -0.00449260470;
-    0.00647488450, 0.02045964500;
-    0.00854365700, -0.00148195210;
-    -0.02251529400, -0.00256425170;
-    0.00222816500, -0.01526768300;
-    0.02185776000, -0.00714712190;
-    -0.00455624340, -0.00160773030;
-    -0.01246960000, 0.00150635870;
-    0.00924045130, -0.00910181770;
-    0.00343446870, 0.01052361000;
-    0.01349456500, -0.01018272900;
-    -0.00740446960, -0.00215583630;
-    0.00813427010, 0.00314027880;
-    -0.00739251150, -0.01104516400;
-    -0.00135688900, -0.00758587260;
-    0.01004834800, 0.00714729720;
-    0.00071365274, 0.00981284720;
-    0.00354068790, -0.01254811000;
-    -0.02248783700, 0.00397571800;
-    -0.00865090470, 0.00869799720;
-    0.00755320970, -0.00274643140;
-    0.00718197010, -0.01057977500;
-    -0.00890055570, -0.01187215200;
-    -0.00221861280, -0.00737277380;
-    -0.00176862730, -0.00544962520;
-    -0.01488865900, -0.00755715830;
-    -0.01003201200, -0.01536865400;
-    -0.00885387310, 0.00157814460;
-    -0.01057416100, -0.00872661580;
-    0.00529372600, -0.02309533000;
-    -0.00129770280, 0.00439926800;
-    -0.00471011830, 0.00686916260;
-    0.00221095220, -0.00075376512;
-    0.00396970840, -0.00307360450;
-    -0.00949946950, -0.00932127890;
-    -0.01425166300, -0.00887158980;
-    -0.00839041170, -0.00739858640;
-    0.01094292700, -0.00463808010;
-    -0.01503297800, -0.00486242570;
-    -0.00780511670, -0.00013977193;
-    0.00295906390, -0.00244925080;
-    0.00888417030, -0.00027793976;
-    -0.00264289810, -0.00356239480;
-    -0.00233235380, 0.00853562660;
-    0.00999011710, -0.01266408700;
-    0.00615571440, -0.01048649200;
-    0.00129589980, -0.02057649900;
-    -0.00167519580, -0.00756073410;
-    0.00573725950, -0.00893045730;
-    -0.01489402600, 0.00410294180;
-    0.02847956800, -0.00493285520;
-    -0.01474864500, -0.00667757730;
-    0.01322265000, -0.01081593400;
-    -0.01326839900, -0.01371889900;
-    0.01640160600, -0.01247788100;
-    -0.00374336080, 0.00492074290;
-    0.00615137690, 0.01806502100;
-    0.01356203500, 0.01259282000;
-    -0.01542659000, 0.00767045720;
-    0.00642653950, -0.00537146090;
-    0.00310662030, 0.00506285650;
-    -0.00504839670, 0.00859490920;
-    0.00355458360, -0.00183994500;
-    -0.02023486200, 0.00574867890;
-    0.00454694680, 0.01137622400;
-    -0.00387160520, 0.01413229400;
-    -0.01348735800, 0.00439081620;
-    0.01672376100, 0.00070763533;
-    -0.00455330340, -0.00686520060;
-    0.00822146830, -0.01299495800;
-    -0.00426795680, 0.00457871690;
-    0.00550981790, 0.00756567730;
-    -0.01690307400, -0.00726203990;
-    0.01440696000, -0.01560053400;
-    0.00957262890, -0.01337257400;
-    -0.00220497700, -0.00441573200;
-    -0.00056364617, -0.00045505510;
-    -0.00194646630, 0.00321663400;
-    0.01391187800, -0.01801557100;
-    0.00082409925, -0.01950009600;
-    -0.01465276400, -0.00260673980;
-    -0.00650069260, -0.01902260000;
-    0.00029876759, -0.01215615700;
-    0.01261499800, -0.01651988700;
-    0.00063004297, -0.02457780800;
-    0.00169295250, 0.00033544910;
-    -0.00976376420, 0.00505643970;
-    -0.00711589770, -0.00639119460;
-    0.01025748200, -0.00422405210;
-    -0.00945158550, 0.00792116440;
-    -0.01345565600, -0.00015260044;
-    0.00347003790, -0.00603041040;
-    -0.01301538300, -0.01133294300;
-    -0.00750695770, -0.00933159140;
-    -0.00440517780, -0.02171622400;
-    -0.00147922330, -0.02082012000;
-    -0.00906688280, -0.02642304400;
-    0.00194159560, -0.02100981100;
-    -0.00420262710, -0.00838592350;
-    0.01891564200, 0.01082611100;
-    0.00182342580, -0.00240049780;
-    -0.01810654000, 0.01711595900;
-    -0.00212834600, 0.00352360610;
-    0.00178391370, -0.00108616550;
-    -0.00043459404, 0.00088082942;
-    -0.00412604630, 0.01755816600;
-    -0.00064959885, 0.01457685600;
-    0.01347751700, 0.00931501890;
-    0.00352526210, 0.00083007064;
-    -0.01322128800, -0.00201091000;
-    0.00009614403, -0.00995798470;
-    0.00444349320, -0.01249145900;
-    0.00425595950, -0.00116484430;
-    -0.01175602700, 0.00285725700;
-    0.00657894370, 0.00180430300;
-    -0.00704443210, -0.00289686610;
-    -0.00639969420, 0.00144511130;
-    -0.01682459800, -0.01084454800;
-    0.00046732062, -0.01183596800;
-    -0.00265618720, -0.00617053630;
-    -0.00627824550, -0.01772563100;
-    -0.01435354300, -0.00991358750;
-    0.00428677970, 0.01192595200;
-    0.00863044650, 0.00914107900;
-    -0.00273840730, -0.00467048220;
-    0.01769520800, -0.01364493500;
-    -0.00860223420, -0.00593776970;
-    0.00834198560, -0.00768299240;
-    -0.01394435200, -0.01339647000;
-    -0.00251396410, -0.02358333200;
-    0.00252897310, 0.00127176740;
-    0.00229634080, 0.01985044500;
-    -0.01441004500, 0.00210260990;
-    0.00994943720, 0.01327428000;
-    -0.02038994400, 0.01331653800;
-    0.01941131500, 0.00250981050;
-    -0.02126588500, 0.00117877630;
-    0.01703305400, -0.00767290020;
-    -0.01349053100, -0.00602226180;
-    -0.01591448200, -0.00589764240;
-    0.00843590470, 0.01499918200;
-    -0.00014857487, 0.00860687000;
-    -0.02363695800, -0.00112907670;
-    -0.00706394760, -0.00303277220;
-    -0.01303618000, 0.01329845500;
-    -0.00483198940, -0.02019482500;
-    0.00339302700, 0.00572997660;
-    -0.00551248650, 0.00769795860;
-    0.00419796130, 0.00406189010;
-    -0.00370703540, 0.00782197680;
-    0.00867027450, 0.00822771140;
-    0.00596786670, 0.02899416200;
-    0.00681206890, 0.02001652400;
-    0.00165106500, 0.00849942220;
-    0.01299251700, 0.00086235046;
-    -0.00748960250, 0.00782463780;
-    0.00209973650, 0.00815596800;
-    -0.00850592120, 0.02334669100;
-    0.01134628100, 0.01134613400;
-    -0.01352224100, -0.00836556270;
-    0.00671531310, -0.01956063600;
-    -0.00242272570, -0.00033519061;
-    0.01284221800, -0.00689856370;
-    -0.01145770400, -0.01209985200;
-    0.00424026140, -0.00680320230;
-    0.00499683310, -0.00186745700;
-    -0.00379175090, -0.00973519550;
-    -0.00284374760, -0.00534973380;
-    0.00751068230, -0.00172811330;
-    -0.00973646530, -0.01550932400;
-    0.01166327400, -0.01425923100;
-    0.00160914390, -0.00604851180;
-    -0.00663530550, -0.00054579530;
-    0.00060567236, 0.02071117500;
-    -0.00036915903, 0.01075306500;
-    -0.02211141600, 0.01878292800;
-    0.00686511410, 0.00102341950;
-    -0.00340655980, 0.00238579960;
-    -0.00067203259, 0.00114114460;
-    -0.00102357060, 0.00753831560;
-    -0.00768802670, -0.00839238920;
-    0.01638687000, 0.00724520850;
-    -0.00347730340, 0.00605236490;
-    0.00269696720, 0.02358320200;
-    -0.01185299400, -0.00448258220;
-    -0.00641221420, 0.00183018270;
-    0.02135322200, 0.00817785940;
-    0.00869419570, -0.00233532870;
-    -0.00769650030, -0.00544744100;
-    0.00878221650, -0.00288025810;
-    -0.00427262690, -0.00458403970;
-    0.01034842700, -0.00944620050;
-    0.00019401874, -0.02223294900;
-    -0.00148483690, -0.00943247910;
-    -0.00436740400, -0.01781865300;
-    0.00173273960, -0.00608950980;
-    -0.01099621500, -0.00400127680;
-    0.02741524200, -0.01422095500;
-    -0.00882605320, -0.00466699960;
-    0.01370161600, -0.01526308600;
-    0.00054116472, -0.00448123640;
-    0.00621596090, 0.00724029820;
-    -0.01069932100, -0.00560117420;
-    -0.01421629600, 0.00928500080;
-    0.01192448400, 0.02028709800;
-    -0.01069542700, 0.01139402200;
-    0.01009124900, 0.00256825410;
-    0.00127767120, 0.00434814080;
-    0.00499351370, -0.00928891760;
-    -0.00473548910, -0.00480540750;
-    0.00740867780, 0.00620164840;
-    -0.00569582270, -0.00336372610;
-    0.02118048300, 0.00751171350;
-    -0.02275689800, 0.00448348720;
-    -0.00180431540, 0.00477640310;
-    -0.00343045450, 0.02132982500;
-    -0.00110349160, 0.01799333500;
-    0.00566623340, 0.00824425200;
-    0.01008643600, -0.01564701600;
-    0.01109274800, -0.01687864900;
-    -0.01099148700, -0.01485227600;
-    0.02434629100, -0.02618405000;
-    0.00145410160, -0.01696036900;
-    -0.02344772100, 0.00088506469;
-    0.01081117400, 0.01607764500;
-    -0.01274696100, 0.01073171700;
-    -0.02814399500, -0.01204674900;
-    0.01467717300, 0.01001183700;
-    -0.01282640100, 0.00785533930;
-    -0.00039151466, -0.00158353920;
-    0.00506089730, 0.01103509500;
-    0.00520334890, 0.00764525420;
-    -0.00791932050, 0.01578666600;
-    -0.02282695200, 0.02060965800;
-    -0.00477700370, 0.00444865870;
-    -0.00001976087, 0.00925757550;
-    0.00031481039, -0.01739030000;
-    0.01023393500, -0.00412322340;
-    -0.00657133560, 0.01098436400;
-    0.01332517600, 0.01175247000;
-    0.00853561840, 0.01257092400;
-    -0.00990227900, 0.00971206290;
-    0.00601343650, 0.01676401700;
-    0.02034657200, 0.00380624610;
-    -0.01610970400, -0.00382222490;
-    -0.00784886630, -0.01541948200;
-    -0.01486246300, 0.00046089183;
-    0.00059140790, 0.00977498470;
-    0.00131100280, 0.01144934500;
-    -0.00249520130, 0.00763555490;
-    -0.00995953580, 0.00947764900;
-    0.00515067260, -0.00447725650;
-    -0.00628485890, -0.00625777520;
-    -0.00055236814, -0.00045996980;
-    0.00907149900, 0.00550255670;
-    -0.02189032300, 0.00647248100;
-    0.02009786100, 0.00745576110;
-    -0.00891947350, -0.01155851100;
-    0.00125060520, -0.01440449400;
-    -0.00331509880, -0.01211877600;
-    0.00176437740, 0.00308533290;
-    -0.00423796010, 0.00764018890;
-    0.00502629330, -0.00524800480;
-    -0.01859839300, -0.01602257900;
-    0.00760957450, -0.00063382743;
-    0.01352106500, -0.02070491800;
-    -0.01484082600, -0.01837788900;
-    -0.00180805220, 0.00180058220;
-    0.00646895960, -0.01067731900;
-    -0.00319460360, 0.00204543950;
-    0.01283819000, 0.00788961100;
-    0.00897728170, 0.01235817300;
-    -0.00911367310, 0.00216576220;
-    0.00247233850, 0.00197748290;
-    0.01385073000, -0.00628759110;
-    -0.00244131680, -0.00549276880;
-    0.00247377740, 0.00010081507;
-    0.00223374800, 0.00167638370;
-    0.00622179480, 0.00636981950;
-    -0.01451075100, 0.00349200990;
-    0.01701029100, 0.01655859500;
-    0.00540505380, 0.00805163880;
-    -0.01032426300, 0.00545309340;
-    0.01498743600, 0.00845128410;
-    0.02407752900, 0.00198533570;
-    -0.00960939560, 0.00853352640;
-    -0.01023723300, 0.01335469200;
-    -0.00270911950, 0.00849549120;
-    -0.00369286780, -0.00121018950;
-    0.00826982030, 0.00814966480;
-    -0.00479820070, -0.00430578830;
-    0.01720646400, 0.01156837700;
-    0.01664923600, -0.00173370660;
-    -0.00369501470, 0.02465627800;
-    -0.01376969800, 0.01146760700;
-    0.00789807890, 0.00927350640;
-    -0.02031981900, 0.00182745860;
-    0.00893684220, -0.00310349950;
-    -0.00058117960, -0.01036477300;
-    0.00398354320, 0.00524400960;
-    -0.01072630400, 0.00893152600;
-    -0.01281647700, 0.00198587250;
-    0.00527370920, -0.00790188520;
-    -0.00006975255, 0.02076850400;
-    -0.00795713420, 0.01823942500;
-    0.00709618300, 0.00210983490;
-    0.00385266830, 0.00600135910;
-    -0.01078681200, -0.02391983000;
-    0.02052245600, -0.01704146200;
-    -0.00944289330, -0.01192082800;
-    -0.00394662410, -0.02925877900;
-    0.01354173000, -0.02406313000;
-    -0.00718647540, -0.01098199500;
-    0.02058008400, -0.00638229480;
-    -0.00854536810, -0.00450554770;
-    0.00866409980, -0.00330021160;
-    -0.00686748550, -0.02114934800;
-    0.00445321310, -0.00847144790;
-    0.00801991790, -0.00241975850;
-    -0.00120417690, -0.00393759540;
-    -0.00494995210, -0.02696714500;
-    -0.01267562000, -0.01038903900;
-    0.00353257720, -0.00908920320;
-    -0.00975382080, 0.01760238600;
-    -0.01260558500, 0.02760804400;
-    -0.00316022200, 0.02508482500;
-    0.00082647851, 0.01143638600;
-    0.00479109240, -0.00074145901;
-    0.00524306200, -0.00265805690;
-    -0.00578202170, 0.01897214300;
-    0.00893716350, -0.00482091210;
-    -0.01982108100, -0.01158432200;
-    0.03126658600, 0.00409586630;
-    -0.00273803110, -0.00161845770;
-    -0.01761996600, 0.01334919500;
-    0.00757518640, 0.01502052000;
-    -0.00292343760, 0.02766780900;
-    0.00547019230, 0.02912370300;
-    0.00907626300, 0.01593786700;
-    -0.00455934350, 0.00063507953;
-    0.00508186300, 0.02238021200;
-    0.01289502600, -0.00593488700;
-    0.00236970730, 0.00388511510;
-    0.00883958660, -0.00257234340;
-    0.01720261100, 0.01188001800;
-    -0.00006246719, -0.00203679550;
-    -0.01575553100, -0.00676416250;
-    0.00814828810, -0.00356291510;
-    0.00379630600, -0.00175582960;
-    0.01519689300, 0.01032388100;
-    0.00604297190, -0.01207842000;
-    0.00784725260, 0.00484980530;
-    0.00757792060, 0.00642184950;
-    0.00097163435, -0.01346602900;
-    -0.00080646536, -0.01005009400;
-    -0.00544594560, -0.01436795200;
-    -0.00170059540, 0.00889975570;
-    -0.00234754820, 0.01182947400;
-    0.01225048700, 0.01299069100;
-    -0.01026220700, 0.01595514900;
-    -0.00944973050, 0.00843166930;
-    0.00874279600, -0.01267545100;
-    -0.00362453400, 0.01054616000;
-    -0.00084828359, -0.00199187910;
-    0.01428511500, -0.00406989120;
-    -0.00882438660, -0.02808280200;
-    0.00704659960, -0.02179662700;
-    -0.00410832820, -0.00192698990;
-    -0.00147723550, -0.00896090550;
-    0.00459580110, 0.01065118700;
-    -0.00605537920, -0.00488607770;
-    -0.00027256522, -0.00401632280;
-    -0.01978864800, -0.00626533710;
-    0.00607277630, -0.01497391500;
-    -0.01143713900, -0.00323604060;
-    0.01228681400, -0.00172676930;
-    -0.00793191320, -0.00843394290;
-    0.00991768270, -0.00966059600;
-    0.00992587030, -0.00349087710;
-    0.00505795500, -0.00671022150;
-    0.00788954440, 0.00332091270;
-    0.01182401000, -0.00092086600;
-    -0.00660517190, -0.01039393600;
-    0.01134255700, -0.00751655470;
-    0.00038790604, -0.01755658800;
-    -0.00807366080, 0.00988425450;
-    -0.00088186225, 0.00561425140;
-    -0.00923030850, 0.00486096700;
-    0.02739705100, 0.01565417800;
-    -0.02436147600, -0.00475603930;
-    -0.00474490120, 0.01578322600;
-    0.00832453990, 0.00998216280;
-    -0.00713154110, -0.00411591940;
-    0.01586726000, -0.00728781440;
-    0.00901038060, 0.00388117450;
-    -0.01278363800, 0.00560553200;
-    -0.00341314840, -0.01414107100;
-    -0.01413398600, 0.02152507100;
-    -0.00084512439, 0.00416185940;
-    -0.00213784220, -0.00065205271;
-    0.00447733340, -0.01064756800;
-    0.01404655600, -0.00371620300;
-    0.02279766500, 0.00569317110;
-    -0.00682377560, -0.00308033630;
-    0.01124674300, -0.00598650510;
-    -0.01376857100, -0.00734424350;
-    0.00966640550, 0.00595518380;
-    -0.01042231400, -0.00339618560;
-    -0.00210584750, -0.01492290700;
-    0.00793225120, -0.01773942700;
-    -0.00746719420, -0.02023369900;
-    0.00320403030, -0.00425187160;
-    -0.01498758300, -0.00172616900;
-    -0.00125324900, -0.01646365100;
-    -0.02719981800, -0.00720045620;
-    0.00507847130, -0.00507992190;
-    0.00408332760, -0.00696923090;
-    0.00206618350, -0.01585097200;
-    -0.00266175350, -0.01324462400;
-    -0.00031912447, 0.00100260870;
-    -0.01038003300, 0.01981869200;
-    -0.01218511000, 0.02173349700;
-    0.01136888100, 0.02204497600;
-    -0.01202743900, 0.00829954090;
-    -0.00021401182, -0.00175504700;
-    -0.00596558870, 0.00380210670;
-    0.01569683000, 0.00347734000;
-    0.00801820710, -0.00144632600;
-    -0.02250001500, 0.00504014370;
-    0.01240035200, -0.00942954560;
-    0.00858523030, -0.00623408720;
-    -0.01626079300, 0.00397289760;
-    0.00723434090, 0.00783343600;
-    -0.00919603870, -0.00059345202;
-    0.01085680800, 0.00243835800;
-    -0.00888834510, 0.00445439110;
-    -0.00052505879, 0.03196236900;
-    0.00407476500, 0.02115388200;
-    0.01036235200, 0.00961476180;
-    0.00176157930, 0.00765388480;
-    -0.00053452369, -0.00819328090;
-    0.00703537300, 0.00742844800;
-    -0.00014851151, 0.02083584000;
-    0.00393808440, -0.00220486220;
-    0.00068062472, -0.01090794200;
-    0.00162973150, 0.01016291400;
-    0.00956508570, 0.00314153260;
-    0.00040965810, 0.00424568390;
-    -0.00342205330, 0.01575583500;
-    -0.00666487520, 0.03253912100;
-    0.00357257790, -0.00193096120;
-    -0.00479944880, 0.00276754820;
-    -0.02008366200, 0.01813183600;
-    0.01024278800, 0.00899311180;
-    0.00331510340, 0.00874296380;
-    -0.00367787790, 0.01032780200;
-    0.02355042500, 0.00879580860;
-    -0.02098926500, -0.00010779314;
-    0.02242707300, -0.00613259750;
-    -0.00708729650, -0.00601044260;
-    0.01401990900, 0.00501994170;
-    0.01116776500, 0.00055147171;
-    -0.00789437150, 0.00307380160;
-    -0.00079795363, 0.00071918763;
-    0.00024460379, -0.01076551400;
-    0.00413459290, -0.01001296500;
-    -0.02104470800, 0.00080366086;
-    0.01176522400, 0.01678986600;
-    -0.01816742200, 0.01265489200;
-    -0.01569319400, -0.00779392590;
-    -0.00283881540, -0.01456612300;
-    0.00040506759, 0.00058628945;
-    0.00945908740, 0.00075994717;
-    -0.00979130970, -0.00461547690;
-    0.00265457950, 0.00878213250;
-    -0.02489547100, -0.00853506250;
-    0.00102885490, 0.00684600140;
-    -0.00130745500, -0.00382792360;
-    0.00762038530, -0.00423731260;
-    -0.00147484510, 0.01924464600;
-    0.00727643910, 0.00989738330;
-    -0.00160290830, -0.00187813300;
-    0.00428527540, -0.00219760860;
-    -0.03317646800, 0.00116740200;
-    0.01658756800, 0.00518323290;
-    0.00785352990, -0.00838975030;
-    -0.00451492520, 0.00547096380;
-    -0.00320296040, -0.02426730500;
-    0.01417389300, -0.03256394100;
-    -0.00661515490, -0.00421165110;
-    0.01470659000, -0.00042946856;
-    -0.02350439700, 0.00348050750;
-    0.00366709700, 0.00938778820;
-    -0.00046899718, 0.00674591590;
-    0.01975974900, 0.00026316635;
-    -0.00441742910, -0.01386567100;
-    0.01032374900, -0.01708067200;
-    -0.00343647840, -0.00627385440;
-    0.01341498100, -0.00152079670;
-    -0.01328190700, 0.00750671680;
-    -0.00194644230, 0.01508688300;
-    -0.01114553600, 0.03635301900;
-    -0.00904033490, 0.00672707110;
-    0.00213535390, 0.01554549900;
-    -0.00147753730, 0.01329763200;
-    0.00116701690, -0.00008942344;
-    0.00341716790, -0.00317315000;
-    -0.01381591900, -0.00277583010;
-    0.01813890000, -0.01732665300;
-    -0.01199155600, -0.00610674530;
-    0.00444251760, 0.00143958250;
-    0.01005538100, -0.00644700780;
-    -0.00343175930, -0.00473816370;
-    0.00077039637, 0.00638741850;
-    0.01094944500, 0.02697045000;
-    -0.00052522484, 0.00372434700;
-    -0.01200624400, 0.01233773200;
-    -0.00631723760, -0.00616098400;
-    -0.00267661130, -0.00189383380;
-    0.01800845900, 0.00251762240;
-    -0.00070703292, -0.00777855150;
-    0.01011331300, 0.00476866670;
-    0.00535917660, -0.01284853600;
-    0.01971133300, -0.00711727660;
-    0.00471936570, -0.00527618130;
-    -0.01922986900, -0.01071921700;
-    0.01058494000, -0.01208949400;
-    0.00252107150, -0.01009809800;
-    -0.00635082770, -0.00325476460;
-    -0.00338369140, -0.00678190390;
-    -0.00560879390, 0.01429874600;
-    -0.00730724340, 0.00839658360;
-    0.01073289400, 0.01332610500;
-    0.01411626800, 0.01741862000;
-    -0.00578601340, 0.01236888600;
-    -0.00640703040, 0.00204314960;
-    -0.00277533020, 0.00809611970;
-    0.01131091600, 0.02231586400;
-    -0.00290565000, 0.01281723000;
-    -0.00466721850, 0.01066850100;
-    0.00003017692, -0.00045287596;
-    0.01184006400, 0.02096790900;
-    -0.01807510700, 0.00007107626;
-    0.01200216000, 0.01695265800;
-    -0.00233991190, -0.00762127830;
-    0.01731830300, -0.01470775300;
-    -0.00871332370, -0.00536830240;
-    0.01416221600, -0.00020614753;
-    -0.00720019210, -0.01392737100;
-    -0.01677725400, -0.00963694400;
-    0.00376816350, -0.01806841400;
-    -0.01168453900, -0.02520963700;
-    -0.00242508010, -0.01003563800;
-    -0.00398142050, -0.00574731140;
-    0.01750174900, -0.00421972000;
-    0.00585300950, -0.01083337500;
-    0.00418233240, -0.01247003500;
-    -0.00614589600, -0.00520667130;
-    0.01135575200, 0.00930381060;
-    0.00591022240, -0.01228150100;
-    -0.00330099160, -0.01714747100;
-    0.00461113550, 0.00279658620;
-    0.01844313500, -0.00381210120;
-    -0.00730330260, -0.01948227900;
-    0.00114113770, 0.00359516800;
-    -0.01340516800, 0.01142347700;
-    0.00242013210, 0.01479981600;
-    -0.01177683000, 0.00005024148;
-    -0.00140618160, 0.01536890200;
-    -0.00496745630, 0.03046414700;
-    0.01227024900, 0.01537145000;
-    0.00015891232, 0.02228270700;
-    -0.00275003980, 0.01807071800;
-    0.00213022040, 0.02195794900;
-    -0.00456855430, -0.00847451820;
-    0.00368394090, 0.00167170220;
-    0.00053423273, -0.00101325060;
-    0.01502387300, -0.00299957890;
-    -0.00364911970, 0.01043386100;
-    0.00292325880, 0.00369136530;
-    -0.01000623700, 0.01065743200;
-    -0.00737237320, 0.01173679900;
-    0.00470212590, -0.00172331660;
-    0.00064041836, -0.00112935140;
-    0.00801705600, 0.00908517860;
-    -0.01752767500, 0.01340269200;
-    -0.00167078620, 0.00984110940;
-    -0.00736765550, -0.00183892060;
-    0.00171112270, 0.00325198900;
-    -0.00459124470, 0.00333673000;
-    0.00090628466, -0.00136710980;
-    -0.00953744110, -0.00330812520;
-    0.01382525800, -0.00074019487;
-    0.00182379050, 0.00271536240;
-    -0.00144417870, -0.01965826300;
-    0.00262746520, -0.00738069840;
-    -0.00315157850, -0.00579473100;
-    -0.00149920540, -0.00471902850;
-    0.01724853900, -0.00444270650;
-    -0.00323729290, 0.01599976100;
-    0.00818759990, 0.00475884400;
-    -0.00670440270, 0.00662529590;
-    0.00761535810, -0.01531597000;
-    -0.00898965620, -0.01407707000;
-    -0.00095826091, 0.00110351110;
-    0.01922539900, 0.00976795960;
-    0.00107279500, -0.00201196850;
-    0.00184468230, -0.01900434900;
-    0.00206808720, -0.01044463400;
-    0.01012566700, -0.00995885900;
-    -0.00264965050, -0.00197648630;
-    0.01007788900, -0.01722402900;
-    0.00857747020, -0.00978182180;
-    -0.00390662100, -0.00260237180;
-    0.00692129190, -0.00378992080;
-    0.00029091915, -0.00259509570;
-    -0.00360680420, -0.00713074060;
-    -0.00860419840, -0.02057721600;
-    0.00044751379, -0.01449312400;
-    -0.00145591500, -0.01523862700;
-    0.01682939900, -0.01270554100;
-    0.00567881680, -0.01943714400;
-    0.00848238640, -0.00223198500;
-    0.00325092290, -0.00082652871;
-    0.01223402300, 0.00644947070;
-    0.00051464095, 0.00898356600;
-    0.01260583200, 0.00834137450;
-    0.01064180800, -0.00190874350;
-    0.01005380200, -0.00116214780;
-    -0.00116234090, -0.00675879300;
-    -0.02332964500, -0.01838281800;
-    -0.00696804150, -0.00944441820;
-    -0.01819834100, -0.01808908500;
-    0.02201795200, -0.00716774540;
-    -0.01672468800, -0.00826797040;
-    0.01170834800, -0.00949888840;
-    -0.00615648660, -0.00355936780;
-    0.00535839890, 0.00559401360;
-    -0.00703042400, -0.01059598600;
-    0.00318876840, 0.00011921905;
-    -0.01874264500, 0.00790409920;
-    0.00552417410, 0.00766524880;
-    -0.01497631100, -0.00238697410;
-    -0.00439945850, 0.00914147460;
-    0.01828331600, -0.00206804820;
-    0.00068550745, -0.00122205150;
-    -0.00759101970, -0.01153777900;
-    0.00648242600, -0.01640673600;
-    -0.00543452600, -0.02063951400;
-    0.00155147620, -0.02622296300;
-    -0.00564122550, -0.01103051900;
-    0.00341228520, 0.00583169540;
-    0.00646375290, 0.00936322370;
-    -0.00478098810, 0.01100696200;
-    0.00573895680, -0.00239250900;
-    -0.00970467940, 0.00871843140;
-    0.02038830400, 0.01480759600;
-    0.00026758833, 0.02045451100;
-    0.00791676330, 0.01696119900;
-    0.00151902060, 0.00369441970;
-    0.00695727800, -0.00513502650;
-    -0.01493114700, 0.00259436800;
-    0.01356549700, -0.00125019700;
-    0.01129927200, -0.01805236600;
-    -0.01605158000, -0.00110185760;
-    0.01796653700, -0.01000584500;
-    -0.01611534000, -0.00357616450;
-    0.00480241820, -0.01235228300;
-    0.00765884520, 0.00199081530;
-    -0.00445450970, 0.00373594290;
-    0.00836337530, 0.00844062310;
-    0.00000608640, 0.00814252730;
-    -0.00242506490, 0.00107690310;
-    -0.00655880720, -0.01044158000;
-    0.00959842540, -0.01282298400;
-    0.00710086670, -0.00628089330;
-    -0.01539525500, 0.00145629030;
-    -0.01019127500, 0.00506089250;
-    -0.00415539980, 0.00121860340;
-    -0.00222234300, -0.00235775530;
-    0.00145298240, 0.00074290054;
-    0.00383045620, 0.00499606180;
-    -0.01581364300, 0.00991048820;
-    -0.00505534040, 0.00362636340;
-    0.01275955400, -0.00852445050;
-    -0.00646790680, -0.00849281040;
-    0.00822635380, 0.00506450010;
-    -0.00999777920, 0.01192172300;
-    0.01259965900, -0.01267426000;
-    -0.00334331530, -0.01193505000;
-    0.00531845400, 0.00036486233;
-    0.00324434670, 0.01617751400;
-    -0.00182198070, 0.01450107800;
-    -0.01316162900, 0.00575151330;
-    -0.00245819090, -0.00185123220;
-    0.00716449280, 0.00787328720;
-    -0.00111474240, 0.00293388970;
-    -0.01296516800, -0.00225148550;
-    0.00284074300, -0.00331728310;
-    0.01133071500, 0.02057075900;
-    -0.00100379480, 0.01280891700;
-    0.00049387445, 0.00507951680;
-    0.00229614130, -0.00764568280;
-    -0.01313835900, -0.00525744170;
-    0.00966316020, -0.00556556230;
-    0.01118421300, -0.00490035560;
-    0.01672044300, -0.00988298390;
-    -0.01088174000, -0.00216302190;
-    -0.00920015300, 0.00190343440;
-    0.00027256857, -0.00606717780;
-    0.00745269630, 0.00488672340;
-    -0.00485878040, 0.00337006910;
-    -0.01014946800, 0.00628172350;
-    0.00133496050, -0.00095504333;
-    0.01278446800, 0.00344898280;
-    -0.00703416400, 0.00739247270;
-    0.01328898700, 0.00304838790;
-    -0.01491870500, 0.00633638140;
-    0.00873045630, 0.00319640990;
-    0.00254909610, 0.01211332200;
-    0.00232342310, 0.00470528570;
-    -0.00764997870, -0.00240813430;
-    -0.01090000900, -0.01170578800;
-    0.00843239100, -0.01170118700;
-    -0.02507916900, -0.01158650100;
-    0.04003462300, -0.01629908500;
-    -0.01222446500, -0.01477344200;
-    0.00521617900, -0.00968336430;
-    0.01952769300, -0.02338928900;
-    -0.00455805500, -0.01208632300;
-    -0.00421777900, -0.01515016500;
-    -0.02292950600, 0.00681974800;
-    0.02065804000, -0.01601951200;
-    -0.01175698600, -0.01763198100;
-    0.00847885710, -0.01709137000;
-    -0.00522204640, 0.00520781450;
-    0.01653303200, 0.01230743800;
-    0.01491689300, 0.02278097800;
-    -0.00390021000, -0.00599679960;
-    0.00987391320, -0.01527627300;
-    -0.01292332700, -0.01725711000;
-    -0.00611290270, -0.00008627481;
-    0.01173359600, 0.00525802720;
-    0.00023658130, 0.00219369170;
-    0.00527818840, -0.01008107600;
-    -0.00805139170, -0.01193710000;
-    -0.01872491200, 0.00860016370;
-    -0.01259698500, -0.01756964500;
-    -0.00088728350, -0.01512096000;
-    -0.01535824800, -0.01295353000;
-    0.02003583600, -0.00614556620;
-    -0.00662873120, 0.00258939970;
-    0.02039917600, -0.00012182475;
-    -0.00137236040, -0.00075700965;
-    -0.01450454300, -0.00207827570;
-    0.01535757000, 0.00707412260;
-    -0.01704817500, -0.00431544930;
-    0.00832049550, -0.01881308400;
-    0.00788077160, -0.01301967100;
-    -0.00535764100, -0.02307963700;
-    0.01684468900, -0.01761785700;
-    -0.00494331070, -0.02023850500;
-    -0.01844518300, -0.01120281300;
-    0.01030114100, -0.00246253960;
-    0.00737732820, 0.01367079900;
-    0.00930385080, -0.01638037700;
-    0.01184141400, -0.00128950800;
-    -0.02316092800, 0.00518400230;
-    0.01259350700, 0.01851841100;
-    0.00032334407, 0.00708510310;
-    -0.00380004070, 0.01466849000;
-    0.00572216670, 0.02763848700;
-    0.01450073300, 0.02130598400;
-    -0.00061716695, 0.01299269100;
-    0.00032716641, 0.02931071500;
-    0.00102466110, 0.01050204800;
-    -0.00339657480, -0.00413612190;
-    0.01311750600, -0.00235546960;
-    0.00609382540, 0.00646251750;
-    -0.00126880700, 0.01452674700;
-    -0.00768738760, 0.01051401500;
-    0.01058750900, 0.00661389120;
-    -0.00857671250, 0.00564091490;
-    0.00603614820, 0.00790147090;
-    -0.00383731350, 0.01219309200;
-    -0.00750234770, -0.00565016960;
-    -0.01197183700, -0.01579100100;
-    0.00940025550, 0.01919136600;
-    -0.00001261024, 0.02626728500;
-    -0.01119718500, 0.00144775010;
-    0.02249039100, 0.02039881000;
-    -0.00379732890, -0.01609038000;
-    0.01565908800, -0.00588713290;
-    0.00875294490, 0.00373467350;
-    0.00256396420, 0.01632317700;
-    -0.00451786920, -0.00480455360;
-    -0.00790291250, 0.00345569200;
-    -0.01455265100, -0.01382336400;
-    0.01350253300, 0.00019931557;
-    -0.00674284800, 0.00449999260;
-    0.02374096100, -0.00641924120;
-    -0.02211973900, -0.00053401624;
-    0.01207118500, -0.00983951590;
-    -0.00702998800, -0.02173194800;
-    0.00650176870, -0.03939793300;
-    0.01983586800, -0.01688164300;
-    -0.00523048000, -0.01586871000;
-    -0.00024937096, -0.00762047480;
-    0.01848711000, -0.02202737800;
-    0.00320481510, 0.00115403630;
-    -0.00339570830, -0.00416020450;
-    0.00292867830, -0.00800372950;
-    -0.00085958037, -0.00702345910;
-    -0.00661261130, -0.00240180080;
-    0.00915375200, -0.00072184277;
-    -0.02097610500, 0.00164769990;
-    0.00794447800, 0.00132242720;
-    0.00417510660, -0.00030181197;
-    -0.00634899330, -0.01677800600;
-    0.00999671400, -0.00762022470;
-    -0.01004270400, 0.00644466200;
-    0.00245296560, -0.00189053390;
-    -0.00558639080, -0.00629843410;
-    0.00063566426, 0.00748679840;
-    -0.00197196620, -0.01231472900;
-    -0.00858143530, -0.00982022010;
-    0.01118201300, -0.00005704770;
-    -0.01452712100, 0.00525489720;
-    0.00556580190, -0.00614996780;
-    0.00722027820, 0.00126887710;
-    -0.00106240920, 0.00248088000;
-    0.00266047030, 0.00506315460;
-    -0.01615042800, -0.00024735048;
-    0.00690899540, -0.02230154100;
-    0.00016806370, -0.00703005220;
-    0.01157961100, -0.00046847502;
-    -0.00569027140, -0.00074088147;
-    0.00279183700, -0.01112727400;
-    0.01159847500, -0.01397495400;
-    -0.01618859800, -0.03057030300;
-    0.00051325767, -0.00865006790;
-    0.00549707250, 0.00357878980;
-    -0.00970590920, -0.00253900500;
-    0.01545455300, 0.00679668570;
-    -0.01066617100, -0.00621207310;
-    0.00575491460, -0.00657640880;
-    -0.00605682630, 0.01005724800;
-    -0.00028086638, 0.01720437100;
-    0.00314218690, -0.00112510120;
-    -0.01232869600, 0.00529184200;
-    0.00156071380, 0.00332171610;
-    0.01586504900, -0.00687919610;
-    -0.00700561370, 0.00627937710;
-    0.00416313760, 0.01338622200;
-    -0.00469103860, -0.00207565840;
-    -0.00515967500, -0.02677465800;
-    -0.00329796470, -0.02347414900;
-    0.00458593860, -0.01994345300;
-    0.00449779160, -0.01500910700;
-    -0.01450006100, -0.02433756900;
-    -0.00982530810, 0.00515777190;
-    0.02169452900, 0.00395559630;
-    -0.02732960700, -0.01296309000;
-    -0.00943391470, 0.00970794530;
-    0.00883871190, -0.00847782470;
-    -0.00641242250, -0.00159739350;
-    -0.00622211610, -0.00023249961;
-    0.01103231400, 0.01345929400;
-    -0.01604871600, 0.01444581500;
-    0.00408581520, 0.00391976300;
-    -0.00585816760, -0.00136833520;
-    0.01285105500, -0.01355861400;
-    -0.01282979900, -0.02075753400;
-    0.00240514790, -0.00583408830;
-    -0.00821620830, -0.00917124260;
-    0.01161346900, 0.00589059210;
-    -0.00416354780, 0.01478035400;
-    0.00910147760, 0.00162353340;
-    0.00645020290, -0.00029596225;
-    0.00664065850, 0.00334591190;
-    -0.01628421500, -0.01667108200;
-    0.01017428900, -0.01182986900;
-    -0.01740919900, 0.00421845090;
-    0.01419528300, -0.00170271310;
-    -0.01832044100, -0.00271804760;
-    0.00478798390, 0.01451607600;
-    -0.01552720100, 0.00680642330;
-    0.00557794300, 0.01041172100;
-    0.00418925410, -0.00240398610;
-    -0.00542981940, -0.01092214200;
-    0.01256706900, -0.01379128400;
-    -0.01899332900, -0.00274706900;
-    0.00907149380, -0.00663018700;
-    0.01506829200, -0.00293179520;
-    -0.01827722500, -0.00283953570;
-    -0.00150598710, 0.00448947120;
-    0.00689968130, 0.01392841800;
-    0.00838313220, 0.00056270157;
-    -0.01889400800, 0.00445784700;
-    0.01083541500, -0.00433810380;
-    0.00975696280, -0.01959502400;
-    -0.00687770220, -0.01815605200;
-    -0.01112640300, -0.01494359600;
-    -0.00472052850, -0.01500657700;
-    -0.01367499100, -0.00267410440;
-    0.01489290400, -0.00432076310;
-    -0.00262017640, -0.00290406560;
-    -0.00261222360, 0.00098096246;
-    0.00452692100, -0.01865841900;
-    0.00118941740, 0.00323370830;
-    0.00029588303, 0.00675359970;
-    -0.01081920700, 0.02384338300;
-            ];
+0.00000000000, 0.00000000000;
+-0.00485199480, -0.00034195121;
+-0.00369702440, -0.01212953600;
+0.01577573000, -0.00131845390;
+-0.01132415000, -0.00364839770;
+0.01158109800, -0.00262917340;
+-0.00385969150, -0.00374515890;
+-0.00605244640, 0.00760215990;
+-0.00027881367, -0.01014485600;
+0.00328156560, -0.00358791610;
+-0.01152432500, -0.00064990774;
+-0.00417541420, -0.02726543200;
+0.01165937200, -0.01565713900;
+0.00327415420, -0.01403374100;
+-0.00262015080, -0.01667459700;
+-0.01146453600, -0.01088215300;
+0.00521521470, -0.02177149300;
+0.00767451980, -0.01671285200;
+0.01259883800, 0.00306304710;
+-0.01790411600, -0.01240549400;
+0.00451096210, 0.00713706070;
+0.02171339100, -0.00405944740;
+-0.00984485920, -0.00280935440;
+0.00303833090, -0.00658279110;
+0.00496516950, -0.00329239970;
+0.01425115100, -0.01417161800;
+-0.00848068480, -0.01036798700;
+0.01384593500, 0.00307931740;
+-0.00911261030, -0.00409005360;
+0.00104231040, -0.00503950650;
+-0.01669998300, -0.00919063320;
+0.02192734300, -0.00900963420;
+0.00895830410, 0.00889444930;
+-0.00078210473, 0.00303194750;
+-0.00369206110, 0.00307427120;
+0.01569838000, -0.00494547550;
+-0.00518999260, -0.02284842300;
+0.01668021700, -0.02845341900;
+-0.02568046200, -0.03263100900;
+0.00662056690, -0.00759856640;
+-0.00051553622, -0.00266545800;
+0.00588163920, 0.00553735730;
+0.00496782960, -0.00439611810;
+-0.00917153500, -0.02059437900;
+0.01824072100, -0.01633834000;
+0.01007005900, -0.02248933700;
+-0.00560011310, -0.02417716500;
+-0.00769812730, -0.00017818698;
+0.00133784330, -0.00149211110;
+-0.01435760300, 0.00692602660;
+0.00404759460, -0.01017014800;
+-0.00663831950, -0.00315748290;
+-0.00085548858, -0.02827386400;
+0.00421366420, -0.02999430500;
+0.00228340080, 0.00351766350;
+0.00067972662, 0.00394969830;
+0.00010249414, -0.00227112120;
+0.01352092200, 0.00054581385;
+-0.01119695100, 0.01346546700;
+0.03037738600, 0.01926781500;
+-0.00648092580, 0.03341492100;
+0.00742909040, 0.03054532700;
+0.00348382550, 0.01877144600;
+0.00246629280, 0.00970566090;
+0.01095858000, 0.01093582600;
+-0.01513041900, 0.02512391700;
+0.00903471840, 0.03498919400;
+-0.00618408790, 0.02227141800;
+0.01096205900, -0.00920153520;
+0.00262835580, -0.00765528570;
+0.01114218200, 0.00619863290;
+-0.00919430790, 0.01755913200;
+0.01006375400, 0.01441648800;
+-0.01990465700, 0.00916741770;
+0.00855497720, -0.00323036000;
+-0.01369815600, 0.00361482240;
+-0.00712474120, 0.01056456100;
+-0.01264778000, 0.00232601930;
+-0.01423405400, -0.00320915910;
+-0.00016743283, 0.00840220560;
+0.00285416310, 0.01212758900;
+-0.00345522980, -0.01240091400;
+-0.01061054000, -0.00392867620;
+-0.01603832900, 0.00257474180;
+0.00324895860, 0.01867151600;
+-0.00291754020, 0.01065674500;
+0.02361004800, 0.01609781500;
+-0.00318450010, 0.00712827010;
+0.02139297300, 0.01445064800;
+0.01460282300, -0.00449260470;
+0.00647488450, 0.02045964500;
+0.00854365700, -0.00148195210;
+-0.02251529400, -0.00256425170;
+0.00222816500, -0.01526768300;
+0.02185776000, -0.00714712190;
+-0.00455624340, -0.00160773030;
+-0.01246960000, 0.00150635870;
+0.00924045130, -0.00910181770;
+0.00343446870, 0.01052361000;
+0.01349456500, -0.01018272900;
+-0.00740446960, -0.00215583630;
+0.00813427010, 0.00314027880;
+-0.00739251150, -0.01104516400;
+-0.00135688900, -0.00758587260;
+0.01004834800, 0.00714729720;
+0.00071365274, 0.00981284720;
+0.00354068790, -0.01254811000;
+-0.02248783700, 0.00397571800;
+-0.00865090470, 0.00869799720;
+0.00755320970, -0.00274643140;
+0.00718197010, -0.01057977500;
+-0.00890055570, -0.01187215200;
+-0.00221861280, -0.00737277380;
+-0.00176862730, -0.00544962520;
+-0.01488865900, -0.00755715830;
+-0.01003201200, -0.01536865400;
+-0.00885387310, 0.00157814460;
+-0.01057416100, -0.00872661580;
+0.00529372600, -0.02309533000;
+-0.00129770280, 0.00439926800;
+-0.00471011830, 0.00686916260;
+0.00221095220, -0.00075376512;
+0.00396970840, -0.00307360450;
+-0.00949946950, -0.00932127890;
+-0.01425166300, -0.00887158980;
+-0.00839041170, -0.00739858640;
+0.01094292700, -0.00463808010;
+-0.01503297800, -0.00486242570;
+-0.00780511670, -0.00013977193;
+0.00295906390, -0.00244925080;
+0.00888417030, -0.00027793976;
+-0.00264289810, -0.00356239480;
+-0.00233235380, 0.00853562660;
+0.00999011710, -0.01266408700;
+0.00615571440, -0.01048649200;
+0.00129589980, -0.02057649900;
+-0.00167519580, -0.00756073410;
+0.00573725950, -0.00893045730;
+-0.01489402600, 0.00410294180;
+0.02847956800, -0.00493285520;
+-0.01474864500, -0.00667757730;
+0.01322265000, -0.01081593400;
+-0.01326839900, -0.01371889900;
+0.01640160600, -0.01247788100;
+-0.00374336080, 0.00492074290;
+0.00615137690, 0.01806502100;
+0.01356203500, 0.01259282000;
+-0.01542659000, 0.00767045720;
+0.00642653950, -0.00537146090;
+0.00310662030, 0.00506285650;
+-0.00504839670, 0.00859490920;
+0.00355458360, -0.00183994500;
+-0.02023486200, 0.00574867890;
+0.00454694680, 0.01137622400;
+-0.00387160520, 0.01413229400;
+-0.01348735800, 0.00439081620;
+0.01672376100, 0.00070763533;
+-0.00455330340, -0.00686520060;
+0.00822146830, -0.01299495800;
+-0.00426795680, 0.00457871690;
+0.00550981790, 0.00756567730;
+-0.01690307400, -0.00726203990;
+0.01440696000, -0.01560053400;
+0.00957262890, -0.01337257400;
+-0.00220497700, -0.00441573200;
+-0.00056364617, -0.00045505510;
+-0.00194646630, 0.00321663400;
+0.01391187800, -0.01801557100;
+0.00082409925, -0.01950009600;
+-0.01465276400, -0.00260673980;
+-0.00650069260, -0.01902260000;
+0.00029876759, -0.01215615700;
+0.01261499800, -0.01651988700;
+0.00063004297, -0.02457780800;
+0.00169295250, 0.00033544910;
+-0.00976376420, 0.00505643970;
+-0.00711589770, -0.00639119460;
+0.01025748200, -0.00422405210;
+-0.00945158550, 0.00792116440;
+-0.01345565600, -0.00015260044;
+0.00347003790, -0.00603041040;
+-0.01301538300, -0.01133294300;
+-0.00750695770, -0.00933159140;
+-0.00440517780, -0.02171622400;
+-0.00147922330, -0.02082012000;
+-0.00906688280, -0.02642304400;
+0.00194159560, -0.02100981100;
+-0.00420262710, -0.00838592350;
+0.01891564200, 0.01082611100;
+0.00182342580, -0.00240049780;
+-0.01810654000, 0.01711595900;
+-0.00212834600, 0.00352360610;
+0.00178391370, -0.00108616550;
+-0.00043459404, 0.00088082942;
+-0.00412604630, 0.01755816600;
+-0.00064959885, 0.01457685600;
+0.01347751700, 0.00931501890;
+0.00352526210, 0.00083007064;
+-0.01322128800, -0.00201091000;
+0.00009614403, -0.00995798470;
+0.00444349320, -0.01249145900;
+0.00425595950, -0.00116484430;
+-0.01175602700, 0.00285725700;
+0.00657894370, 0.00180430300;
+-0.00704443210, -0.00289686610;
+-0.00639969420, 0.00144511130;
+-0.01682459800, -0.01084454800;
+0.00046732062, -0.01183596800;
+-0.00265618720, -0.00617053630;
+-0.00627824550, -0.01772563100;
+-0.01435354300, -0.00991358750;
+0.00428677970, 0.01192595200;
+0.00863044650, 0.00914107900;
+-0.00273840730, -0.00467048220;
+0.01769520800, -0.01364493500;
+-0.00860223420, -0.00593776970;
+0.00834198560, -0.00768299240;
+-0.01394435200, -0.01339647000;
+-0.00251396410, -0.02358333200;
+0.00252897310, 0.00127176740;
+0.00229634080, 0.01985044500;
+-0.01441004500, 0.00210260990;
+0.00994943720, 0.01327428000;
+-0.02038994400, 0.01331653800;
+0.01941131500, 0.00250981050;
+-0.02126588500, 0.00117877630;
+0.01703305400, -0.00767290020;
+-0.01349053100, -0.00602226180;
+-0.01591448200, -0.00589764240;
+0.00843590470, 0.01499918200;
+-0.00014857487, 0.00860687000;
+-0.02363695800, -0.00112907670;
+-0.00706394760, -0.00303277220;
+-0.01303618000, 0.01329845500;
+-0.00483198940, -0.02019482500;
+0.00339302700, 0.00572997660;
+-0.00551248650, 0.00769795860;
+0.00419796130, 0.00406189010;
+-0.00370703540, 0.00782197680;
+0.00867027450, 0.00822771140;
+0.00596786670, 0.02899416200;
+0.00681206890, 0.02001652400;
+0.00165106500, 0.00849942220;
+0.01299251700, 0.00086235046;
+-0.00748960250, 0.00782463780;
+0.00209973650, 0.00815596800;
+-0.00850592120, 0.02334669100;
+0.01134628100, 0.01134613400;
+-0.01352224100, -0.00836556270;
+0.00671531310, -0.01956063600;
+-0.00242272570, -0.00033519061;
+0.01284221800, -0.00689856370;
+-0.01145770400, -0.01209985200;
+0.00424026140, -0.00680320230;
+0.00499683310, -0.00186745700;
+-0.00379175090, -0.00973519550;
+-0.00284374760, -0.00534973380;
+0.00751068230, -0.00172811330;
+-0.00973646530, -0.01550932400;
+0.01166327400, -0.01425923100;
+0.00160914390, -0.00604851180;
+-0.00663530550, -0.00054579530;
+0.00060567236, 0.02071117500;
+-0.00036915903, 0.01075306500;
+-0.02211141600, 0.01878292800;
+0.00686511410, 0.00102341950;
+-0.00340655980, 0.00238579960;
+-0.00067203259, 0.00114114460;
+-0.00102357060, 0.00753831560;
+-0.00768802670, -0.00839238920;
+0.01638687000, 0.00724520850;
+-0.00347730340, 0.00605236490;
+0.00269696720, 0.02358320200;
+-0.01185299400, -0.00448258220;
+-0.00641221420, 0.00183018270;
+0.02135322200, 0.00817785940;
+0.00869419570, -0.00233532870;
+-0.00769650030, -0.00544744100;
+0.00878221650, -0.00288025810;
+-0.00427262690, -0.00458403970;
+0.01034842700, -0.00944620050;
+0.00019401874, -0.02223294900;
+-0.00148483690, -0.00943247910;
+-0.00436740400, -0.01781865300;
+0.00173273960, -0.00608950980;
+-0.01099621500, -0.00400127680;
+0.02741524200, -0.01422095500;
+-0.00882605320, -0.00466699960;
+0.01370161600, -0.01526308600;
+0.00054116472, -0.00448123640;
+0.00621596090, 0.00724029820;
+-0.01069932100, -0.00560117420;
+-0.01421629600, 0.00928500080;
+0.01192448400, 0.02028709800;
+-0.01069542700, 0.01139402200;
+0.01009124900, 0.00256825410;
+0.00127767120, 0.00434814080;
+0.00499351370, -0.00928891760;
+-0.00473548910, -0.00480540750;
+0.00740867780, 0.00620164840;
+-0.00569582270, -0.00336372610;
+0.02118048300, 0.00751171350;
+-0.02275689800, 0.00448348720;
+-0.00180431540, 0.00477640310;
+-0.00343045450, 0.02132982500;
+-0.00110349160, 0.01799333500;
+0.00566623340, 0.00824425200;
+0.01008643600, -0.01564701600;
+0.01109274800, -0.01687864900;
+-0.01099148700, -0.01485227600;
+0.02434629100, -0.02618405000;
+0.00145410160, -0.01696036900;
+-0.02344772100, 0.00088506469;
+0.01081117400, 0.01607764500;
+-0.01274696100, 0.01073171700;
+-0.02814399500, -0.01204674900;
+0.01467717300, 0.01001183700;
+-0.01282640100, 0.00785533930;
+-0.00039151466, -0.00158353920;
+0.00506089730, 0.01103509500;
+0.00520334890, 0.00764525420;
+-0.00791932050, 0.01578666600;
+-0.02282695200, 0.02060965800;
+-0.00477700370, 0.00444865870;
+-0.00001976087, 0.00925757550;
+0.00031481039, -0.01739030000;
+0.01023393500, -0.00412322340;
+-0.00657133560, 0.01098436400;
+0.01332517600, 0.01175247000;
+0.00853561840, 0.01257092400;
+-0.00990227900, 0.00971206290;
+0.00601343650, 0.01676401700;
+0.02034657200, 0.00380624610;
+-0.01610970400, -0.00382222490;
+-0.00784886630, -0.01541948200;
+-0.01486246300, 0.00046089183;
+0.00059140790, 0.00977498470;
+0.00131100280, 0.01144934500;
+-0.00249520130, 0.00763555490;
+-0.00995953580, 0.00947764900;
+0.00515067260, -0.00447725650;
+-0.00628485890, -0.00625777520;
+-0.00055236814, -0.00045996980;
+0.00907149900, 0.00550255670;
+-0.02189032300, 0.00647248100;
+0.02009786100, 0.00745576110;
+-0.00891947350, -0.01155851100;
+0.00125060520, -0.01440449400;
+-0.00331509880, -0.01211877600;
+0.00176437740, 0.00308533290;
+-0.00423796010, 0.00764018890;
+0.00502629330, -0.00524800480;
+-0.01859839300, -0.01602257900;
+0.00760957450, -0.00063382743;
+0.01352106500, -0.02070491800;
+-0.01484082600, -0.01837788900;
+-0.00180805220, 0.00180058220;
+0.00646895960, -0.01067731900;
+-0.00319460360, 0.00204543950;
+0.01283819000, 0.00788961100;
+0.00897728170, 0.01235817300;
+-0.00911367310, 0.00216576220;
+0.00247233850, 0.00197748290;
+0.01385073000, -0.00628759110;
+-0.00244131680, -0.00549276880;
+0.00247377740, 0.00010081507;
+0.00223374800, 0.00167638370;
+0.00622179480, 0.00636981950;
+-0.01451075100, 0.00349200990;
+0.01701029100, 0.01655859500;
+0.00540505380, 0.00805163880;
+-0.01032426300, 0.00545309340;
+0.01498743600, 0.00845128410;
+0.02407752900, 0.00198533570;
+-0.00960939560, 0.00853352640;
+-0.01023723300, 0.01335469200;
+-0.00270911950, 0.00849549120;
+-0.00369286780, -0.00121018950;
+0.00826982030, 0.00814966480;
+-0.00479820070, -0.00430578830;
+0.01720646400, 0.01156837700;
+0.01664923600, -0.00173370660;
+-0.00369501470, 0.02465627800;
+-0.01376969800, 0.01146760700;
+0.00789807890, 0.00927350640;
+-0.02031981900, 0.00182745860;
+0.00893684220, -0.00310349950;
+-0.00058117960, -0.01036477300;
+0.00398354320, 0.00524400960;
+-0.01072630400, 0.00893152600;
+-0.01281647700, 0.00198587250;
+0.00527370920, -0.00790188520;
+-0.00006975255, 0.02076850400;
+-0.00795713420, 0.01823942500;
+0.00709618300, 0.00210983490;
+0.00385266830, 0.00600135910;
+-0.01078681200, -0.02391983000;
+0.02052245600, -0.01704146200;
+-0.00944289330, -0.01192082800;
+-0.00394662410, -0.02925877900;
+0.01354173000, -0.02406313000;
+-0.00718647540, -0.01098199500;
+0.02058008400, -0.00638229480;
+-0.00854536810, -0.00450554770;
+0.00866409980, -0.00330021160;
+-0.00686748550, -0.02114934800;
+0.00445321310, -0.00847144790;
+0.00801991790, -0.00241975850;
+-0.00120417690, -0.00393759540;
+-0.00494995210, -0.02696714500;
+-0.01267562000, -0.01038903900;
+0.00353257720, -0.00908920320;
+-0.00975382080, 0.01760238600;
+-0.01260558500, 0.02760804400;
+-0.00316022200, 0.02508482500;
+0.00082647851, 0.01143638600;
+0.00479109240, -0.00074145901;
+0.00524306200, -0.00265805690;
+-0.00578202170, 0.01897214300;
+0.00893716350, -0.00482091210;
+-0.01982108100, -0.01158432200;
+0.03126658600, 0.00409586630;
+-0.00273803110, -0.00161845770;
+-0.01761996600, 0.01334919500;
+0.00757518640, 0.01502052000;
+-0.00292343760, 0.02766780900;
+0.00547019230, 0.02912370300;
+0.00907626300, 0.01593786700;
+-0.00455934350, 0.00063507953;
+0.00508186300, 0.02238021200;
+0.01289502600, -0.00593488700;
+0.00236970730, 0.00388511510;
+0.00883958660, -0.00257234340;
+0.01720261100, 0.01188001800;
+-0.00006246719, -0.00203679550;
+-0.01575553100, -0.00676416250;
+0.00814828810, -0.00356291510;
+0.00379630600, -0.00175582960;
+0.01519689300, 0.01032388100;
+0.00604297190, -0.01207842000;
+0.00784725260, 0.00484980530;
+0.00757792060, 0.00642184950;
+0.00097163435, -0.01346602900;
+-0.00080646536, -0.01005009400;
+-0.00544594560, -0.01436795200;
+-0.00170059540, 0.00889975570;
+-0.00234754820, 0.01182947400;
+0.01225048700, 0.01299069100;
+-0.01026220700, 0.01595514900;
+-0.00944973050, 0.00843166930;
+0.00874279600, -0.01267545100;
+-0.00362453400, 0.01054616000;
+-0.00084828359, -0.00199187910;
+0.01428511500, -0.00406989120;
+-0.00882438660, -0.02808280200;
+0.00704659960, -0.02179662700;
+-0.00410832820, -0.00192698990;
+-0.00147723550, -0.00896090550;
+0.00459580110, 0.01065118700;
+-0.00605537920, -0.00488607770;
+-0.00027256522, -0.00401632280;
+-0.01978864800, -0.00626533710;
+0.00607277630, -0.01497391500;
+-0.01143713900, -0.00323604060;
+0.01228681400, -0.00172676930;
+-0.00793191320, -0.00843394290;
+0.00991768270, -0.00966059600;
+0.00992587030, -0.00349087710;
+0.00505795500, -0.00671022150;
+0.00788954440, 0.00332091270;
+0.01182401000, -0.00092086600;
+-0.00660517190, -0.01039393600;
+0.01134255700, -0.00751655470;
+0.00038790604, -0.01755658800;
+-0.00807366080, 0.00988425450;
+-0.00088186225, 0.00561425140;
+-0.00923030850, 0.00486096700;
+0.02739705100, 0.01565417800;
+-0.02436147600, -0.00475603930;
+-0.00474490120, 0.01578322600;
+0.00832453990, 0.00998216280;
+-0.00713154110, -0.00411591940;
+0.01586726000, -0.00728781440;
+0.00901038060, 0.00388117450;
+-0.01278363800, 0.00560553200;
+-0.00341314840, -0.01414107100;
+-0.01413398600, 0.02152507100;
+-0.00084512439, 0.00416185940;
+-0.00213784220, -0.00065205271;
+0.00447733340, -0.01064756800;
+0.01404655600, -0.00371620300;
+0.02279766500, 0.00569317110;
+-0.00682377560, -0.00308033630;
+0.01124674300, -0.00598650510;
+-0.01376857100, -0.00734424350;
+0.00966640550, 0.00595518380;
+-0.01042231400, -0.00339618560;
+-0.00210584750, -0.01492290700;
+0.00793225120, -0.01773942700;
+-0.00746719420, -0.02023369900;
+0.00320403030, -0.00425187160;
+-0.01498758300, -0.00172616900;
+-0.00125324900, -0.01646365100;
+-0.02719981800, -0.00720045620;
+0.00507847130, -0.00507992190;
+0.00408332760, -0.00696923090;
+0.00206618350, -0.01585097200;
+-0.00266175350, -0.01324462400;
+-0.00031912447, 0.00100260870;
+-0.01038003300, 0.01981869200;
+-0.01218511000, 0.02173349700;
+0.01136888100, 0.02204497600;
+-0.01202743900, 0.00829954090;
+-0.00021401182, -0.00175504700;
+-0.00596558870, 0.00380210670;
+0.01569683000, 0.00347734000;
+0.00801820710, -0.00144632600;
+-0.02250001500, 0.00504014370;
+0.01240035200, -0.00942954560;
+0.00858523030, -0.00623408720;
+-0.01626079300, 0.00397289760;
+0.00723434090, 0.00783343600;
+-0.00919603870, -0.00059345202;
+0.01085680800, 0.00243835800;
+-0.00888834510, 0.00445439110;
+-0.00052505879, 0.03196236900;
+0.00407476500, 0.02115388200;
+0.01036235200, 0.00961476180;
+0.00176157930, 0.00765388480;
+-0.00053452369, -0.00819328090;
+0.00703537300, 0.00742844800;
+-0.00014851151, 0.02083584000;
+0.00393808440, -0.00220486220;
+0.00068062472, -0.01090794200;
+0.00162973150, 0.01016291400;
+0.00956508570, 0.00314153260;
+0.00040965810, 0.00424568390;
+-0.00342205330, 0.01575583500;
+-0.00666487520, 0.03253912100;
+0.00357257790, -0.00193096120;
+-0.00479944880, 0.00276754820;
+-0.02008366200, 0.01813183600;
+0.01024278800, 0.00899311180;
+0.00331510340, 0.00874296380;
+-0.00367787790, 0.01032780200;
+0.02355042500, 0.00879580860;
+-0.02098926500, -0.00010779314;
+0.02242707300, -0.00613259750;
+-0.00708729650, -0.00601044260;
+0.01401990900, 0.00501994170;
+0.01116776500, 0.00055147171;
+-0.00789437150, 0.00307380160;
+-0.00079795363, 0.00071918763;
+0.00024460379, -0.01076551400;
+0.00413459290, -0.01001296500;
+-0.02104470800, 0.00080366086;
+0.01176522400, 0.01678986600;
+-0.01816742200, 0.01265489200;
+-0.01569319400, -0.00779392590;
+-0.00283881540, -0.01456612300;
+0.00040506759, 0.00058628945;
+0.00945908740, 0.00075994717;
+-0.00979130970, -0.00461547690;
+0.00265457950, 0.00878213250;
+-0.02489547100, -0.00853506250;
+0.00102885490, 0.00684600140;
+-0.00130745500, -0.00382792360;
+0.00762038530, -0.00423731260;
+-0.00147484510, 0.01924464600;
+0.00727643910, 0.00989738330;
+-0.00160290830, -0.00187813300;
+0.00428527540, -0.00219760860;
+-0.03317646800, 0.00116740200;
+0.01658756800, 0.00518323290;
+0.00785352990, -0.00838975030;
+-0.00451492520, 0.00547096380;
+-0.00320296040, -0.02426730500;
+0.01417389300, -0.03256394100;
+-0.00661515490, -0.00421165110;
+0.01470659000, -0.00042946856;
+-0.02350439700, 0.00348050750;
+0.00366709700, 0.00938778820;
+-0.00046899718, 0.00674591590;
+0.01975974900, 0.00026316635;
+-0.00441742910, -0.01386567100;
+0.01032374900, -0.01708067200;
+-0.00343647840, -0.00627385440;
+0.01341498100, -0.00152079670;
+-0.01328190700, 0.00750671680;
+-0.00194644230, 0.01508688300;
+-0.01114553600, 0.03635301900;
+-0.00904033490, 0.00672707110;
+0.00213535390, 0.01554549900;
+-0.00147753730, 0.01329763200;
+0.00116701690, -0.00008942344;
+0.00341716790, -0.00317315000;
+-0.01381591900, -0.00277583010;
+0.01813890000, -0.01732665300;
+-0.01199155600, -0.00610674530;
+0.00444251760, 0.00143958250;
+0.01005538100, -0.00644700780;
+-0.00343175930, -0.00473816370;
+0.00077039637, 0.00638741850;
+0.01094944500, 0.02697045000;
+-0.00052522484, 0.00372434700;
+-0.01200624400, 0.01233773200;
+-0.00631723760, -0.00616098400;
+-0.00267661130, -0.00189383380;
+0.01800845900, 0.00251762240;
+-0.00070703292, -0.00777855150;
+0.01011331300, 0.00476866670;
+0.00535917660, -0.01284853600;
+0.01971133300, -0.00711727660;
+0.00471936570, -0.00527618130;
+-0.01922986900, -0.01071921700;
+0.01058494000, -0.01208949400;
+0.00252107150, -0.01009809800;
+-0.00635082770, -0.00325476460;
+-0.00338369140, -0.00678190390;
+-0.00560879390, 0.01429874600;
+-0.00730724340, 0.00839658360;
+0.01073289400, 0.01332610500;
+0.01411626800, 0.01741862000;
+-0.00578601340, 0.01236888600;
+-0.00640703040, 0.00204314960;
+-0.00277533020, 0.00809611970;
+0.01131091600, 0.02231586400;
+-0.00290565000, 0.01281723000;
+-0.00466721850, 0.01066850100;
+0.00003017692, -0.00045287596;
+0.01184006400, 0.02096790900;
+-0.01807510700, 0.00007107626;
+0.01200216000, 0.01695265800;
+-0.00233991190, -0.00762127830;
+0.01731830300, -0.01470775300;
+-0.00871332370, -0.00536830240;
+0.01416221600, -0.00020614753;
+-0.00720019210, -0.01392737100;
+-0.01677725400, -0.00963694400;
+0.00376816350, -0.01806841400;
+-0.01168453900, -0.02520963700;
+-0.00242508010, -0.01003563800;
+-0.00398142050, -0.00574731140;
+0.01750174900, -0.00421972000;
+0.00585300950, -0.01083337500;
+0.00418233240, -0.01247003500;
+-0.00614589600, -0.00520667130;
+0.01135575200, 0.00930381060;
+0.00591022240, -0.01228150100;
+-0.00330099160, -0.01714747100;
+0.00461113550, 0.00279658620;
+0.01844313500, -0.00381210120;
+-0.00730330260, -0.01948227900;
+0.00114113770, 0.00359516800;
+-0.01340516800, 0.01142347700;
+0.00242013210, 0.01479981600;
+-0.01177683000, 0.00005024148;
+-0.00140618160, 0.01536890200;
+-0.00496745630, 0.03046414700;
+0.01227024900, 0.01537145000;
+0.00015891232, 0.02228270700;
+-0.00275003980, 0.01807071800;
+0.00213022040, 0.02195794900;
+-0.00456855430, -0.00847451820;
+0.00368394090, 0.00167170220;
+0.00053423273, -0.00101325060;
+0.01502387300, -0.00299957890;
+-0.00364911970, 0.01043386100;
+0.00292325880, 0.00369136530;
+-0.01000623700, 0.01065743200;
+-0.00737237320, 0.01173679900;
+0.00470212590, -0.00172331660;
+0.00064041836, -0.00112935140;
+0.00801705600, 0.00908517860;
+-0.01752767500, 0.01340269200;
+-0.00167078620, 0.00984110940;
+-0.00736765550, -0.00183892060;
+0.00171112270, 0.00325198900;
+-0.00459124470, 0.00333673000;
+0.00090628466, -0.00136710980;
+-0.00953744110, -0.00330812520;
+0.01382525800, -0.00074019487;
+0.00182379050, 0.00271536240;
+-0.00144417870, -0.01965826300;
+0.00262746520, -0.00738069840;
+-0.00315157850, -0.00579473100;
+-0.00149920540, -0.00471902850;
+0.01724853900, -0.00444270650;
+-0.00323729290, 0.01599976100;
+0.00818759990, 0.00475884400;
+-0.00670440270, 0.00662529590;
+0.00761535810, -0.01531597000;
+-0.00898965620, -0.01407707000;
+-0.00095826091, 0.00110351110;
+0.01922539900, 0.00976795960;
+0.00107279500, -0.00201196850;
+0.00184468230, -0.01900434900;
+0.00206808720, -0.01044463400;
+0.01012566700, -0.00995885900;
+-0.00264965050, -0.00197648630;
+0.01007788900, -0.01722402900;
+0.00857747020, -0.00978182180;
+-0.00390662100, -0.00260237180;
+0.00692129190, -0.00378992080;
+0.00029091915, -0.00259509570;
+-0.00360680420, -0.00713074060;
+-0.00860419840, -0.02057721600;
+0.00044751379, -0.01449312400;
+-0.00145591500, -0.01523862700;
+0.01682939900, -0.01270554100;
+0.00567881680, -0.01943714400;
+0.00848238640, -0.00223198500;
+0.00325092290, -0.00082652871;
+0.01223402300, 0.00644947070;
+0.00051464095, 0.00898356600;
+0.01260583200, 0.00834137450;
+0.01064180800, -0.00190874350;
+0.01005380200, -0.00116214780;
+-0.00116234090, -0.00675879300;
+-0.02332964500, -0.01838281800;
+-0.00696804150, -0.00944441820;
+-0.01819834100, -0.01808908500;
+0.02201795200, -0.00716774540;
+-0.01672468800, -0.00826797040;
+0.01170834800, -0.00949888840;
+-0.00615648660, -0.00355936780;
+0.00535839890, 0.00559401360;
+-0.00703042400, -0.01059598600;
+0.00318876840, 0.00011921905;
+-0.01874264500, 0.00790409920;
+0.00552417410, 0.00766524880;
+-0.01497631100, -0.00238697410;
+-0.00439945850, 0.00914147460;
+0.01828331600, -0.00206804820;
+0.00068550745, -0.00122205150;
+-0.00759101970, -0.01153777900;
+0.00648242600, -0.01640673600;
+-0.00543452600, -0.02063951400;
+0.00155147620, -0.02622296300;
+-0.00564122550, -0.01103051900;
+0.00341228520, 0.00583169540;
+0.00646375290, 0.00936322370;
+-0.00478098810, 0.01100696200;
+0.00573895680, -0.00239250900;
+-0.00970467940, 0.00871843140;
+0.02038830400, 0.01480759600;
+0.00026758833, 0.02045451100;
+0.00791676330, 0.01696119900;
+0.00151902060, 0.00369441970;
+0.00695727800, -0.00513502650;
+-0.01493114700, 0.00259436800;
+0.01356549700, -0.00125019700;
+0.01129927200, -0.01805236600;
+-0.01605158000, -0.00110185760;
+0.01796653700, -0.01000584500;
+-0.01611534000, -0.00357616450;
+0.00480241820, -0.01235228300;
+0.00765884520, 0.00199081530;
+-0.00445450970, 0.00373594290;
+0.00836337530, 0.00844062310;
+0.00000608640, 0.00814252730;
+-0.00242506490, 0.00107690310;
+-0.00655880720, -0.01044158000;
+0.00959842540, -0.01282298400;
+0.00710086670, -0.00628089330;
+-0.01539525500, 0.00145629030;
+-0.01019127500, 0.00506089250;
+-0.00415539980, 0.00121860340;
+-0.00222234300, -0.00235775530;
+0.00145298240, 0.00074290054;
+0.00383045620, 0.00499606180;
+-0.01581364300, 0.00991048820;
+-0.00505534040, 0.00362636340;
+0.01275955400, -0.00852445050;
+-0.00646790680, -0.00849281040;
+0.00822635380, 0.00506450010;
+-0.00999777920, 0.01192172300;
+0.01259965900, -0.01267426000;
+-0.00334331530, -0.01193505000;
+0.00531845400, 0.00036486233;
+0.00324434670, 0.01617751400;
+-0.00182198070, 0.01450107800;
+-0.01316162900, 0.00575151330;
+-0.00245819090, -0.00185123220;
+0.00716449280, 0.00787328720;
+-0.00111474240, 0.00293388970;
+-0.01296516800, -0.00225148550;
+0.00284074300, -0.00331728310;
+0.01133071500, 0.02057075900;
+-0.00100379480, 0.01280891700;
+0.00049387445, 0.00507951680;
+0.00229614130, -0.00764568280;
+-0.01313835900, -0.00525744170;
+0.00966316020, -0.00556556230;
+0.01118421300, -0.00490035560;
+0.01672044300, -0.00988298390;
+-0.01088174000, -0.00216302190;
+-0.00920015300, 0.00190343440;
+0.00027256857, -0.00606717780;
+0.00745269630, 0.00488672340;
+-0.00485878040, 0.00337006910;
+-0.01014946800, 0.00628172350;
+0.00133496050, -0.00095504333;
+0.01278446800, 0.00344898280;
+-0.00703416400, 0.00739247270;
+0.01328898700, 0.00304838790;
+-0.01491870500, 0.00633638140;
+0.00873045630, 0.00319640990;
+0.00254909610, 0.01211332200;
+0.00232342310, 0.00470528570;
+-0.00764997870, -0.00240813430;
+-0.01090000900, -0.01170578800;
+0.00843239100, -0.01170118700;
+-0.02507916900, -0.01158650100;
+0.04003462300, -0.01629908500;
+-0.01222446500, -0.01477344200;
+0.00521617900, -0.00968336430;
+0.01952769300, -0.02338928900;
+-0.00455805500, -0.01208632300;
+-0.00421777900, -0.01515016500;
+-0.02292950600, 0.00681974800;
+0.02065804000, -0.01601951200;
+-0.01175698600, -0.01763198100;
+0.00847885710, -0.01709137000;
+-0.00522204640, 0.00520781450;
+0.01653303200, 0.01230743800;
+0.01491689300, 0.02278097800;
+-0.00390021000, -0.00599679960;
+0.00987391320, -0.01527627300;
+-0.01292332700, -0.01725711000;
+-0.00611290270, -0.00008627481;
+0.01173359600, 0.00525802720;
+0.00023658130, 0.00219369170;
+0.00527818840, -0.01008107600;
+-0.00805139170, -0.01193710000;
+-0.01872491200, 0.00860016370;
+-0.01259698500, -0.01756964500;
+-0.00088728350, -0.01512096000;
+-0.01535824800, -0.01295353000;
+0.02003583600, -0.00614556620;
+-0.00662873120, 0.00258939970;
+0.02039917600, -0.00012182475;
+-0.00137236040, -0.00075700965;
+-0.01450454300, -0.00207827570;
+0.01535757000, 0.00707412260;
+-0.01704817500, -0.00431544930;
+0.00832049550, -0.01881308400;
+0.00788077160, -0.01301967100;
+-0.00535764100, -0.02307963700;
+0.01684468900, -0.01761785700;
+-0.00494331070, -0.02023850500;
+-0.01844518300, -0.01120281300;
+0.01030114100, -0.00246253960;
+0.00737732820, 0.01367079900;
+0.00930385080, -0.01638037700;
+0.01184141400, -0.00128950800;
+-0.02316092800, 0.00518400230;
+0.01259350700, 0.01851841100;
+0.00032334407, 0.00708510310;
+-0.00380004070, 0.01466849000;
+0.00572216670, 0.02763848700;
+0.01450073300, 0.02130598400;
+-0.00061716695, 0.01299269100;
+0.00032716641, 0.02931071500;
+0.00102466110, 0.01050204800;
+-0.00339657480, -0.00413612190;
+0.01311750600, -0.00235546960;
+0.00609382540, 0.00646251750;
+-0.00126880700, 0.01452674700;
+-0.00768738760, 0.01051401500;
+0.01058750900, 0.00661389120;
+-0.00857671250, 0.00564091490;
+0.00603614820, 0.00790147090;
+-0.00383731350, 0.01219309200;
+-0.00750234770, -0.00565016960;
+-0.01197183700, -0.01579100100;
+0.00940025550, 0.01919136600;
+-0.00001261024, 0.02626728500;
+-0.01119718500, 0.00144775010;
+0.02249039100, 0.02039881000;
+-0.00379732890, -0.01609038000;
+0.01565908800, -0.00588713290;
+0.00875294490, 0.00373467350;
+0.00256396420, 0.01632317700;
+-0.00451786920, -0.00480455360;
+-0.00790291250, 0.00345569200;
+-0.01455265100, -0.01382336400;
+0.01350253300, 0.00019931557;
+-0.00674284800, 0.00449999260;
+0.02374096100, -0.00641924120;
+-0.02211973900, -0.00053401624;
+0.01207118500, -0.00983951590;
+-0.00702998800, -0.02173194800;
+0.00650176870, -0.03939793300;
+0.01983586800, -0.01688164300;
+-0.00523048000, -0.01586871000;
+-0.00024937096, -0.00762047480;
+0.01848711000, -0.02202737800;
+0.00320481510, 0.00115403630;
+-0.00339570830, -0.00416020450;
+0.00292867830, -0.00800372950;
+-0.00085958037, -0.00702345910;
+-0.00661261130, -0.00240180080;
+0.00915375200, -0.00072184277;
+-0.02097610500, 0.00164769990;
+0.00794447800, 0.00132242720;
+0.00417510660, -0.00030181197;
+-0.00634899330, -0.01677800600;
+0.00999671400, -0.00762022470;
+-0.01004270400, 0.00644466200;
+0.00245296560, -0.00189053390;
+-0.00558639080, -0.00629843410;
+0.00063566426, 0.00748679840;
+-0.00197196620, -0.01231472900;
+-0.00858143530, -0.00982022010;
+0.01118201300, -0.00005704770;
+-0.01452712100, 0.00525489720;
+0.00556580190, -0.00614996780;
+0.00722027820, 0.00126887710;
+-0.00106240920, 0.00248088000;
+0.00266047030, 0.00506315460;
+-0.01615042800, -0.00024735048;
+0.00690899540, -0.02230154100;
+0.00016806370, -0.00703005220;
+0.01157961100, -0.00046847502;
+-0.00569027140, -0.00074088147;
+0.00279183700, -0.01112727400;
+0.01159847500, -0.01397495400;
+-0.01618859800, -0.03057030300;
+0.00051325767, -0.00865006790;
+0.00549707250, 0.00357878980;
+-0.00970590920, -0.00253900500;
+0.01545455300, 0.00679668570;
+-0.01066617100, -0.00621207310;
+0.00575491460, -0.00657640880;
+-0.00605682630, 0.01005724800;
+-0.00028086638, 0.01720437100;
+0.00314218690, -0.00112510120;
+-0.01232869600, 0.00529184200;
+0.00156071380, 0.00332171610;
+0.01586504900, -0.00687919610;
+-0.00700561370, 0.00627937710;
+0.00416313760, 0.01338622200;
+-0.00469103860, -0.00207565840;
+-0.00515967500, -0.02677465800;
+-0.00329796470, -0.02347414900;
+0.00458593860, -0.01994345300;
+0.00449779160, -0.01500910700;
+-0.01450006100, -0.02433756900;
+-0.00982530810, 0.00515777190;
+0.02169452900, 0.00395559630;
+-0.02732960700, -0.01296309000;
+-0.00943391470, 0.00970794530;
+0.00883871190, -0.00847782470;
+-0.00641242250, -0.00159739350;
+-0.00622211610, -0.00023249961;
+0.01103231400, 0.01345929400;
+-0.01604871600, 0.01444581500;
+0.00408581520, 0.00391976300;
+-0.00585816760, -0.00136833520;
+0.01285105500, -0.01355861400;
+-0.01282979900, -0.02075753400;
+0.00240514790, -0.00583408830;
+-0.00821620830, -0.00917124260;
+0.01161346900, 0.00589059210;
+-0.00416354780, 0.01478035400;
+0.00910147760, 0.00162353340;
+0.00645020290, -0.00029596225;
+0.00664065850, 0.00334591190;
+-0.01628421500, -0.01667108200;
+0.01017428900, -0.01182986900;
+-0.01740919900, 0.00421845090;
+0.01419528300, -0.00170271310;
+-0.01832044100, -0.00271804760;
+0.00478798390, 0.01451607600;
+-0.01552720100, 0.00680642330;
+0.00557794300, 0.01041172100;
+0.00418925410, -0.00240398610;
+-0.00542981940, -0.01092214200;
+0.01256706900, -0.01379128400;
+-0.01899332900, -0.00274706900;
+0.00907149380, -0.00663018700;
+0.01506829200, -0.00293179520;
+-0.01827722500, -0.00283953570;
+-0.00150598710, 0.00448947120;
+0.00689968130, 0.01392841800;
+0.00838313220, 0.00056270157;
+-0.01889400800, 0.00445784700;
+0.01083541500, -0.00433810380;
+0.00975696280, -0.01959502400;
+-0.00687770220, -0.01815605200;
+-0.01112640300, -0.01494359600;
+-0.00472052850, -0.01500657700;
+-0.01367499100, -0.00267410440;
+0.01489290400, -0.00432076310;
+-0.00262017640, -0.00290406560;
+-0.00261222360, 0.00098096246;
+0.00452692100, -0.01865841900;
+0.00118941740, 0.00323370830;
+0.00029588303, 0.00675359970;
+-0.01081920700, 0.02384338300;
+];
 
 dy = bvar_data(:, 1);
 dx = bvar_data(:, 2);
diff --git a/tests/conditional_forecasts/2/fsdat_simul.m b/tests/conditional_forecasts/2/fsdat_simul.m
index 159612e577c3b91d585970404c9cf576c0e8a8d6..d4f4a8066f17ba49faad004256693ebc1b9b01e9 100644
--- a/tests/conditional_forecasts/2/fsdat_simul.m
+++ b/tests/conditional_forecasts/2/fsdat_simul.m
@@ -1,828 +1,828 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/dates/fsdat_simul.m b/tests/dates/fsdat_simul.m
index 6ce6114a74ac15de5a19ef809a7ebff628c420d4..bc2c5a4fe385847554a2c724d095c71c73b3f69a 100644
--- a/tests/dates/fsdat_simul.m
+++ b/tests/dates/fsdat_simul.m
@@ -2,830 +2,830 @@ INIT__ = '1950Q1';
 FREQ__ = 4;
 
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/decision_rules/third_order/comparison_policy_functions_dynare_mathematica.m b/tests/decision_rules/third_order/comparison_policy_functions_dynare_mathematica.m
index dea593c266c3b41f32e86aaf90c3217cf358c15d..4b4c0adde49739f82bb58a52fa99bdc13842120e 100644
--- a/tests/decision_rules/third_order/comparison_policy_functions_dynare_mathematica.m
+++ b/tests/decision_rules/third_order/comparison_policy_functions_dynare_mathematica.m
@@ -1,8 +1,8 @@
 %read in the FV et al. policy functions derived from Mathematica
 if ~isoctave() && ~matlab_ver_less_than('8.4')
-    websave('FV_2011_policyfunctions.mat','http://www.dynare.org/Datasets/FV_2011_policyfunctions.mat', weboptions('Timeout', 30))
+   websave('FV_2011_policyfunctions.mat','http://www.dynare.org/Datasets/FV_2011_policyfunctions.mat', weboptions('Timeout', 30))
 else
-    urlwrite('http://www.dynare.org/Datasets/FV_2011_policyfunctions.mat','FV_2011_policyfunctions.mat')
+   urlwrite('http://www.dynare.org/Datasets/FV_2011_policyfunctions.mat','FV_2011_policyfunctions.mat')
 end
 
 load FV_2011_policyfunctions
@@ -79,9 +79,9 @@ end
 gxxx_dyn=zeros(size(gxxx));
 for endo_iter_1=1:nx
     for endo_iter_2=1:nx
-        for endo_iter_3=1:nx
+         for endo_iter_3=1:nx
             gxxx_dyn(nu+endo_iter_1,nu+endo_iter_2,nu+endo_iter_3,:)=dr.ghxxx(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nx*nx+(FV_endo_state_order(endo_iter_2)-1)*nx+FV_endo_state_order(endo_iter_3));
-        end
+         end
     end
 end
 
@@ -95,21 +95,21 @@ end
 
 for endo_iter_1=1:nx
     for endo_iter_2=1:nx
-        for exo_iter=1:nu
+         for exo_iter=1:nu
             gxxx_dyn(nu+endo_iter_1,nu+endo_iter_2,exo_iter,:)=dr.ghxxu(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nx*nu+(FV_endo_state_order(endo_iter_2)-1)*nu+FV_exo_order(exo_iter));
             gxxx_dyn(exo_iter,nu+endo_iter_2,nu+endo_iter_1,:)=dr.ghxxu(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nx*nu+(FV_endo_state_order(endo_iter_2)-1)*nu+FV_exo_order(exo_iter));
             gxxx_dyn(nu+endo_iter_1,exo_iter,nu+endo_iter_2,:)=dr.ghxxu(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nx*nu+(FV_endo_state_order(endo_iter_2)-1)*nu+FV_exo_order(exo_iter));      
-        end
+         end
     end
 end
 
 for endo_iter_1=1:nx
     for exo_iter_1=1:nu
-        for exo_iter_2=1:nu
+         for exo_iter_2=1:nu
             gxxx_dyn(nu+endo_iter_1,exo_iter_1,exo_iter_2,:)=dr.ghxuu(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nu*nu+(FV_exo_order(exo_iter_1)-1)*nu+FV_exo_order(exo_iter_2));
             gxxx_dyn(exo_iter_1,nu+endo_iter_1,exo_iter_2,:)=dr.ghxuu(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nu*nu+(FV_exo_order(exo_iter_1)-1)*nu+FV_exo_order(exo_iter_2));
             gxxx_dyn(exo_iter_1,exo_iter_2,nu+endo_iter_1,:)=dr.ghxuu(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nu*nu+(FV_exo_order(exo_iter_1)-1)*nu+FV_exo_order(exo_iter_2));
-        end
+         end
     end
 end
 
diff --git a/tests/ep/ar_steadystate.m b/tests/ep/ar_steadystate.m
index d040472426e0545a67e4a7222ebb7e8ee6f7e654..966331f8e29d9a92e282d4b9b3a179f664956c54 100644
--- a/tests/ep/ar_steadystate.m
+++ b/tests/ep/ar_steadystate.m
@@ -1,8 +1,8 @@
 function [ys, info] = ar_steadystate(ys, exogenous)
 % Steady state routine for ar.mod (First order autoregressive process)
-
+    
 global M_
-
+    
 info = 0;
 
 ys(1)=M_.params(2);
diff --git a/tests/ep/exact_solution.m b/tests/ep/exact_solution.m
index 64b1aa7dc636fc0719bf9d0b3f3b4b08f714a247..5b525797fa2c14cdec7228063d1773f575acff97 100644
--- a/tests/ep/exact_solution.m
+++ b/tests/ep/exact_solution.m
@@ -1,30 +1,30 @@
 function y=exact_solution(M,oo,n)
-beta = M.params(1);
-theta = M.params(2);
-rho = M.params(3);
-xbar = M.params(4);
-sigma2 = M.Sigma_e;
-
-if beta*exp(theta*xbar+.5*theta^2*sigma2/(1-rho)^2)>1-eps
-    disp('The model doesn''t have a solution!')
-    return
-end
-
-i = 1:n;
-a = theta*xbar*i+(theta^2*sigma2)/(2*(1-rho)^2)*(i-2*rho*(1-rho.^i)/(1-rho)+rho^2*(1-rho.^(2*i))/(1-rho^2));
-b = theta*rho*(1-rho.^i)/(1-rho);
-
-x = oo.endo_simul(2,:);
-xhat = x-xbar;
-
-n2 = size(x,2);
-
-y = zeros(1,n2);
-
-
-for j=1:n2
-    y(j) = sum(beta.^i.*exp(a+b*xhat(j)));
-end
-
-disp(sum(beta.^i.*exp(theta*xbar*i)))
-disp(sum(beta.^i.*exp(a)))
\ No newline at end of file
+    beta = M.params(1);
+    theta = M.params(2);
+    rho = M.params(3);
+    xbar = M.params(4);
+    sigma2 = M.Sigma_e;
+    
+    if beta*exp(theta*xbar+.5*theta^2*sigma2/(1-rho)^2)>1-eps
+        disp('The model doesn''t have a solution!')
+        return
+    end
+    
+    i = 1:n;
+    a = theta*xbar*i+(theta^2*sigma2)/(2*(1-rho)^2)*(i-2*rho*(1-rho.^i)/(1-rho)+rho^2*(1-rho.^(2*i))/(1-rho^2));
+    b = theta*rho*(1-rho.^i)/(1-rho);
+    
+    x = oo.endo_simul(2,:);
+    xhat = x-xbar;
+    
+    n2 = size(x,2);
+    
+    y = zeros(1,n2);
+    
+    
+    for j=1:n2
+        y(j) = sum(beta.^i.*exp(a+b*xhat(j)));
+    end
+    
+    disp(sum(beta.^i.*exp(theta*xbar*i)))
+    disp(sum(beta.^i.*exp(a)))
\ No newline at end of file
diff --git a/tests/ep/rbcii_steady_state.m b/tests/ep/rbcii_steady_state.m
index dd79d28a4b2131b988965574203710a9d41cd8e2..5fc2dcb1ae5bb7aa7ef7dcd2db765c1cdbdfec40 100644
--- a/tests/ep/rbcii_steady_state.m
+++ b/tests/ep/rbcii_steady_state.m
@@ -1,61 +1,61 @@
-function [ys_, params, info] = rbcii_steady_state(ys_, exo_, params)
-
-% Flag initialization (equal to zero if the deterministic steady state exists) 
-info = 0;
-
-% efficiency
-ys_(13)=0;
-
-% Efficiency
-ys_(12)=params(8);
-
-% Steady state ratios 
-Output_per_unit_of_Capital=((1/params(1)-1+params(6))/params(4))^(1/(1-params(5)));
-Consumption_per_unit_of_Capital=Output_per_unit_of_Capital-params(6);
-Labour_per_unit_of_Capital=(((Output_per_unit_of_Capital/ys_(12))^params(5)-params(4))/(1-params(4)))^(1/params(5));
-Output_per_unit_of_Labour=Output_per_unit_of_Capital/Labour_per_unit_of_Capital;
-Consumption_per_unit_of_Labour=Consumption_per_unit_of_Capital/Labour_per_unit_of_Capital;
-
-% Steady state share of capital revenues in total revenues (calibration check) 
-ShareOfCapital=params(4)/(params(4)+(1-params(4))*Labour_per_unit_of_Capital^params(5));
-
-% Steady state level of labour
-ys_(3)=1/(1+Consumption_per_unit_of_Labour/((1-params(4))*params(2)/(1-params(2))*Output_per_unit_of_Labour^(1-params(5))));
-
-% Steady state level of consumption
-ys_(4)=Consumption_per_unit_of_Labour*ys_(3);
-
-% Steady state level of physical capital stock
-ys_(1)=ys_(3)/Labour_per_unit_of_Capital;
-
-% Steady state level of output
-ys_(2)=Output_per_unit_of_Capital*ys_(1);
-
-% Steady state level of investment
-ys_(5)=params(6)*ys_(1);
-
-% Steady state level of the expected term appearing in the Euler equation
-ys_(14)=(ys_(4)^params(2)*(1-ys_(3))^(1-params(2)))^(1-params(3))/ys_(4)*(1+params(4)*(ys_(2)/ys_(1))^(1-params(5))-params(6));
-
-% Steady state level of output in the unconstrained regime (positive investment)
-ys_(6)=ys_(2);
-
-% Steady state level of labour in the unconstrained regime
-ys_(7)=ys_(3);
-
-% Steady state level of consumption in the unconstrained regime 
-ys_(8)=ys_(4);
-
-% Steady state level of labour in the constrained regime (noinvestment)
-[lss,info] = l_solver(ys_(3),params(4),params(5),params(2),params(8),ys_(1),100);
-if info, return, end
-ys_(10) = lss;
-
-% Steady state level of consumption in the constrained regime
-ys_(11)=params(8)*(params(4)*ys_(1)^params(5)+(1-params(4))*ys_(10)^params(5))^(1/params(5));
-
-% Steady state level of output in the constrained regime
-ys_(9)=ys_(11);
+function [ys_, params, info] = rbcii_steadystate2(ys_, exo_, params)
+     
+    % Flag initialization (equal to zero if the deterministic steady state exists) 
+    info = 0;
+    
+    % efficiency
+    ys_(13)=0;
+    
+    % Efficiency
+    ys_(12)=params(8);
+    
+    % Steady state ratios 
+    Output_per_unit_of_Capital=((1/params(1)-1+params(6))/params(4))^(1/(1-params(5)));
+    Consumption_per_unit_of_Capital=Output_per_unit_of_Capital-params(6);
+    Labour_per_unit_of_Capital=(((Output_per_unit_of_Capital/ys_(12))^params(5)-params(4))/(1-params(4)))^(1/params(5));
+    Output_per_unit_of_Labour=Output_per_unit_of_Capital/Labour_per_unit_of_Capital;
+    Consumption_per_unit_of_Labour=Consumption_per_unit_of_Capital/Labour_per_unit_of_Capital;
+
+    % Steady state share of capital revenues in total revenues (calibration check) 
+    ShareOfCapital=params(4)/(params(4)+(1-params(4))*Labour_per_unit_of_Capital^params(5));
+
+    % Steady state level of labour
+    ys_(3)=1/(1+Consumption_per_unit_of_Labour/((1-params(4))*params(2)/(1-params(2))*Output_per_unit_of_Labour^(1-params(5))));
+    
+    % Steady state level of consumption
+    ys_(4)=Consumption_per_unit_of_Labour*ys_(3);
+    
+    % Steady state level of physical capital stock
+    ys_(1)=ys_(3)/Labour_per_unit_of_Capital;
+    
+    % Steady state level of output
+    ys_(2)=Output_per_unit_of_Capital*ys_(1);
+    
+    % Steady state level of investment
+    ys_(5)=params(6)*ys_(1);
+    
+    % Steady state level of the expected term appearing in the Euler equation
+    ys_(14)=(ys_(4)^params(2)*(1-ys_(3))^(1-params(2)))^(1-params(3))/ys_(4)*(1+params(4)*(ys_(2)/ys_(1))^(1-params(5))-params(6));
+
+    % Steady state level of output in the unconstrained regime (positive investment)
+    ys_(6)=ys_(2);
+
+    % Steady state level of labour in the unconstrained regime
+    ys_(7)=ys_(3);
+    
+    % Steady state level of consumption in the unconstrained regime 
+    ys_(8)=ys_(4);
+        
+    % Steady state level of labour in the constrained regime (noinvestment)
+    [lss,info] = l_solver(ys_(3),params(4),params(5),params(2),params(8),ys_(1),100);
+    if info, return, end
+    ys_(10) = lss;
+
+    % Steady state level of consumption in the constrained regime
+    ys_(11)=params(8)*(params(4)*ys_(1)^params(5)+(1-params(4))*ys_(10)^params(5))^(1/params(5));
+    
+    % Steady state level of output in the constrained regime
+    ys_(9)=ys_(11);
 
 end
 
@@ -63,26 +63,26 @@ end
 
 
 function r = p0(labour,alpha,psi,theta,effstar,kstar)
-r = labour * ( alpha*kstar^psi/labour^psi + 1-alpha + theta*(1-alpha)/(1-theta)/effstar^psi ) - theta*(1-alpha)/(1-theta)/effstar^psi;
+    r = labour * ( alpha*kstar^psi/labour^psi + 1-alpha + theta*(1-alpha)/(1-theta)/effstar^psi ) - theta*(1-alpha)/(1-theta)/effstar^psi;
 end
-
+    
 function d = p1(labour,alpha,psi,theta,effstar,kstar)
-d = alpha*(1-psi)*kstar^psi/labour^psi + 1-alpha + theta*(1-alpha)/(1-alpha)/effstar^psi;
+    d = alpha*(1-psi)*kstar^psi/labour^psi + 1-alpha + theta*(1-alpha)/(1-alpha)/effstar^psi;
 end
 
 function [labour,info] = l_solver(labour,alpha,psi,theta,effstar,kstar,maxiter)
-iteration = 1; info = 0;
-r = p0(labour,alpha,psi,theta,effstar,kstar);
-condition = abs(r);
-while condition
-    if iteration==maxiter
-        info = 1;
-        break
-    end
-    d = p1(labour,alpha,psi,theta,effstar,kstar);
-    labour = labour - r/d;
+    iteration = 1; info = 0;
     r = p0(labour,alpha,psi,theta,effstar,kstar);
-    condition = abs(r)>1e-9;
-    iteration = iteration + 1; 
-end
+    condition = abs(r);
+    while condition
+        if iteration==maxiter
+            info = 1;
+            break
+        end
+        d = p1(labour,alpha,psi,theta,effstar,kstar);
+        labour = labour - r/d;
+        r = p0(labour,alpha,psi,theta,effstar,kstar);
+        condition = abs(r)>1e-9;
+        iteration = iteration + 1; 
+    end
 end
\ No newline at end of file
diff --git a/tests/estimation/fsdat_simul.m b/tests/estimation/fsdat_simul.m
index 159612e577c3b91d585970404c9cf576c0e8a8d6..d4f4a8066f17ba49faad004256693ebc1b9b01e9 100644
--- a/tests/estimation/fsdat_simul.m
+++ b/tests/estimation/fsdat_simul.m
@@ -1,828 +1,828 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/expectations/expectation_ss_old_steadystate.m b/tests/expectations/expectation_ss_old_steadystate.m
index 1b230e4b02fb22607d799afb4e7be90d11b77c97..bfd46d82a7f0eb7c3fbfc4879b029d12b64a648e 100644
--- a/tests/expectations/expectation_ss_old_steadystate.m
+++ b/tests/expectations/expectation_ss_old_steadystate.m
@@ -1,12 +1,12 @@
 function [ys_, check_] = expectation_ss_old_steadystate(ys_orig_, exo_)
-ys_=zeros(6,1);
-global M_
-ys_(4)=0;
-ys_(6)=0;
-ys_(5)=0.3333333333333333;
-ys_(3)=((1/M_.params(1)-(1-M_.params(4)))/(M_.params(3)*ys_(5)^(1-M_.params(3))))^(1/(M_.params(3)-1));
-ys_(1)=ys_(5)^(1-M_.params(3))*ys_(3)^M_.params(3);
-ys_(2)=ys_(1)-M_.params(4)*ys_(3);
-M_.params(5)=(1-M_.params(3))*ys_(1)/(ys_(2)*ys_(5)^(1+M_.params(6)));
-check_=0;
+    ys_=zeros(6,1);
+    global M_
+    ys_(4)=0;
+    ys_(6)=0;
+    ys_(5)=0.3333333333333333;
+    ys_(3)=((1/M_.params(1)-(1-M_.params(4)))/(M_.params(3)*ys_(5)^(1-M_.params(3))))^(1/(M_.params(3)-1));
+    ys_(1)=ys_(5)^(1-M_.params(3))*ys_(3)^M_.params(3);
+    ys_(2)=ys_(1)-M_.params(4)*ys_(3);
+    M_.params(5)=(1-M_.params(3))*ys_(1)/(ys_(2)*ys_(5)^(1+M_.params(6)));
+    check_=0;
 end
diff --git a/tests/fataltest.m b/tests/fataltest.m
index 1ea213403a72197ffae99d7a74a4442467c35192..a23db431124a39b27d5d3bde662f34277192058c 100644
--- a/tests/fataltest.m
+++ b/tests/fataltest.m
@@ -1,4 +1,4 @@
-function fataltest(a,b,n)
-if max(max(abs(a)-abs(b))) > 1e-5
+function test(a,b,n)
+  if max(max(abs(a)-abs(b))) > 1e-5
     error(['Test error in test ' int2str(n)])
-end
\ No newline at end of file
+  end
\ No newline at end of file
diff --git a/tests/fs2000/fsdat_simul.m b/tests/fs2000/fsdat_simul.m
index 159612e577c3b91d585970404c9cf576c0e8a8d6..d4f4a8066f17ba49faad004256693ebc1b9b01e9 100644
--- a/tests/fs2000/fsdat_simul.m
+++ b/tests/fs2000/fsdat_simul.m
@@ -1,828 +1,828 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/fs2000/fsdat_simul_dseries.m b/tests/fs2000/fsdat_simul_dseries.m
index 5fa6d19a3b43ee16f7f58da00bd028fe5e195ac1..2dd9c2e2d68b7943253ac9e03523213fdc62459e 100644
--- a/tests/fs2000/fsdat_simul_dseries.m
+++ b/tests/fs2000/fsdat_simul_dseries.m
@@ -7,822 +7,822 @@ NAMES__ = {'P_obs'; 'Y_obs'; 'gp_obs'; 'gy_obs'};
 TEX__ = {'P\_obs'; 'Y\_obs'; 'gp\_obs'; 'gy\_obs'};
 
 P_obs = [
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407];
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407];
 
 Y_obs = [
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987];
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987];
 
 gp_obs = [
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703];
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703];
 
 gy_obs = [
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411];
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411];
 
diff --git a/tests/fs2000/fsdat_simul_missing_obs.m b/tests/fs2000/fsdat_simul_missing_obs.m
index cc5674e62501d44e7f27e914b11f19cdfcde56dc..fe9dc57794097461946cbe594ffdb53e3fac91c3 100644
--- a/tests/fs2000/fsdat_simul_missing_obs.m
+++ b/tests/fs2000/fsdat_simul_missing_obs.m
@@ -1,416 +1,416 @@
 % Generated data, used by fs2000.mod
 
 gy_obs          =[
-    NaN
-    1.0002599
-    0.99104664
-    1.0321162
-    1.0223545
-    1.0043614
-    0.98626929
-    1.0092127
-    1.0357197
-    1.0150827
-    1.0051548
-    0.98465775
-    0.99132132
-    0.99904153
-    1.0044641
-    1.0179198
-    1.0113462
-    0.99409421
-    0.99904293
-    1.0448336
-    0.99932433
-    1.0057004
-    0.99619787
-    1.0267504
-    1.0077645
-    1.0058026
-    1.0025891
-    0.9939097
-    0.99604693
-    0.99908569
-    1.0151094
-    0.99348134
-    1.0039124
-    1.0145805
-    0.99800868
-    0.98578138
-    1.0065771
-    0.99843919
-    0.97979062
-    0.98413351
-    0.96468174
-    1.0273857
-    1.0225211
-    0.99958667
-    1.0111157
-    1.0099585
-    0.99480311
-    1.0079265
-    0.98924573
-    1.0070613
-    1.0075706
-    0.9937151
-    1.0224711
-    1.0018891
-    0.99051863
-    1.0042944
-    1.0184055
-    0.99419508
-    0.99756624
-    1.0015983
-    0.9845772
-    1.0004407
-    1.0116237
-    0.9861885
-    1.0073094
-    0.99273355
-    1.0013224
-    0.99777979
-    1.0301686
-    0.96809556
-    0.99917088
-    0.99949253
-    0.96590004
-    1.0083938
-    0.96662298
-    1.0221454
-    1.0069792
-    1.0343996
-    1.0066531
-    1.0072525
-    0.99743563
-    0.99723703
-    1.000372
-    0.99013917
-    1.0095223
-    0.98864268
-    0.98092242
-    0.98886488
-    1.0030341
-    1.01894
-    0.99155059
-    0.99533235
-    0.99734316
-    1.0047356
-    1.0082737
-    0.98425116
-    0.99949212
-    1.0055899
-    1.0065075
-    0.99385069
-    0.98867975
-    0.99804843
-    1.0184038
-    0.99301902
-    1.0177222
-    1.0051924
-    1.0187852
-    1.0098985
-    1.0097172
-    1.0145811
-    0.98721038
-    1.0361722
-    1.0105821
-    0.99469309
-    0.98626785
-    1.013871
-    0.99858924
-    0.99302637
-    1.0042186
-    0.99623745
-    0.98545708
-    1.0225435
-    1.0011861
-    1.0130321
-    0.97861347
-    1.0228193
-    0.99627435
-    1.0272779
-    1.0075172
-    1.0096762
-    1.0129306
-    0.99966549
-    1.0262882
-    1.0026914
-    1.0061475
-    1.009523
-    1.0036127
-    0.99762992
-    0.99092634
-    1.0058469
-    0.99887292
-    1.0060653
-    0.98673557
-    0.98895709
-    0.99111967
-    0.990118
-    0.99788054
-    0.97054709
-    1.0099157
-    1.0107431
-    0.99518695
-    1.0114048
-    0.99376019
-    1.0023369
-    0.98783327
-    1.0051727
-    1.0100462
-    0.98607387
-    1.0000064
-    0.99692442
-    1.012225
-    0.99574078
-    0.98642833
-    0.99008207
-    1.0197359
-    1.0112849
-    0.98711069
-    0.99402748
-    1.0242141
-    1.0135349
-    0.99842505
-    1.0130714
-    0.99887044
-    1.0059058
-    1.0185998
-    1.0073314
-    0.98687706
-    1.0084551
-    0.97698964
-    0.99482714
-    1.0015302
-    1.0105331
-    1.0261767
-    1.0232822
-    1.0084176
-    0.99785167
-    0.99619733
-    1.0055223
-    1.0076326
-    0.99205461
-    1.0030587
-    1.0137012
-    1.0145878
-    1.0190297
-    1.0000681
-    1.0153894
-    1.0140649
-    1.0007236
-    0.97961463
-    1.0125257
-    1.0169503
-    NaN
-    1.0221185
+      NaN
+      1.0002599
+     0.99104664
+      1.0321162
+      1.0223545
+      1.0043614
+     0.98626929
+      1.0092127
+      1.0357197
+      1.0150827
+      1.0051548
+     0.98465775
+     0.99132132
+     0.99904153
+      1.0044641
+      1.0179198
+      1.0113462
+     0.99409421
+     0.99904293
+      1.0448336
+     0.99932433
+      1.0057004
+     0.99619787
+      1.0267504
+      1.0077645
+      1.0058026
+      1.0025891
+      0.9939097
+     0.99604693
+     0.99908569
+      1.0151094
+     0.99348134
+      1.0039124
+      1.0145805
+     0.99800868
+     0.98578138
+      1.0065771
+     0.99843919
+     0.97979062
+     0.98413351
+     0.96468174
+      1.0273857
+      1.0225211
+     0.99958667
+      1.0111157
+      1.0099585
+     0.99480311
+      1.0079265
+     0.98924573
+      1.0070613
+      1.0075706
+      0.9937151
+      1.0224711
+      1.0018891
+     0.99051863
+      1.0042944
+      1.0184055
+     0.99419508
+     0.99756624
+      1.0015983
+      0.9845772
+      1.0004407
+      1.0116237
+      0.9861885
+      1.0073094
+     0.99273355
+      1.0013224
+     0.99777979
+      1.0301686
+     0.96809556
+     0.99917088
+     0.99949253
+     0.96590004
+      1.0083938
+     0.96662298
+      1.0221454
+      1.0069792
+      1.0343996
+      1.0066531
+      1.0072525
+     0.99743563
+     0.99723703
+       1.000372
+     0.99013917
+      1.0095223
+     0.98864268
+     0.98092242
+     0.98886488
+      1.0030341
+        1.01894
+     0.99155059
+     0.99533235
+     0.99734316
+      1.0047356
+      1.0082737
+     0.98425116
+     0.99949212
+      1.0055899
+      1.0065075
+     0.99385069
+     0.98867975
+     0.99804843
+      1.0184038
+     0.99301902
+      1.0177222
+      1.0051924
+      1.0187852
+      1.0098985
+      1.0097172
+      1.0145811
+     0.98721038
+      1.0361722
+      1.0105821
+     0.99469309
+     0.98626785
+       1.013871
+     0.99858924
+     0.99302637
+      1.0042186
+     0.99623745
+     0.98545708
+      1.0225435
+      1.0011861
+      1.0130321
+     0.97861347
+      1.0228193
+     0.99627435
+      1.0272779
+      1.0075172
+      1.0096762
+      1.0129306
+     0.99966549
+      1.0262882
+      1.0026914
+      1.0061475
+       1.009523
+      1.0036127
+     0.99762992
+     0.99092634
+      1.0058469
+     0.99887292
+      1.0060653
+     0.98673557
+     0.98895709
+     0.99111967
+       0.990118
+     0.99788054
+     0.97054709
+      1.0099157
+      1.0107431
+     0.99518695
+      1.0114048
+     0.99376019
+      1.0023369
+     0.98783327
+      1.0051727
+      1.0100462
+     0.98607387
+      1.0000064
+     0.99692442
+       1.012225
+     0.99574078
+     0.98642833
+     0.99008207
+      1.0197359
+      1.0112849
+     0.98711069
+     0.99402748
+      1.0242141
+      1.0135349
+     0.99842505
+      1.0130714
+     0.99887044
+      1.0059058
+      1.0185998
+      1.0073314
+     0.98687706
+      1.0084551
+     0.97698964
+     0.99482714
+      1.0015302
+      1.0105331
+      1.0261767
+      1.0232822
+      1.0084176
+     0.99785167
+     0.99619733
+      1.0055223
+      1.0076326
+     0.99205461
+      1.0030587
+      1.0137012
+      1.0145878
+      1.0190297
+      1.0000681
+      1.0153894
+      1.0140649
+      1.0007236
+     0.97961463
+      1.0125257
+      1.0169503
+      NaN
+      1.0221185
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0115853
-    1.0167502
-    1.0068957
-    1.0138189
-    1.0258364
-    1.0243817
-    1.017373
-    1.0020171
-    1.0003742
-    1.0008974
-    1.0104804
-    1.0116393
-    1.0114294
-    0.99932124
-    0.99461459
-    1.0170349
-    1.0051446
-    1.020639
-    1.0051964
-    1.0093042
-    1.007068
-    1.01086
-    NaN
-    1.0014883
-    1.0117332
-    0.9990095
-    1.0108284
-    1.0103672
-    1.0036722
-    1.0005124
-    1.0190331
-    1.0130978
-    1.007842
-    1.0285436
-    1.0322054
-    1.0213403
-    1.0246486
-    1.0419306
-    1.0258867
-    1.0156316
-    0.99818589
-    0.9894107
-    1.0127584
-    1.0146882
-    1.0136529
-    1.0340107
-    1.0343652
-    1.02971
-    1.0077932
-    1.0198114
-    1.013971
-    1.0061083
-    1.0089573
-    1.0037926
-    1.0082071
-    0.99498155
-    0.99735772
-    0.98765026
-    1.006465
-    1.0196088
-    1.0053233
-    1.0119974
-    1.0188066
-    1.0029302
-    1.0183459
-    1.0034218
-    1.0158799
-    0.98824798
-    1.0274357
-    1.0168832
-    1.0180641
-    1.0294657
-    0.98864091
-    1.0358326
-    0.99889969
-    1.0178322
-    0.99813566
-    1.0073549
-    1.0215985
-    1.0084245
-    1.0080939
-    1.0157021
-    1.0075815
-    1.0032633
-    1.0117871
-    1.0209276
-    1.0077569
-    0.99680958
-    1.0120266
-    1.0017625
-    1.0138811
-    1.0198358
-    1.0059629
-    1.0115416
-    1.0319473
-    1.0167074
-    1.0116111
-    1.0048627
-    1.0217622
-    1.0125221
-    1.0142045
-    0.99792469
-    0.99823971
-    0.99561547
-    0.99850373
-    0.9898464
-    1.0030963
-    1.0051373
-    1.0004213
-    1.0144117
-    0.97185592
-    0.9959518
-    1.0073529
-    1.0051603
-    0.98642572
-    0.99433423
-    1.0112131
-    1.0007695
-    1.0176867
-    1.0134363
-    0.99926191
-    0.99879835
-    0.99878754
-    1.0331374
-    1.0077797
-    1.0127221
-    1.0047393
-    1.0074106
-    0.99784213
-    1.0056495
-    1.0057708
-    0.98817494
-    0.98742176
-    0.99930555
-    1.0000687
-    1.0129754
-    1.009529
-    1.0226731
-    1.0149534
-    1.0164295
-    1.0239469
-    1.0293458
-    1.026199
-    1.0197525
-    1.0126818
-    1.0054473
-    1.0254423
-    1.0069461
-    1.0153135
-    1.0337515
-    1.0178187
-    1.0240469
-    1.0079489
-    1.0186953
-    1.0008628
-    1.0113799
-    1.0140118
-    1.0168007
-    1.011441
-    0.98422774
-    0.98909729
-    1.0157859
-    1.0151586
-    0.99756232
-    0.99497777
-    1.0102841
-    1.0221659
-    0.9937759
-    0.99877193
-    1.0079433
-    0.99667692
-    1.0095959
-    1.0128804
-    1.0156949
-    1.0111951
-    1.0228887
-    1.0122083
-    1.0190197
-    1.0074927
-    1.0268096
-    0.99689352
-    0.98948474
-    1.0024938
-    1.0105543
-    1.014116
-    1.0141217
-    1.0056504
-    1.0101026
-    1.0105069
-    0.99619053
-    1.0059439
-    0.99449473
-    0.99482458
-    1.0037702
-    1.0068087
-    0.99575975
-    1.0030815
-    1.0334014
-    0.99879386
-    0.99625634
-    NaN
-    0.99233844
+      1.0079715
+      1.0115853
+      1.0167502
+      1.0068957
+      1.0138189
+      1.0258364
+      1.0243817
+       1.017373
+      1.0020171
+      1.0003742
+      1.0008974
+      1.0104804
+      1.0116393
+      1.0114294
+     0.99932124
+     0.99461459
+      1.0170349
+      1.0051446
+       1.020639
+      1.0051964
+      1.0093042
+       1.007068
+        1.01086
+     NaN
+      1.0014883
+      1.0117332
+      0.9990095
+      1.0108284
+      1.0103672
+      1.0036722
+      1.0005124
+      1.0190331
+      1.0130978
+       1.007842
+      1.0285436
+      1.0322054
+      1.0213403
+      1.0246486
+      1.0419306
+      1.0258867
+      1.0156316
+     0.99818589
+      0.9894107
+      1.0127584
+      1.0146882
+      1.0136529
+      1.0340107
+      1.0343652
+        1.02971
+      1.0077932
+      1.0198114
+       1.013971
+      1.0061083
+      1.0089573
+      1.0037926
+      1.0082071
+     0.99498155
+     0.99735772
+     0.98765026
+       1.006465
+      1.0196088
+      1.0053233
+      1.0119974
+      1.0188066
+      1.0029302
+      1.0183459
+      1.0034218
+      1.0158799
+     0.98824798
+      1.0274357
+      1.0168832
+      1.0180641
+      1.0294657
+     0.98864091
+      1.0358326
+     0.99889969
+      1.0178322
+     0.99813566
+      1.0073549
+      1.0215985
+      1.0084245
+      1.0080939
+      1.0157021
+      1.0075815
+      1.0032633
+      1.0117871
+      1.0209276
+      1.0077569
+     0.99680958
+      1.0120266
+      1.0017625
+      1.0138811
+      1.0198358
+      1.0059629
+      1.0115416
+      1.0319473
+      1.0167074
+      1.0116111
+      1.0048627
+      1.0217622
+      1.0125221
+      1.0142045
+     0.99792469
+     0.99823971
+     0.99561547
+     0.99850373
+      0.9898464
+      1.0030963
+      1.0051373
+      1.0004213
+      1.0144117
+     0.97185592
+      0.9959518
+      1.0073529
+      1.0051603
+     0.98642572
+     0.99433423
+      1.0112131
+      1.0007695
+      1.0176867
+      1.0134363
+     0.99926191
+     0.99879835
+     0.99878754
+      1.0331374
+      1.0077797
+      1.0127221
+      1.0047393
+      1.0074106
+     0.99784213
+      1.0056495
+      1.0057708
+     0.98817494
+     0.98742176
+     0.99930555
+      1.0000687
+      1.0129754
+       1.009529
+      1.0226731
+      1.0149534
+      1.0164295
+      1.0239469
+      1.0293458
+       1.026199
+      1.0197525
+      1.0126818
+      1.0054473
+      1.0254423
+      1.0069461
+      1.0153135
+      1.0337515
+      1.0178187
+      1.0240469
+      1.0079489
+      1.0186953
+      1.0008628
+      1.0113799
+      1.0140118
+      1.0168007
+       1.011441
+     0.98422774
+     0.98909729
+      1.0157859
+      1.0151586
+     0.99756232
+     0.99497777
+      1.0102841
+      1.0221659
+      0.9937759
+     0.99877193
+      1.0079433
+     0.99667692
+      1.0095959
+      1.0128804
+      1.0156949
+      1.0111951
+      1.0228887
+      1.0122083
+      1.0190197
+      1.0074927
+      1.0268096
+     0.99689352
+     0.98948474
+      1.0024938
+      1.0105543
+       1.014116
+      1.0141217
+      1.0056504
+      1.0101026
+      1.0105069
+     0.99619053
+      1.0059439
+     0.99449473
+     0.99482458
+      1.0037702
+      1.0068087
+     0.99575975
+      1.0030815
+      1.0334014
+     0.99879386
+     0.99625634
+      NaN
+     0.99233844
 
-                 ];
+];
 
diff --git a/tests/fs2000_ssfile_aux.m b/tests/fs2000_ssfile_aux.m
index 50a40bcfbaca014162603ec90b7aa01998374597..c16bfc96daaebc94fb660700145876bb37fd63f3 100644
--- a/tests/fs2000_ssfile_aux.m
+++ b/tests/fs2000_ssfile_aux.m
@@ -1,4 +1,4 @@
 function [W, e] = fs2000_ssfile_aux(l, n)
-W = l/n;
-e = 1;
+  W = l/n;
+  e = 1;
 end
diff --git a/tests/gsa/data_ca1.m b/tests/gsa/data_ca1.m
index ca003056bded971e9bf00232802e453a096e9cdf..c28fae1a2800e83eda0e6343196e8aeafad2935f 100644
--- a/tests/gsa/data_ca1.m
+++ b/tests/gsa/data_ca1.m
@@ -1,98 +1,98 @@
 data = [0.928467646476  11.8716889412   20  0.418037507392  0.227382377518 ...
-        -0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
-        -0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
-        -0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
-        -0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
-        -0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
-        -0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
-        1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
-        2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
-        1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
-        1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
-        1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
-        1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
-        0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
-        1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
-        1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
-        0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
-        1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
-        1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
-        -0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
-        0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
-        0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
-        -0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
-        2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
-        1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
-        1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
-        1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
-        1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
-        1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
-        0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
-        0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
-        1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
-        0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
-        0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
-        0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
-        0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
-        -0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
-        -0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
-        -0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
-        -1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
-        0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
-        0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
-        0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
-        -0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
-        0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
-        0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
-        0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
-        0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
-        0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
-        0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
-        0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
-        1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
-        1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
-        1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
-        0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
-        0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
-        -0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
-        0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
-        0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
-        0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
-        0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
-        1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
-        0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
-        0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
-        1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
-        1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
-        0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
-        1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
-        0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
-        1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
-        1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
-        1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
-        1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
-        1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
-        1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
-        1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
-        0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
-        1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
-        0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
-        0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
-        0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
-        -0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
-        0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
-        1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
-        1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
-        0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
-       ]; 
-
+-0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
+-0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
+-0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
+-0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
+-0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
+-0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
+1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
+2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
+1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
+1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
+1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
+1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
+0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
+1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
+1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
+0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
+1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
+1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
+-0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
+0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
+0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
+-0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
+2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
+1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
+1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
+1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
+1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
+1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
+0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
+0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
+1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
+0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
+0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
+0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
+0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
+-0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
+-0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
+-0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
+-1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
+0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
+0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
+0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
+-0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
+0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
+0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
+0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
+0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
+0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
+0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
+0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
+1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
+1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
+1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
+0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
+0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
+-0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
+0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
+0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
+0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
+0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
+1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
+0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
+0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
+1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
+1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
+0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
+1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
+0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
+1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
+1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
+1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
+1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
+1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
+1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
+1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
+0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
+1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
+0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
+0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
+0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
+-0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
+0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
+1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
+1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
+0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
+]; 
+ 
 data = reshape(data,5,86)'; 
 y_obs = data(:,1); 
 pie_obs = data(:,2); 
 R_obs = data(:,3); 
 de = data(:,4); 
 dq = data(:,5); 
-
+ 
 %Country: Canada 
 %Sample Range: 1981:2 to 2002:3 
 %Observations: 86 
diff --git a/tests/kalman/likelihood/compare_kalman_routines.m b/tests/kalman/likelihood/compare_kalman_routines.m
index 8650db0865d375d7a3bf0a20cd26039332ca4ac9..13022bbead2f92321008aaaaf6b7a78aa4d4d329 100644
--- a/tests/kalman/likelihood/compare_kalman_routines.m
+++ b/tests/kalman/likelihood/compare_kalman_routines.m
@@ -187,3 +187,4 @@ else
         disp(['percentage dev. = ' num2str((LIK3/LIK2-1)*100)])        
     end
 end
+    
\ No newline at end of file
diff --git a/tests/kalman/likelihood/simul_state_space_model.m b/tests/kalman/likelihood/simul_state_space_model.m
index 5cc0e336c69c1e9323bbc3c61d8b9ee4bca5f65e..92d3450e06da8c3f30fd49be25b6a833e06db666 100644
--- a/tests/kalman/likelihood/simul_state_space_model.m
+++ b/tests/kalman/likelihood/simul_state_space_model.m
@@ -1,25 +1,25 @@
 function observed_data = simul_state_space_model(T,R,Q,mf,nobs,H)
-pp = length(mf);
-mm = length(T);
-rr = length(Q);
-
-upper_cholesky_Q = chol(Q);
-if nargin>5
-    upper_cholesky_H = chol(H);
-end
-
-state_data = zeros(mm,1);
-
-if (nargin==5)
-    for t = 1:nobs
-        state_data = T*state_data + R* upper_cholesky_Q * randn(rr,1);
-        observed_data(:,t) = state_data(mf);
+    pp = length(mf);
+    mm = length(T);
+    rr = length(Q);
+    
+    upper_cholesky_Q = chol(Q);
+    if nargin>5
+        upper_cholesky_H = chol(H);
     end
-elseif (nargin==6)
-    for t = 1:nobs
-        state_data = T*state_data + R* upper_cholesky_Q * randn(rr,1);
-        observed_data(:,t) = state_data(mf) + upper_cholesky_H * randn(pp,1);            
-    end
-else
-    error('simul_state_space_model:: I don''t understand what you want!!!')
-end
\ No newline at end of file
+    
+    state_data = zeros(mm,1);
+    
+    if (nargin==5)
+        for t = 1:nobs
+            state_data = T*state_data + R* upper_cholesky_Q * randn(rr,1);
+            observed_data(:,t) = state_data(mf);
+        end
+    elseif (nargin==6)
+        for t = 1:nobs
+            state_data = T*state_data + R* upper_cholesky_Q * randn(rr,1);
+            observed_data(:,t) = state_data(mf) + upper_cholesky_H * randn(pp,1);            
+        end
+    else
+        error('simul_state_space_model:: I don''t understand what you want!!!')
+    end
\ No newline at end of file
diff --git a/tests/kalman_filter_smoother/compare_results_simulation/fsdat_simul_logged.m b/tests/kalman_filter_smoother/compare_results_simulation/fsdat_simul_logged.m
index 11294674738a923382116ccf5e703ea5f2dda6e9..3e442115c23401f155bae1e7afa8383b611cea0f 100644
--- a/tests/kalman_filter_smoother/compare_results_simulation/fsdat_simul_logged.m
+++ b/tests/kalman_filter_smoother/compare_results_simulation/fsdat_simul_logged.m
@@ -1,830 +1,830 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
 gp_obs=log(gp_obs);
 gy_obs=log(gy_obs);
diff --git a/tests/kalman_filter_smoother/fsdat_simul.m b/tests/kalman_filter_smoother/fsdat_simul.m
index 159612e577c3b91d585970404c9cf576c0e8a8d6..d4f4a8066f17ba49faad004256693ebc1b9b01e9 100644
--- a/tests/kalman_filter_smoother/fsdat_simul.m
+++ b/tests/kalman_filter_smoother/fsdat_simul.m
@@ -1,828 +1,828 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/kalman_filter_smoother/testsmoother.m b/tests/kalman_filter_smoother/testsmoother.m
index 3ec1c8cdff8ea4ce7f39e0b314c9b0dc22fc80ba..2e633bc2345c0a612ede5569c1b0a148ac80c9d9 100644
--- a/tests/kalman_filter_smoother/testsmoother.m
+++ b/tests/kalman_filter_smoother/testsmoother.m
@@ -9,10 +9,10 @@ Pstar1(1,1) = 0;
 Pstar1(4,1) = 0;
 Pstar1(1,4) = 0;
 [alphahat1,epsilonhat1,etahat1,a11, aK1] = DiffuseKalmanSmootherH1(T,R,Q,H, ...
-                                                  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
 [alphahat2,epsilonhat2,etahat2,a12, aK2] = DiffuseKalmanSmootherH3(T,R,Q,H, ...
-                                                  Pinf1,Pstar1,Y,trend, ...
-                                                  pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend, ...
+						  pp,mm,smpl,mf);
 max(max(abs(alphahat1-alphahat2)))
 max(max(abs(epsilonhat1-epsilonhat2)))
 max(max(abs(etahat1-etahat2)))
@@ -21,10 +21,10 @@ max(max(abs(aK1-aK2)))
 
 return
 [alphahat1,etahat1,a11, aK1] = DiffuseKalmanSmoother1(T,R,Q, ...
-                                                  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
 [alphahat2,etahat2,a12, aK2] = DiffuseKalmanSmoother3(T,R,Q, ...
-                                                  Pinf1,Pstar1,Y,trend, ...
-                                                  pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend, ...
+						  pp,mm,smpl,mf);
 
 
 max(max(abs(alphahat1-alphahat2)))
@@ -35,10 +35,10 @@ max(max(abs(a11-a12)))
 
 H = zeros(size(H));
 [alphahat1,etahat1,a11, aK1] = DiffuseKalmanSmoother1(T,R,Q, ...
-                                                  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
 [alphahat2,epsilonhat2,etahat2,a12, aK2] = DiffuseKalmanSmootherH1(T,R,Q,H, ...
-                                                  Pinf1,Pstar1,Y,trend, ...
-                                                  pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend, ...
+						  pp,mm,smpl,mf);
 max(max(abs(alphahat1-alphahat2)))
 max(max(abs(etahat1-etahat2)))
 max(max(abs(a11-a12)))
@@ -46,9 +46,9 @@ max(max(abs(a11-a12)))
 
 
 [alphahat1,etahat1,a11, aK1] = DiffuseKalmanSmoother3(T,R,Q, ...
-                                                  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
 [alphahat2,epsilonhat2,etahat2,a12, aK2] = DiffuseKalmanSmootherH3(T,R,Q, H, ...
-                                                  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
 
 max(max(abs(alphahat1-alphahat2)))
 max(max(abs(etahat1-etahat2)))
diff --git a/tests/load_octave_packages.m b/tests/load_octave_packages.m
index 62b6e3d3c403c5f2d71a81ecd1352bbbd73c9100..886bf644b0b07cd11e9afcc3e50c813e2af1913e 100644
--- a/tests/load_octave_packages.m
+++ b/tests/load_octave_packages.m
@@ -11,11 +11,11 @@
 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 ## GNU General Public License for more details.
-    ##
-    ## You should have received a copy of the GNU General Public License
-    ## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
+##
+## You should have received a copy of the GNU General Public License
+## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 
-    pkg load io
-    pkg load optim
-    pkg load control
-    pkg load statistics
\ No newline at end of file
+pkg load io
+pkg load optim
+pkg load control
+pkg load statistics
\ No newline at end of file
diff --git a/tests/ls2003/data_ca1.m b/tests/ls2003/data_ca1.m
index ca003056bded971e9bf00232802e453a096e9cdf..c28fae1a2800e83eda0e6343196e8aeafad2935f 100644
--- a/tests/ls2003/data_ca1.m
+++ b/tests/ls2003/data_ca1.m
@@ -1,98 +1,98 @@
 data = [0.928467646476  11.8716889412   20  0.418037507392  0.227382377518 ...
-        -0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
-        -0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
-        -0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
-        -0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
-        -0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
-        -0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
-        1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
-        2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
-        1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
-        1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
-        1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
-        1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
-        0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
-        1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
-        1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
-        0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
-        1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
-        1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
-        -0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
-        0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
-        0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
-        -0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
-        2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
-        1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
-        1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
-        1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
-        1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
-        1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
-        0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
-        0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
-        1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
-        0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
-        0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
-        0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
-        0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
-        -0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
-        -0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
-        -0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
-        -1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
-        0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
-        0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
-        0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
-        -0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
-        0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
-        0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
-        0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
-        0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
-        0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
-        0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
-        0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
-        1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
-        1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
-        1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
-        0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
-        0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
-        -0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
-        0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
-        0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
-        0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
-        0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
-        1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
-        0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
-        0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
-        1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
-        1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
-        0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
-        1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
-        0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
-        1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
-        1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
-        1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
-        1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
-        1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
-        1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
-        1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
-        0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
-        1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
-        0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
-        0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
-        0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
-        -0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
-        0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
-        1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
-        1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
-        0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
-       ]; 
-
+-0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
+-0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
+-0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
+-0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
+-0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
+-0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
+1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
+2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
+1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
+1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
+1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
+1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
+0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
+1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
+1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
+0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
+1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
+1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
+-0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
+0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
+0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
+-0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
+2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
+1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
+1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
+1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
+1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
+1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
+0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
+0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
+1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
+0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
+0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
+0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
+0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
+-0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
+-0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
+-0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
+-1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
+0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
+0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
+0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
+-0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
+0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
+0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
+0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
+0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
+0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
+0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
+0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
+1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
+1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
+1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
+0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
+0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
+-0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
+0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
+0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
+0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
+0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
+1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
+0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
+0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
+1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
+1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
+0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
+1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
+0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
+1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
+1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
+1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
+1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
+1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
+1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
+1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
+0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
+1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
+0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
+0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
+0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
+-0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
+0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
+1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
+1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
+0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
+]; 
+ 
 data = reshape(data,5,86)'; 
 y_obs = data(:,1); 
 pie_obs = data(:,2); 
 R_obs = data(:,3); 
 de = data(:,4); 
 dq = data(:,5); 
-
+ 
 %Country: Canada 
 %Sample Range: 1981:2 to 2002:3 
 %Observations: 86 
diff --git a/tests/measurement_errors/data_ca1.m b/tests/measurement_errors/data_ca1.m
index ca003056bded971e9bf00232802e453a096e9cdf..c28fae1a2800e83eda0e6343196e8aeafad2935f 100644
--- a/tests/measurement_errors/data_ca1.m
+++ b/tests/measurement_errors/data_ca1.m
@@ -1,98 +1,98 @@
 data = [0.928467646476  11.8716889412   20  0.418037507392  0.227382377518 ...
-        -0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
-        -0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
-        -0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
-        -0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
-        -0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
-        -0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
-        1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
-        2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
-        1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
-        1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
-        1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
-        1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
-        0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
-        1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
-        1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
-        0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
-        1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
-        1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
-        -0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
-        0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
-        0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
-        -0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
-        2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
-        1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
-        1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
-        1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
-        1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
-        1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
-        0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
-        0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
-        1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
-        0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
-        0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
-        0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
-        0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
-        -0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
-        -0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
-        -0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
-        -1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
-        0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
-        0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
-        0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
-        -0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
-        0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
-        0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
-        0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
-        0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
-        0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
-        0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
-        0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
-        1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
-        1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
-        1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
-        0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
-        0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
-        -0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
-        0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
-        0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
-        0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
-        0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
-        1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
-        0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
-        0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
-        1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
-        1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
-        0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
-        1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
-        0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
-        1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
-        1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
-        1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
-        1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
-        1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
-        1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
-        1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
-        0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
-        1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
-        0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
-        0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
-        0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
-        -0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
-        0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
-        1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
-        1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
-        0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
-       ]; 
-
+-0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
+-0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
+-0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
+-0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
+-0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
+-0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
+1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
+2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
+1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
+1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
+1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
+1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
+0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
+1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
+1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
+0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
+1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
+1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
+-0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
+0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
+0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
+-0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
+2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
+1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
+1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
+1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
+1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
+1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
+0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
+0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
+1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
+0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
+0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
+0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
+0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
+-0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
+-0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
+-0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
+-1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
+0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
+0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
+0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
+-0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
+0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
+0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
+0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
+0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
+0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
+0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
+0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
+1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
+1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
+1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
+0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
+0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
+-0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
+0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
+0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
+0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
+0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
+1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
+0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
+0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
+1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
+1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
+0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
+1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
+0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
+1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
+1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
+1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
+1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
+1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
+1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
+1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
+0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
+1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
+0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
+0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
+0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
+-0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
+0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
+1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
+1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
+0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
+]; 
+ 
 data = reshape(data,5,86)'; 
 y_obs = data(:,1); 
 pie_obs = data(:,2); 
 R_obs = data(:,3); 
 de = data(:,4); 
 dq = data(:,5); 
-
+ 
 %Country: Canada 
 %Sample Range: 1981:2 to 2002:3 
 %Observations: 86 
diff --git a/tests/measurement_errors/fs2000_corr_me_ml_mcmc/fsdat_simul.m b/tests/measurement_errors/fs2000_corr_me_ml_mcmc/fsdat_simul.m
index f6ad30c85be4e71227913664bd14cce25ac504eb..56c0e4cd56a8bb96fb579587fb4218afb626c56e 100644
--- a/tests/measurement_errors/fs2000_corr_me_ml_mcmc/fsdat_simul.m
+++ b/tests/measurement_errors/fs2000_corr_me_ml_mcmc/fsdat_simul.m
@@ -1,416 +1,416 @@
 % Generated data, used by fs2000.mod
 
 gy_obs          =[
-    1.0030045
-    1.0002599
-    0.99104664
-    1.0321162
-    1.0223545
-    1.0043614
-    0.98626929
-    1.0092127
-    1.0357197
-    1.0150827
-    1.0051548
-    0.98465775
-    0.99132132
-    0.99904153
-    1.0044641
-    1.0179198
-    1.0113462
-    0.99409421
-    0.99904293
-    1.0448336
-    0.99932433
-    1.0057004
-    0.99619787
-    1.0267504
-    1.0077645
-    1.0058026
-    1.0025891
-    0.9939097
-    0.99604693
-    0.99908569
-    1.0151094
-    0.99348134
-    1.0039124
-    1.0145805
-    0.99800868
-    0.98578138
-    1.0065771
-    0.99843919
-    0.97979062
-    0.98413351
-    0.96468174
-    1.0273857
-    1.0225211
-    0.99958667
-    1.0111157
-    1.0099585
-    0.99480311
-    1.0079265
-    0.98924573
-    1.0070613
-    1.0075706
-    0.9937151
-    1.0224711
-    1.0018891
-    0.99051863
-    1.0042944
-    1.0184055
-    0.99419508
-    0.99756624
-    1.0015983
-    0.9845772
-    1.0004407
-    1.0116237
-    0.9861885
-    1.0073094
-    0.99273355
-    1.0013224
-    0.99777979
-    1.0301686
-    0.96809556
-    0.99917088
-    0.99949253
-    0.96590004
-    1.0083938
-    0.96662298
-    1.0221454
-    1.0069792
-    1.0343996
-    1.0066531
-    1.0072525
-    0.99743563
-    0.99723703
-    1.000372
-    0.99013917
-    1.0095223
-    0.98864268
-    0.98092242
-    0.98886488
-    1.0030341
-    1.01894
-    0.99155059
-    0.99533235
-    0.99734316
-    1.0047356
-    1.0082737
-    0.98425116
-    0.99949212
-    1.0055899
-    1.0065075
-    0.99385069
-    0.98867975
-    0.99804843
-    1.0184038
-    0.99301902
-    1.0177222
-    1.0051924
-    1.0187852
-    1.0098985
-    1.0097172
-    1.0145811
-    0.98721038
-    1.0361722
-    1.0105821
-    0.99469309
-    0.98626785
-    1.013871
-    0.99858924
-    0.99302637
-    1.0042186
-    0.99623745
-    0.98545708
-    1.0225435
-    1.0011861
-    1.0130321
-    0.97861347
-    1.0228193
-    0.99627435
-    1.0272779
-    1.0075172
-    1.0096762
-    1.0129306
-    0.99966549
-    1.0262882
-    1.0026914
-    1.0061475
-    1.009523
-    1.0036127
-    0.99762992
-    0.99092634
-    1.0058469
-    0.99887292
-    1.0060653
-    0.98673557
-    0.98895709
-    0.99111967
-    0.990118
-    0.99788054
-    0.97054709
-    1.0099157
-    1.0107431
-    0.99518695
-    1.0114048
-    0.99376019
-    1.0023369
-    0.98783327
-    1.0051727
-    1.0100462
-    0.98607387
-    1.0000064
-    0.99692442
-    1.012225
-    0.99574078
-    0.98642833
-    0.99008207
-    1.0197359
-    1.0112849
-    0.98711069
-    0.99402748
-    1.0242141
-    1.0135349
-    0.99842505
-    1.0130714
-    0.99887044
-    1.0059058
-    1.0185998
-    1.0073314
-    0.98687706
-    1.0084551
-    0.97698964
-    0.99482714
-    1.0015302
-    1.0105331
-    1.0261767
-    1.0232822
-    1.0084176
-    0.99785167
-    0.99619733
-    1.0055223
-    1.0076326
-    0.99205461
-    1.0030587
-    1.0137012
-    1.0145878
-    1.0190297
-    1.0000681
-    1.0153894
-    1.0140649
-    1.0007236
-    0.97961463
-    1.0125257
-    1.0169503
-    1.0197363
-    1.0221185
+      1.0030045
+      1.0002599
+     0.99104664
+      1.0321162
+      1.0223545
+      1.0043614
+     0.98626929
+      1.0092127
+      1.0357197
+      1.0150827
+      1.0051548
+     0.98465775
+     0.99132132
+     0.99904153
+      1.0044641
+      1.0179198
+      1.0113462
+     0.99409421
+     0.99904293
+      1.0448336
+     0.99932433
+      1.0057004
+     0.99619787
+      1.0267504
+      1.0077645
+      1.0058026
+      1.0025891
+      0.9939097
+     0.99604693
+     0.99908569
+      1.0151094
+     0.99348134
+      1.0039124
+      1.0145805
+     0.99800868
+     0.98578138
+      1.0065771
+     0.99843919
+     0.97979062
+     0.98413351
+     0.96468174
+      1.0273857
+      1.0225211
+     0.99958667
+      1.0111157
+      1.0099585
+     0.99480311
+      1.0079265
+     0.98924573
+      1.0070613
+      1.0075706
+      0.9937151
+      1.0224711
+      1.0018891
+     0.99051863
+      1.0042944
+      1.0184055
+     0.99419508
+     0.99756624
+      1.0015983
+      0.9845772
+      1.0004407
+      1.0116237
+      0.9861885
+      1.0073094
+     0.99273355
+      1.0013224
+     0.99777979
+      1.0301686
+     0.96809556
+     0.99917088
+     0.99949253
+     0.96590004
+      1.0083938
+     0.96662298
+      1.0221454
+      1.0069792
+      1.0343996
+      1.0066531
+      1.0072525
+     0.99743563
+     0.99723703
+       1.000372
+     0.99013917
+      1.0095223
+     0.98864268
+     0.98092242
+     0.98886488
+      1.0030341
+        1.01894
+     0.99155059
+     0.99533235
+     0.99734316
+      1.0047356
+      1.0082737
+     0.98425116
+     0.99949212
+      1.0055899
+      1.0065075
+     0.99385069
+     0.98867975
+     0.99804843
+      1.0184038
+     0.99301902
+      1.0177222
+      1.0051924
+      1.0187852
+      1.0098985
+      1.0097172
+      1.0145811
+     0.98721038
+      1.0361722
+      1.0105821
+     0.99469309
+     0.98626785
+       1.013871
+     0.99858924
+     0.99302637
+      1.0042186
+     0.99623745
+     0.98545708
+      1.0225435
+      1.0011861
+      1.0130321
+     0.97861347
+      1.0228193
+     0.99627435
+      1.0272779
+      1.0075172
+      1.0096762
+      1.0129306
+     0.99966549
+      1.0262882
+      1.0026914
+      1.0061475
+       1.009523
+      1.0036127
+     0.99762992
+     0.99092634
+      1.0058469
+     0.99887292
+      1.0060653
+     0.98673557
+     0.98895709
+     0.99111967
+       0.990118
+     0.99788054
+     0.97054709
+      1.0099157
+      1.0107431
+     0.99518695
+      1.0114048
+     0.99376019
+      1.0023369
+     0.98783327
+      1.0051727
+      1.0100462
+     0.98607387
+      1.0000064
+     0.99692442
+       1.012225
+     0.99574078
+     0.98642833
+     0.99008207
+      1.0197359
+      1.0112849
+     0.98711069
+     0.99402748
+      1.0242141
+      1.0135349
+     0.99842505
+      1.0130714
+     0.99887044
+      1.0059058
+      1.0185998
+      1.0073314
+     0.98687706
+      1.0084551
+     0.97698964
+     0.99482714
+      1.0015302
+      1.0105331
+      1.0261767
+      1.0232822
+      1.0084176
+     0.99785167
+     0.99619733
+      1.0055223
+      1.0076326
+     0.99205461
+      1.0030587
+      1.0137012
+      1.0145878
+      1.0190297
+      1.0000681
+      1.0153894
+      1.0140649
+      1.0007236
+     0.97961463
+      1.0125257
+      1.0169503
+      1.0197363
+      1.0221185
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0115853
-    1.0167502
-    1.0068957
-    1.0138189
-    1.0258364
-    1.0243817
-    1.017373
-    1.0020171
-    1.0003742
-    1.0008974
-    1.0104804
-    1.0116393
-    1.0114294
-    0.99932124
-    0.99461459
-    1.0170349
-    1.0051446
-    1.020639
-    1.0051964
-    1.0093042
-    1.007068
-    1.01086
-    0.99590086
-    1.0014883
-    1.0117332
-    0.9990095
-    1.0108284
-    1.0103672
-    1.0036722
-    1.0005124
-    1.0190331
-    1.0130978
-    1.007842
-    1.0285436
-    1.0322054
-    1.0213403
-    1.0246486
-    1.0419306
-    1.0258867
-    1.0156316
-    0.99818589
-    0.9894107
-    1.0127584
-    1.0146882
-    1.0136529
-    1.0340107
-    1.0343652
-    1.02971
-    1.0077932
-    1.0198114
-    1.013971
-    1.0061083
-    1.0089573
-    1.0037926
-    1.0082071
-    0.99498155
-    0.99735772
-    0.98765026
-    1.006465
-    1.0196088
-    1.0053233
-    1.0119974
-    1.0188066
-    1.0029302
-    1.0183459
-    1.0034218
-    1.0158799
-    0.98824798
-    1.0274357
-    1.0168832
-    1.0180641
-    1.0294657
-    0.98864091
-    1.0358326
-    0.99889969
-    1.0178322
-    0.99813566
-    1.0073549
-    1.0215985
-    1.0084245
-    1.0080939
-    1.0157021
-    1.0075815
-    1.0032633
-    1.0117871
-    1.0209276
-    1.0077569
-    0.99680958
-    1.0120266
-    1.0017625
-    1.0138811
-    1.0198358
-    1.0059629
-    1.0115416
-    1.0319473
-    1.0167074
-    1.0116111
-    1.0048627
-    1.0217622
-    1.0125221
-    1.0142045
-    0.99792469
-    0.99823971
-    0.99561547
-    0.99850373
-    0.9898464
-    1.0030963
-    1.0051373
-    1.0004213
-    1.0144117
-    0.97185592
-    0.9959518
-    1.0073529
-    1.0051603
-    0.98642572
-    0.99433423
-    1.0112131
-    1.0007695
-    1.0176867
-    1.0134363
-    0.99926191
-    0.99879835
-    0.99878754
-    1.0331374
-    1.0077797
-    1.0127221
-    1.0047393
-    1.0074106
-    0.99784213
-    1.0056495
-    1.0057708
-    0.98817494
-    0.98742176
-    0.99930555
-    1.0000687
-    1.0129754
-    1.009529
-    1.0226731
-    1.0149534
-    1.0164295
-    1.0239469
-    1.0293458
-    1.026199
-    1.0197525
-    1.0126818
-    1.0054473
-    1.0254423
-    1.0069461
-    1.0153135
-    1.0337515
-    1.0178187
-    1.0240469
-    1.0079489
-    1.0186953
-    1.0008628
-    1.0113799
-    1.0140118
-    1.0168007
-    1.011441
-    0.98422774
-    0.98909729
-    1.0157859
-    1.0151586
-    0.99756232
-    0.99497777
-    1.0102841
-    1.0221659
-    0.9937759
-    0.99877193
-    1.0079433
-    0.99667692
-    1.0095959
-    1.0128804
-    1.0156949
-    1.0111951
-    1.0228887
-    1.0122083
-    1.0190197
-    1.0074927
-    1.0268096
-    0.99689352
-    0.98948474
-    1.0024938
-    1.0105543
-    1.014116
-    1.0141217
-    1.0056504
-    1.0101026
-    1.0105069
-    0.99619053
-    1.0059439
-    0.99449473
-    0.99482458
-    1.0037702
-    1.0068087
-    0.99575975
-    1.0030815
-    1.0334014
-    0.99879386
-    0.99625634
-    1.0171195
-    0.99233844
+      1.0079715
+      1.0115853
+      1.0167502
+      1.0068957
+      1.0138189
+      1.0258364
+      1.0243817
+       1.017373
+      1.0020171
+      1.0003742
+      1.0008974
+      1.0104804
+      1.0116393
+      1.0114294
+     0.99932124
+     0.99461459
+      1.0170349
+      1.0051446
+       1.020639
+      1.0051964
+      1.0093042
+       1.007068
+        1.01086
+     0.99590086
+      1.0014883
+      1.0117332
+      0.9990095
+      1.0108284
+      1.0103672
+      1.0036722
+      1.0005124
+      1.0190331
+      1.0130978
+       1.007842
+      1.0285436
+      1.0322054
+      1.0213403
+      1.0246486
+      1.0419306
+      1.0258867
+      1.0156316
+     0.99818589
+      0.9894107
+      1.0127584
+      1.0146882
+      1.0136529
+      1.0340107
+      1.0343652
+        1.02971
+      1.0077932
+      1.0198114
+       1.013971
+      1.0061083
+      1.0089573
+      1.0037926
+      1.0082071
+     0.99498155
+     0.99735772
+     0.98765026
+       1.006465
+      1.0196088
+      1.0053233
+      1.0119974
+      1.0188066
+      1.0029302
+      1.0183459
+      1.0034218
+      1.0158799
+     0.98824798
+      1.0274357
+      1.0168832
+      1.0180641
+      1.0294657
+     0.98864091
+      1.0358326
+     0.99889969
+      1.0178322
+     0.99813566
+      1.0073549
+      1.0215985
+      1.0084245
+      1.0080939
+      1.0157021
+      1.0075815
+      1.0032633
+      1.0117871
+      1.0209276
+      1.0077569
+     0.99680958
+      1.0120266
+      1.0017625
+      1.0138811
+      1.0198358
+      1.0059629
+      1.0115416
+      1.0319473
+      1.0167074
+      1.0116111
+      1.0048627
+      1.0217622
+      1.0125221
+      1.0142045
+     0.99792469
+     0.99823971
+     0.99561547
+     0.99850373
+      0.9898464
+      1.0030963
+      1.0051373
+      1.0004213
+      1.0144117
+     0.97185592
+      0.9959518
+      1.0073529
+      1.0051603
+     0.98642572
+     0.99433423
+      1.0112131
+      1.0007695
+      1.0176867
+      1.0134363
+     0.99926191
+     0.99879835
+     0.99878754
+      1.0331374
+      1.0077797
+      1.0127221
+      1.0047393
+      1.0074106
+     0.99784213
+      1.0056495
+      1.0057708
+     0.98817494
+     0.98742176
+     0.99930555
+      1.0000687
+      1.0129754
+       1.009529
+      1.0226731
+      1.0149534
+      1.0164295
+      1.0239469
+      1.0293458
+       1.026199
+      1.0197525
+      1.0126818
+      1.0054473
+      1.0254423
+      1.0069461
+      1.0153135
+      1.0337515
+      1.0178187
+      1.0240469
+      1.0079489
+      1.0186953
+      1.0008628
+      1.0113799
+      1.0140118
+      1.0168007
+       1.011441
+     0.98422774
+     0.98909729
+      1.0157859
+      1.0151586
+     0.99756232
+     0.99497777
+      1.0102841
+      1.0221659
+      0.9937759
+     0.99877193
+      1.0079433
+     0.99667692
+      1.0095959
+      1.0128804
+      1.0156949
+      1.0111951
+      1.0228887
+      1.0122083
+      1.0190197
+      1.0074927
+      1.0268096
+     0.99689352
+     0.98948474
+      1.0024938
+      1.0105543
+       1.014116
+      1.0141217
+      1.0056504
+      1.0101026
+      1.0105069
+     0.99619053
+      1.0059439
+     0.99449473
+     0.99482458
+      1.0037702
+      1.0068087
+     0.99575975
+      1.0030815
+      1.0334014
+     0.99879386
+     0.99625634
+      1.0171195
+     0.99233844
 
-                 ];
+];
 
diff --git a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol3v.m b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol3v.m
index 11a132b64874a0076fb2a8d4196aa6caf51b086d..ce6156c7b99c9fcc358c986ec4a71c98e2323277 100644
--- a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol3v.m
+++ b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol3v.m
@@ -49,7 +49,7 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free D+ parameters in ith equation in all states.
 
 if (nargin==3)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 end
 
 
@@ -59,10 +59,10 @@ k = kvar*nStates;  % Maximum number of lagged and exogenous variables in each eq
 
 Qi = zeros(n,n,nvar);   % 3rd dim: nvar contemporaneous equations.
 Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
-                         % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
-                         %        0 means no restriction.
-                         %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
-                         %        1 (only 1) means that the corresponding parameter is restricted to 0.
+   % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
+   %        0 means no restriction.
+   %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
+   %        1 (only 1) means that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -77,47 +77,47 @@ Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
 eqninx = 1;
 nreseqn = 2;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0      -1  0  0
-        0  1  0       0 -1  0
-        0  0  1       0  0 -1
-
-        0 0 0       0 1 0
-        0 0 0       0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0      -1  0  0
+      0  1  0       0 -1  0
+      0  0  1       0  0 -1
+
+      0 0 0       0 1 0
+      0 0 0       0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 1 0       0 0 0
-        0 0 1       0 0 0
-
-        0 0 0       0 1 0
-        0 0 0       0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 1 0       0 0 0
+      0 0 1       0 0 0
+
+      0 0 0       0 1 0
+      0 0 0       0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -125,61 +125,61 @@ end
 eqninx = 2;
 nreseqn = 1;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0     -1  0  0
-        0  1  0      0 -1  0
-        0  0  1      0  0 -1
-
-        0 0 0      0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0     -1  0  0
+      0  1  0      0 -1  0
+      0  0  1      0  0 -1
+
+      0 0 0      0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 1       0 0 0
-
-        0 0 0      0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
-
-    %==== For freely time-varying A+ for only the first 6 lags.
-    %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
-    %  nlagsno0 = 6;   % Number of lags to be nonzero.
-    %  for si=1:nStates
-    %     for ki = 1:lags-nlagsno0
-    %        for kj=1:nvar
-    %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
-    %        end
-    %     end
-    %  end
-    %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    %  for si=1:nStates-1
-    %     for ki=[2*nvar+1:kvar-1]
-    %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-    %     end
-    %  end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 1       0 0 0
+
+      0 0 0      0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
+
+   %==== For freely time-varying A+ for only the first 6 lags.
+   %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
+   %  nlagsno0 = 6;   % Number of lags to be nonzero.
+   %  for si=1:nStates
+   %     for ki = 1:lags-nlagsno0
+   %        for kj=1:nvar
+   %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
+   %        end
+   %     end
+   %  end
+   %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   %  for si=1:nStates-1
+   %     for ki=[2*nvar+1:kvar-1]
+   %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+   %     end
+   %  end
 end
 
 
@@ -187,42 +187,42 @@ end
 eqninx = 3;
 nreseqn = 0;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0      -1  0  0
-        0  1  0       0 -1  0
-        0  0  1       0  0 -1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0      -1  0  0
+      0  1  0       0 -1  0
+      0  0  1       0  0 -1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
 
 for ki=1:nvar   %  initializing loop for each equation
-    Ui{ki} = null(Qi(:,:,ki));
-    Vi{ki} = null(Ri(:,:,ki));
-    n0(ki) = size(Ui{ki},2);
-    np(ki) = size(Vi{ki},2);
+   Ui{ki} = null(Qi(:,:,ki));
+   Vi{ki} = null(Ri(:,:,ki));
+   n0(ki) = size(Ui{ki},2);
+   np(ki) = size(Vi{ki},2);
 end
diff --git a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol4v.m b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol4v.m
index 7af810db3a0ef771692274b45c0570840393b1b7..bc3215cdeb318494043b56b4ed1302f44b2e1081 100644
--- a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol4v.m
+++ b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol4v.m
@@ -49,7 +49,7 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free D+ parameters in ith equation in all states.
 
 if (nargin==3)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 end
 
 
@@ -59,10 +59,10 @@ k = kvar*nStates;  % Maximum number of lagged and exogenous variables in each eq
 
 Qi = zeros(n,n,nvar);   % 3rd dim: nvar contemporaneous equations.
 Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
-                         % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
-                         %        0 means no restriction.
-                         %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
-                         %        1 (only 1) means that the corresponding parameter is restricted to 0.
+   % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
+   %        0 means no restriction.
+   %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
+   %        1 (only 1) means that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -77,51 +77,51 @@ Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
 eqninx = 1;
 nreseqn = 3;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0     -1  0  0  0
-        0  1  0  0      0 -1  0  0
-        0  0  1  0      0  0 -1  0
-        0  0  0  1      0  0  0 -1
-
-        0 0 0 0      0 1 0 0
-        0 0 0 0      0 0 1 0
-        0 0 0 0      0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0     -1  0  0  0
+      0  1  0  0      0 -1  0  0
+      0  0  1  0      0  0 -1  0
+      0  0  0  1      0  0  0 -1
+
+      0 0 0 0      0 1 0 0
+      0 0 0 0      0 0 1 0
+      0 0 0 0      0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 1 0 0      0 0 0 0
-        0 0 1 0      0 0 0 0
-        0 0 0 1      0 0 0 0
-
-        0 0 0 0      0 1 0 0
-        0 0 0 0      0 0 1 0
-        0 0 0 0      0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 1 0 0      0 0 0 0
+      0 0 1 0      0 0 0 0
+      0 0 0 1      0 0 0 0
+
+      0 0 0 0      0 1 0 0
+      0 0 0 0      0 0 1 0
+      0 0 0 0      0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -129,65 +129,65 @@ end
 eqninx = 2;
 nreseqn = 2;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0     -1  0  0  0
-        0  1  0  0      0 -1  0  0
-        0  0  1  0      0  0 -1  0
-        0  0  0  1      0  0  0 -1
-
-        0 0 0 0      0 0 1 0
-        0 0 0 0      0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0     -1  0  0  0
+      0  1  0  0      0 -1  0  0
+      0  0  1  0      0  0 -1  0
+      0  0  0  1      0  0  0 -1
+
+      0 0 0 0      0 0 1 0
+      0 0 0 0      0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 1 0      0 0 0 0
-        0 0 0 1      0 0 0 0
-
-        0 0 0 0      0 0 1 0
-        0 0 0 0      0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
-
-    %==== For freely time-varying A+ for only the first 6 lags.
-    %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
-    %  nlagsno0 = 6;   % Number of lags to be nonzero.
-    %  for si=1:nStates
-    %     for ki = 1:lags-nlagsno0
-    %        for kj=1:nvar
-    %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
-    %        end
-    %     end
-    %  end
-    %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    %  for si=1:nStates-1
-    %     for ki=[2*nvar+1:kvar-1]
-    %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-    %     end
-    %  end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 1 0      0 0 0 0
+      0 0 0 1      0 0 0 0
+
+      0 0 0 0      0 0 1 0
+      0 0 0 0      0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
+
+   %==== For freely time-varying A+ for only the first 6 lags.
+   %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
+   %  nlagsno0 = 6;   % Number of lags to be nonzero.
+   %  for si=1:nStates
+   %     for ki = 1:lags-nlagsno0
+   %        for kj=1:nvar
+   %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
+   %        end
+   %     end
+   %  end
+   %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   %  for si=1:nStates-1
+   %     for ki=[2*nvar+1:kvar-1]
+   %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+   %     end
+   %  end
 end
 
 
@@ -195,44 +195,44 @@ end
 eqninx = 3;
 nreseqn = 1;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0     -1  0  0  0
-        0  1  0  0      0 -1  0  0
-        0  0  1  0      0  0 -1  0
-        0  0  0  1      0  0  0 -1
-
-        0 0 0 0      0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0     -1  0  0  0
+      0  1  0  0      0 -1  0  0
+      0  0  1  0      0  0 -1  0
+      0  0  0  1      0  0  0 -1
+
+      0 0 0 0      0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 1      0 0 0 0
-
-        0 0 0 0      0 0 0 1
-                   ];
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 1      0 0 0 0
+
+      0 0 0 0      0 0 0 1
+                         ];
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -240,36 +240,36 @@ end
 eqninx = 4;
 nreseqn = 0;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0     -1  0  0  0
-        0  1  0  0      0 -1  0  0
-        0  0  1  0      0  0 -1  0
-        0  0  0  1      0  0  0 -1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0     -1  0  0  0
+      0  1  0  0      0 -1  0  0
+      0  0  1  0      0  0 -1  0
+      0  0  0  1      0  0  0 -1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -324,8 +324,8 @@ end
 
 
 for ki=1:nvar   %  initializing loop for each equation
-    Ui{ki} = null(Qi(:,:,ki));
-    Vi{ki} = null(Ri(:,:,ki));
-    n0(ki) = size(Ui{ki},2);
-    np(ki) = size(Vi{ki},2);
+   Ui{ki} = null(Qi(:,:,ki));
+   Vi{ki} = null(Ri(:,:,ki));
+   n0(ki) = size(Ui{ki},2);
+   np(ki) = size(Vi{ki},2);
 end
diff --git a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol6v.m b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol6v.m
index 932e927454417857a536b4c22e3f0a773d4edcdf..389109df7adc60a840dff7574284435d98d6fb7d 100644
--- a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol6v.m
+++ b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol6v.m
@@ -49,7 +49,7 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free D+ parameters in ith equation in all states.
 
 if (nargin==3)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 end
 
 
@@ -59,10 +59,10 @@ k = kvar*nStates;  % Maximum number of lagged and exogenous variables in each eq
 
 Qi = zeros(n,n,nvar);   % 3rd dim: nvar contemporaneous equations.
 Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
-                         % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
-                         %        0 means no restriction.
-                         %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
-                         %        1 (only 1) means that the corresponding parameter is restricted to 0.
+   % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
+   %        0 means no restriction.
+   %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
+   %        1 (only 1) means that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -77,59 +77,59 @@ Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
 eqninx = 1;
 nreseqn = 5;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0     -1  0  0  0  0  0
-        0  1  0  0  0  0      0 -1  0  0  0  0
-        0  0  1  0  0  0      0  0 -1  0  0  0
-        0  0  0  1  0  0      0  0  0 -1  0  0
-        0  0  0  0  1  0      0  0  0  0 -1  0
-        0  0  0  0  0  1      0  0  0  0  0 -1
-
-        0 0 0 0 0 0     0 1 0 0 0 0
-        0 0 0 0 0 0     0 0 1 0 0 0
-        0 0 0 0 0 0     0 0 0 1 0 0
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0     -1  0  0  0  0  0
+      0  1  0  0  0  0      0 -1  0  0  0  0
+      0  0  1  0  0  0      0  0 -1  0  0  0
+      0  0  0  1  0  0      0  0  0 -1  0  0
+      0  0  0  0  1  0      0  0  0  0 -1  0
+      0  0  0  0  0  1      0  0  0  0  0 -1
+
+      0 0 0 0 0 0     0 1 0 0 0 0
+      0 0 0 0 0 0     0 0 1 0 0 0
+      0 0 0 0 0 0     0 0 0 1 0 0
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 1 0 0 0 0     0 0 0 0 0 0
-        0 0 1 0 0 0     0 0 0 0 0 0
-        0 0 0 1 0 0     0 0 0 0 0 0
-        0 0 0 0 1 0     0 0 0 0 0 0
-        0 0 0 0 0 1     0 0 0 0 0 0
-
-        0 0 0 0 0 0     0 1 0 0 0 0
-        0 0 0 0 0 0     0 0 1 0 0 0
-        0 0 0 0 0 0     0 0 0 1 0 0
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 1 0 0 0 0     0 0 0 0 0 0
+      0 0 1 0 0 0     0 0 0 0 0 0
+      0 0 0 1 0 0     0 0 0 0 0 0
+      0 0 0 0 1 0     0 0 0 0 0 0
+      0 0 0 0 0 1     0 0 0 0 0 0
+
+      0 0 0 0 0 0     0 1 0 0 0 0
+      0 0 0 0 0 0     0 0 1 0 0 0
+      0 0 0 0 0 0     0 0 0 1 0 0
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -138,56 +138,56 @@ end
 eqninx = 2;
 nreseqn = 4;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0     -1  0  0  0  0  0
-        0  1  0  0  0  0      0 -1  0  0  0  0
-        0  0  1  0  0  0      0  0 -1  0  0  0
-        0  0  0  1  0  0      0  0  0 -1  0  0
-        0  0  0  0  1  0      0  0  0  0 -1  0
-        0  0  0  0  0  1      0  0  0  0  0 -1
-
-        0 0 0 0 0 0     0 0 1 0 0 0
-        0 0 0 0 0 0     0 0 0 1 0 0
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0     -1  0  0  0  0  0
+      0  1  0  0  0  0      0 -1  0  0  0  0
+      0  0  1  0  0  0      0  0 -1  0  0  0
+      0  0  0  1  0  0      0  0  0 -1  0  0
+      0  0  0  0  1  0      0  0  0  0 -1  0
+      0  0  0  0  0  1      0  0  0  0  0 -1
+
+      0 0 0 0 0 0     0 0 1 0 0 0
+      0 0 0 0 0 0     0 0 0 1 0 0
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 1 0 0 0     0 0 0 0 0 0
-        0 0 0 1 0 0     0 0 0 0 0 0
-        0 0 0 0 1 0     0 0 0 0 0 0
-        0 0 0 0 0 1     0 0 0 0 0 0
-
-        0 0 0 0 0 0     0 0 1 0 0 0
-        0 0 0 0 0 0     0 0 0 1 0 0
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 1 0 0 0     0 0 0 0 0 0
+      0 0 0 1 0 0     0 0 0 0 0 0
+      0 0 0 0 1 0     0 0 0 0 0 0
+      0 0 0 0 0 1     0 0 0 0 0 0
+
+      0 0 0 0 0 0     0 0 1 0 0 0
+      0 0 0 0 0 0     0 0 0 1 0 0
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -195,70 +195,70 @@ end
 eqninx = 3;
 nreseqn = 3;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0     -1  0  0  0  0  0
-        0  1  0  0  0  0      0 -1  0  0  0  0
-        0  0  1  0  0  0      0  0 -1  0  0  0
-        0  0  0  1  0  0      0  0  0 -1  0  0
-        0  0  0  0  1  0      0  0  0  0 -1  0
-        0  0  0  0  0  1      0  0  0  0  0 -1
-
-        0 0 0 0 0 0     0 0 0 1 0 0
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0     -1  0  0  0  0  0
+      0  1  0  0  0  0      0 -1  0  0  0  0
+      0  0  1  0  0  0      0  0 -1  0  0  0
+      0  0  0  1  0  0      0  0  0 -1  0  0
+      0  0  0  0  1  0      0  0  0  0 -1  0
+      0  0  0  0  0  1      0  0  0  0  0 -1
+
+      0 0 0 0 0 0     0 0 0 1 0 0
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 1 0 0     0 0 0 0 0 0
-        0 0 0 0 1 0     0 0 0 0 0 0
-        0 0 0 0 0 1     0 0 0 0 0 0
-
-        0 0 0 0 0 0     0 0 0 1 0 0
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
-
-    %==== For freely time-varying A+ for only the first 6 lags.
-    %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
-    %  nlagsno0 = 6;   % Number of lags to be nonzero.
-    %  for si=1:nStates
-    %     for ki = 1:lags-nlagsno0
-    %        for kj=1:nvar
-    %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
-    %        end
-    %     end
-    %  end
-    %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    %  for si=1:nStates-1
-    %     for ki=[2*nvar+1:kvar-1]
-    %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-    %     end
-    %  end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 1 0 0     0 0 0 0 0 0
+      0 0 0 0 1 0     0 0 0 0 0 0
+      0 0 0 0 0 1     0 0 0 0 0 0
+
+      0 0 0 0 0 0     0 0 0 1 0 0
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
+
+   %==== For freely time-varying A+ for only the first 6 lags.
+   %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
+   %  nlagsno0 = 6;   % Number of lags to be nonzero.
+   %  for si=1:nStates
+   %     for ki = 1:lags-nlagsno0
+   %        for kj=1:nvar
+   %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
+   %        end
+   %     end
+   %  end
+   %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   %  for si=1:nStates-1
+   %     for ki=[2*nvar+1:kvar-1]
+   %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+   %     end
+   %  end
 end
 
 
@@ -266,49 +266,49 @@ end
 eqninx = 4;
 nreseqn = 2;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0     -1  0  0  0  0  0
-        0  1  0  0  0  0      0 -1  0  0  0  0
-        0  0  1  0  0  0      0  0 -1  0  0  0
-        0  0  0  1  0  0      0  0  0 -1  0  0
-        0  0  0  0  1  0      0  0  0  0 -1  0
-        0  0  0  0  0  1      0  0  0  0  0 -1
-
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0     -1  0  0  0  0  0
+      0  1  0  0  0  0      0 -1  0  0  0  0
+      0  0  1  0  0  0      0  0 -1  0  0  0
+      0  0  0  1  0  0      0  0  0 -1  0  0
+      0  0  0  0  1  0      0  0  0  0 -1  0
+      0  0  0  0  0  1      0  0  0  0  0 -1
+
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 0 1 0     0 0 0 0 0 0
-        0 0 0 0 0 1     0 0 0 0 0 0
-
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 0 1 0     0 0 0 0 0 0
+      0 0 0 0 0 1     0 0 0 0 0 0
+
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -316,46 +316,46 @@ end
 eqninx = 5;
 nreseqn = 1;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0     -1  0  0  0  0  0
-        0  1  0  0  0  0      0 -1  0  0  0  0
-        0  0  1  0  0  0      0  0 -1  0  0  0
-        0  0  0  1  0  0      0  0  0 -1  0  0
-        0  0  0  0  1  0      0  0  0  0 -1  0
-        0  0  0  0  0  1      0  0  0  0  0 -1
-
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0     -1  0  0  0  0  0
+      0  1  0  0  0  0      0 -1  0  0  0  0
+      0  0  1  0  0  0      0  0 -1  0  0  0
+      0  0  0  1  0  0      0  0  0 -1  0  0
+      0  0  0  0  1  0      0  0  0  0 -1  0
+      0  0  0  0  0  1      0  0  0  0  0 -1
+
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 0 0 1     0 0 0 0 0 0
-
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 0 0 1     0 0 0 0 0 0
+
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -363,38 +363,38 @@ end
 eqninx = 6;
 nreseqn = 0;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0     -1  0  0  0  0  0
-        0  1  0  0  0  0      0 -1  0  0  0  0
-        0  0  1  0  0  0      0  0 -1  0  0  0
-        0  0  0  1  0  0      0  0  0 -1  0  0
-        0  0  0  0  1  0      0  0  0  0 -1  0
-        0  0  0  0  0  1      0  0  0  0  0 -1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0     -1  0  0  0  0  0
+      0  1  0  0  0  0      0 -1  0  0  0  0
+      0  0  1  0  0  0      0  0 -1  0  0  0
+      0  0  0  1  0  0      0  0  0 -1  0  0
+      0  0  0  0  1  0      0  0  0  0 -1  0
+      0  0  0  0  0  1      0  0  0  0  0 -1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -448,8 +448,8 @@ end
 
 
 for ki=1:nvar   %  initializing loop for each equation
-    Ui{ki} = null(Qi(:,:,ki));
-    Vi{ki} = null(Ri(:,:,ki));
-    n0(ki) = size(Ui{ki},2);
-    np(ki) = size(Vi{ki},2);
+   Ui{ki} = null(Qi(:,:,ki));
+   Vi{ki} = null(Ri(:,:,ki));
+   n0(ki) = size(Ui{ki},2);
+   np(ki) = size(Vi{ki},2);
 end
diff --git a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol7v.m b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol7v.m
index eb2e80c69513abdb45a4c50f5835c35f9a057b83..de818ab9051c8f35e4e54a92619eced157cefb1f 100644
--- a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol7v.m
+++ b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol7v.m
@@ -49,7 +49,7 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free D+ parameters in ith equation in all states.
 
 if (nargin==3)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 end
 
 
@@ -59,10 +59,10 @@ k = kvar*nStates;  % Maximum number of lagged and exogenous variables in each eq
 
 Qi = zeros(n,n,nvar);   % 3rd dim: nvar contemporaneous equations.
 Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
-                         % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
-                         %        0 means no restriction.
-                         %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
-                         %        1 (only 1) means that the corresponding parameter is restricted to 0.
+   % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
+   %        0 means no restriction.
+   %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
+   %        1 (only 1) means that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -77,63 +77,63 @@ Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
 eqninx = 1;
 nreseqn = 6;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-
-        0 0 0 0 0 0 0       0 1 0 0 0 0 0
-        0 0 0 0 0 0 0       0 0 1 0 0 0 0
-        0 0 0 0 0 0 0       0 0 0 1 0 0 0
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+
+      0 0 0 0 0 0 0       0 1 0 0 0 0 0
+      0 0 0 0 0 0 0       0 0 1 0 0 0 0
+      0 0 0 0 0 0 0       0 0 0 1 0 0 0
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 1 0 0 0 0 0    0 0 0 0 0 0 0
-        0 0 1 0 0 0 0    0 0 0 0 0 0 0
-        0 0 0 1 0 0 0    0 0 0 0 0 0 0
-        0 0 0 0 1 0 0    0 0 0 0 0 0 0
-        0 0 0 0 0 1 0    0 0 0 0 0 0 0
-        0 0 0 0 0 0 1    0 0 0 0 0 0 0
-
-        0 0 0 0 0 0 0       0 1 0 0 0 0 0
-        0 0 0 0 0 0 0       0 0 1 0 0 0 0
-        0 0 0 0 0 0 0       0 0 0 1 0 0 0
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 1 0 0 0 0 0    0 0 0 0 0 0 0
+      0 0 1 0 0 0 0    0 0 0 0 0 0 0
+      0 0 0 1 0 0 0    0 0 0 0 0 0 0
+      0 0 0 0 1 0 0    0 0 0 0 0 0 0
+      0 0 0 0 0 1 0    0 0 0 0 0 0 0
+      0 0 0 0 0 0 1    0 0 0 0 0 0 0
+
+      0 0 0 0 0 0 0       0 1 0 0 0 0 0
+      0 0 0 0 0 0 0       0 0 1 0 0 0 0
+      0 0 0 0 0 0 0       0 0 0 1 0 0 0
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -141,60 +141,60 @@ end
 eqninx = 2;
 nreseqn = 5;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-
-        0 0 0 0 0 0 0       0 0 1 0 0 0 0
-        0 0 0 0 0 0 0       0 0 0 1 0 0 0
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+
+      0 0 0 0 0 0 0       0 0 1 0 0 0 0
+      0 0 0 0 0 0 0       0 0 0 1 0 0 0
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 1 0 0 0 0        0 0 0 0 0 0 0
-        0 0 0 1 0 0 0        0 0 0 0 0 0 0
-        0 0 0 0 1 0 0        0 0 0 0 0 0 0
-        0 0 0 0 0 1 0        0 0 0 0 0 0 0
-        0 0 0 0 0 0 1        0 0 0 0 0 0 0
-
-        0 0 0 0 0 0 0       0 0 1 0 0 0 0
-        0 0 0 0 0 0 0       0 0 0 1 0 0 0
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+       0 0 1 0 0 0 0        0 0 0 0 0 0 0
+       0 0 0 1 0 0 0        0 0 0 0 0 0 0
+       0 0 0 0 1 0 0        0 0 0 0 0 0 0
+       0 0 0 0 0 1 0        0 0 0 0 0 0 0
+       0 0 0 0 0 0 1        0 0 0 0 0 0 0
+
+      0 0 0 0 0 0 0       0 0 1 0 0 0 0
+      0 0 0 0 0 0 0       0 0 0 1 0 0 0
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -202,57 +202,57 @@ end
 eqninx = 3;
 nreseqn = 4;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-
-        0 0 0 0 0 0 0       0 0 0 1 0 0 0
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+
+      0 0 0 0 0 0 0       0 0 0 1 0 0 0
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 1 0 0 0       0 0 0 0 0 0 0
-        0 0 0 0 1 0 0       0 0 0 0 0 0 0
-        0 0 0 0 0 1 0       0 0 0 0 0 0 0
-        0 0 0 0 0 0 1       0 0 0 0 0 0 0
-
-        0 0 0 0 0 0 0       0 0 0 1 0 0 0
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 1 0 0 0       0 0 0 0 0 0 0
+      0 0 0 0 1 0 0       0 0 0 0 0 0 0
+      0 0 0 0 0 1 0       0 0 0 0 0 0 0
+      0 0 0 0 0 0 1       0 0 0 0 0 0 0
+
+      0 0 0 0 0 0 0       0 0 0 1 0 0 0
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -261,71 +261,71 @@ end
 eqninx = 4;
 nreseqn = 3;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 0 1 0 0       0 0 0 0 0 0 0
-        0 0 0 0 0 1 0       0 0 0 0 0 0 0
-        0 0 0 0 0 0 1       0 0 0 0 0 0 0
-
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
-
-    %==== For freely time-varying A+ for only the first 6 lags.
-    %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
-    %  nlagsno0 = 6;   % Number of lags to be nonzero.
-    %  for si=1:nStates
-    %     for ki = 1:lags-nlagsno0
-    %        for kj=1:nvar
-    %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
-    %        end
-    %     end
-    %  end
-    %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    %  for si=1:nStates-1
-    %     for ki=[2*nvar+1:kvar-1]
-    %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-    %     end
-    %  end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 0 1 0 0       0 0 0 0 0 0 0
+      0 0 0 0 0 1 0       0 0 0 0 0 0 0
+      0 0 0 0 0 0 1       0 0 0 0 0 0 0
+
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
+
+   %==== For freely time-varying A+ for only the first 6 lags.
+   %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
+   %  nlagsno0 = 6;   % Number of lags to be nonzero.
+   %  for si=1:nStates
+   %     for ki = 1:lags-nlagsno0
+   %        for kj=1:nvar
+   %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
+   %        end
+   %     end
+   %  end
+   %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   %  for si=1:nStates-1
+   %     for ki=[2*nvar+1:kvar-1]
+   %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+   %     end
+   %  end
 end
 
 
@@ -333,50 +333,50 @@ end
 eqninx = 5;
 nreseqn = 2;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 0 0 1 0        0 0 0 0 0 0 0
-        0 0 0 0 0 0 1        0 0 0 0 0 0 0
-
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 0 0 1 0        0 0 0 0 0 0 0
+      0 0 0 0 0 0 1        0 0 0 0 0 0 0
+
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -384,47 +384,47 @@ end
 eqninx = 6;
 nreseqn = 1;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-
-        0 0 0 0 0 0 0             0 0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+
+      0 0 0 0 0 0 0             0 0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 0 0 0 1             0 0 0 0 0 0 0
-
-        0 0 0 0 0 0 0             0 0 0 0 0 0 1
-                   ];
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 0 0 0 1             0 0 0 0 0 0 0
+
+      0 0 0 0 0 0 0             0 0 0 0 0 0 1
+                         ];
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -432,39 +432,39 @@ end
 eqninx = 7;
 nreseqn = 0;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -518,8 +518,8 @@ end
 
 
 for ki=1:nvar   %  initializing loop for each equation
-    Ui{ki} = null(Qi(:,:,ki));
-    Vi{ki} = null(Ri(:,:,ki));
-    n0(ki) = size(Ui{ki},2);
-    np(ki) = size(Vi{ki},2);
+   Ui{ki} = null(Qi(:,:,ki));
+   Vi{ki} = null(Ri(:,:,ki));
+   n0(ki) = size(Ui{ki},2);
+   np(ki) = size(Vi{ki},2);
 end
diff --git a/tests/ms-sbvar/archive-files/ftd_RSvensson_4v.m b/tests/ms-sbvar/archive-files/ftd_RSvensson_4v.m
index 2c9f4344752c289e321c3f1891abf839e7c47ad9..2b24a786ab780f51242114d45a7cf0c4a02a4fcf 100644
--- a/tests/ms-sbvar/archive-files/ftd_RSvensson_4v.m
+++ b/tests/ms-sbvar/archive-files/ftd_RSvensson_4v.m
@@ -1,4 +1,4 @@
-function [Ui,Vi,n0,np,ixmC0Pres] = ftd_RSvensson_4v(lags,nvar,nexo,indxC0Pres)
+function [Ui,Vi,n0,np,ixmC0Pres] = ftd_reac_function_4v(lags,nvar,nexo,indxC0Pres)
 %  vlist = [ff+ch fh dpgdp ffr)
 %
 %    Exporting orthonormal matrices for the deterministic linear restrictions (equation by equation)
@@ -50,17 +50,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -75,13 +75,13 @@ Qi(1:3,:,1) = [
     0 1 0 0
     0 0 1 0
     0 0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:2,:,2) = [
     0 0 1 0
     0 0 0 1
-              ];
+        ];
 
 %======== The third equation =========== NOTE THAT WE FORBID A
 %CONTEMPORANEOUS IMPACT OF OUTPUTON PRICES TO AVOID A CONSTRAINT THAT
@@ -90,7 +90,7 @@ Qi(1:3,:,3) = [
     1 0 0 0
     0 1 0 0
     0 0 0 1
-              ];
+        ];
 
 %======== The fourth equation ===========
 
@@ -98,34 +98,34 @@ Qi(1:3,:,3) = [
 % Restrictions on the A+ in order to focus strictly on the reaction fucntion
 
 % indicates free parameterers X i
-%       Ap = [
+%	Ap = [
 %      X  X    X  X
-%          X  X    X  X
+%	   X  X    X  X
 %     -a1 -b1  X  X
 %      a1 b1   0  X  (1st lag)
 %      X  X    X  X
-%          X  X    X  X
+%	   X  X    X  X
 %     -a2 -b2  X  X
 %      b2  b2  0  X  (2nd lag)
 %      X   0   X  X
-%          X  X    X  X
+%	   X  X    X  X
 %     -a3 -b3  X  X
 %      a3  a3  0  X  (3rd lag)
 %      X  X    X  X
-%          X  X    X  X
+%	   X  X    X  X
 %     -a4 -b4  X  X
 %      a4  b4  0  X  (4th lag)
 %      X  X    X  X  (constant terms)
-%                         ];
+%			  ];
 
 k=nvar*lags+nexo;
 Ri = zeros(k,k,nvar);
 % constraints on IS curve /conso+corporate investment
 for nv=1:2
-    for ll=1:lags
-        Ri(ll,3+lags*(ll-1),nv)=1;
-        Ri(ll,4+lags*(ll-1),nv)=1;
-    end
+for ll=1:lags
+Ri(ll,3+lags*(ll-1),nv)=1;
+Ri(ll,4+lags*(ll-1),nv)=1;
+end
 end
 
 % constraints on IS curve /conso+corporate investment only on the long run
@@ -140,15 +140,15 @@ end
 
 % constraints on Ph curve / inflation does not react to interest rates
 for ll=1:lags
-    Ri(ll,4+lags*(ll-1),3)=1;
+Ri(ll,4+lags*(ll-1),3)=1;
 end
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -159,30 +159,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_cholesky.m b/tests/ms-sbvar/archive-files/ftd_cholesky.m
index 7c89c38eabb1d556a182cda765dd7de31b7fe242..42126015abf5d6a6f8e2bee19450f05aeb53f3de 100644
--- a/tests/ms-sbvar/archive-files/ftd_cholesky.m
+++ b/tests/ms-sbvar/archive-files/ftd_cholesky.m
@@ -47,17 +47,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -69,146 +69,146 @@ Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
 %The restrictions considered here are in the following form where X means unrestricted:
 %  A0 = [
 %      X  0  X  X
-%                0  X  X  X
-%                0  0  X  X
-%                0  0  0  X
-%                       ];
-%       Ap = [
+%		 0  X  X  X
+%		 0  0  X  X
+%		 0  0  0  X
+%			];
+%	Ap = [
 %      X  0  X  X
-%                0  X  X  X
+%		 0  X  X  X
 %      0  0  X  X
 %      0  0  X  X  (1st lag)
 %      X  0  X  X
-%                0  X  X  X
+%		 0  X  X  X
 %      0  0  X  X
 %      0  0  X  X  (2nd lag)
 %      X  0  X  X
-%                0  X  X  X
+%		 0  X  X  X
 %      0  0  X  X
 %      0  0  X  X  (3rd lag)
 %      X  0  X  X
-%                0  X  X  X
+%		 0  X  X  X
 %      0  0  X  X
 %      0  0  X  X  (4th lag)
 %      0  X  0  0  (constant terms)
-%                       ];
+%			];
 
 if (0)
-    %------------------------ Lower triangular A0 ------------------------------
-    %======== The first equation ===========
-
-
-    %======== The second equation ===========
-    Qi(1:1,:,2) = [
-        1 0 0 0
-                  ];
-
-    %======== The third equation ===========
-    Qi(1:2,:,3) = [
-        1 0 0 0
-        0 1 0 0
-                  ];
-
-    %======== The fourth equation ===========
-    Qi(1:3,:,4) = [
-        1 0 0 0
-        0 1 0 0
-        0 0 1 0
-                  ];
+	%------------------------ Lower triangular A0 ------------------------------
+	%======== The first equation ===========
+
+
+	%======== The second equation ===========
+	Qi(1:1,:,2) = [
+	   1 0 0 0
+	        ];
+
+	%======== The third equation ===========
+	Qi(1:2,:,3) = [
+	   1 0 0 0
+	   0 1 0 0
+	        ];
+
+	%======== The fourth equation ===========
+	Qi(1:3,:,4) = [
+	   1 0 0 0
+	   0 1 0 0
+	   0 0 1 0
+	        ];
 else
-    %------------------------ Upper triangular A0 ------------------------------
-    %======== The first equation ===========
-    Qi(2:4,:,1) = [
-        0 1 0 0
-        0 0 1 0
-        0 0 0 1
-                  ];
-
-    %======== The second equation ===========
-    Qi([1 3:4],:,2) = [
-        1 0 0 0
-        0 0 1 0
-        0 0 0 1
-                      ];
-
-    %======== The third equation ===========
-    Qi(4:4,:,3) = [
-        0 0 0 1
-                  ];
-
-    %======== The fourth equation ===========
+	%------------------------ Upper triangular A0 ------------------------------
+	%======== The first equation ===========
+	Qi(2:4,:,1) = [
+	   0 1 0 0
+	   0 0 1 0
+	   0 0 0 1
+	        ];
+
+	%======== The second equation ===========
+   Qi([1 3:4],:,2) = [
+      1 0 0 0
+      0 0 1 0
+	   0 0 0 1
+	        ];
+
+	%======== The third equation ===========
+	Qi(4:4,:,3) = [
+	   0 0 0 1
+	        ];
+
+	%======== The fourth equation ===========
 end
 
 
 %-------------------------- Lag restrictions. ------------------------------------------
 if (1)
-    %--- Lag restrictions.
-    indxeqn = 1;   %Which equation.
-    nrestrs = (nvar-1)*lags+1;  %Number of restrictions.
-    vars_restr = [2:nvar];  %Variables that are restricted:  id, ik, and y.
-    blags = zeros(nrestrs,k);  %k=nvar*lags+1
-    cnt = 0;
-    for ki = 1:lags
-        for kj=vars_restr
-            cnt = cnt+1;
-            blags(cnt,nvar*(ki-1)+kj) = 1;
-        end
-    end
-    %--- Keep constant zero.
-    cnt = cnt+1;
-    blags(cnt,end) = 1;  %Constant = 0.
-    if cnt~=nrestrs
-        error('Check lagged restrictions in 1st equation!')
-    end
-    Ri(1:nrestrs,:,indxeqn) = blags;
-
-    %--- Lag restrictions.
-    indxeqn = 2;   %Which equation.
-    nrestrs = (nvar-1)*lags;  %Number of restrictions.
-    vars_restr = [1 3:nvar];  %Variables that are restricted:  id, ik, and y.
-    blags = zeros(nrestrs,k);  %k=nvar*lags+1
-    cnt = 0;
-    for ki = 1:lags
-        for kj=vars_restr
-            cnt = cnt+1;
-            blags(cnt,nvar*(ki-1)+kj) = 1;
-        end
-    end
-    Ri(1:nrestrs,:,indxeqn) = blags;
-
-    %--- Lag restrictions.
-    indxeqn = 3;   %Which equation.
-    nrestrs = 1;  %Number of restrictions.
-    blags = zeros(nrestrs,k);
-    cnt = 0;
-    %--- Keep constant zero.
-    cnt = cnt+1;
-    blags(cnt,end) = 1;  %Constant = 0.
-    if cnt~=nrestrs
-        error('Check lagged restrictions in 1st equation!')
-    end
-    Ri(1:nrestrs,:,indxeqn) = blags;
-
-    %--- Lag restrictions.
-    indxeqn = 4;   %Which equation.
-    nrestrs = 1;  %Number of restrictions.
-    blags = zeros(nrestrs,k);
-    cnt = 0;
-    %--- Keep constant zero.
-    cnt = cnt+1;
-    blags(cnt,end) = 1;  %Constant = 0.
-    if cnt~=nrestrs
-        error('Check lagged restrictions in 1st equation!')
-    end
-    Ri(1:nrestrs,:,indxeqn) = blags;
+	%--- Lag restrictions.
+	indxeqn = 1;   %Which equation.
+	nrestrs = (nvar-1)*lags+1;  %Number of restrictions.
+	vars_restr = [2:nvar];  %Variables that are restricted:  id, ik, and y.
+   blags = zeros(nrestrs,k);  %k=nvar*lags+1
+	cnt = 0;
+	for ki = 1:lags
+	   for kj=vars_restr
+	      cnt = cnt+1;
+	      blags(cnt,nvar*(ki-1)+kj) = 1;
+	   end
+	end
+	%--- Keep constant zero.
+	cnt = cnt+1;
+	blags(cnt,end) = 1;  %Constant = 0.
+	if cnt~=nrestrs
+	   error('Check lagged restrictions in 1st equation!')
+	end
+	Ri(1:nrestrs,:,indxeqn) = blags;
+
+	%--- Lag restrictions.
+	indxeqn = 2;   %Which equation.
+   nrestrs = (nvar-1)*lags;  %Number of restrictions.
+   vars_restr = [1 3:nvar];  %Variables that are restricted:  id, ik, and y.
+   blags = zeros(nrestrs,k);  %k=nvar*lags+1
+   cnt = 0;
+   for ki = 1:lags
+      for kj=vars_restr
+         cnt = cnt+1;
+         blags(cnt,nvar*(ki-1)+kj) = 1;
+      end
+   end
+	Ri(1:nrestrs,:,indxeqn) = blags;
+
+	%--- Lag restrictions.
+	indxeqn = 3;   %Which equation.
+	nrestrs = 1;  %Number of restrictions.
+	blags = zeros(nrestrs,k);
+	cnt = 0;
+	%--- Keep constant zero.
+	cnt = cnt+1;
+	blags(cnt,end) = 1;  %Constant = 0.
+	if cnt~=nrestrs
+	   error('Check lagged restrictions in 1st equation!')
+	end
+	Ri(1:nrestrs,:,indxeqn) = blags;
+
+	%--- Lag restrictions.
+	indxeqn = 4;   %Which equation.
+	nrestrs = 1;  %Number of restrictions.
+	blags = zeros(nrestrs,k);
+	cnt = 0;
+	%--- Keep constant zero.
+	cnt = cnt+1;
+	blags(cnt,end) = 1;  %Constant = 0.
+	if cnt~=nrestrs
+	   error('Check lagged restrictions in 1st equation!')
+	end
+	Ri(1:nrestrs,:,indxeqn) = blags;
 end
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -222,30 +222,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_non_rec_5v.m b/tests/ms-sbvar/archive-files/ftd_non_rec_5v.m
index ba328cb3de65b42b1ea58a50f3fd9622709cf9d8..e9fbeb4099a5f9e7a43a39e8de43d90b7b4aada6 100644
--- a/tests/ms-sbvar/archive-files/ftd_non_rec_5v.m
+++ b/tests/ms-sbvar/archive-files/ftd_non_rec_5v.m
@@ -1,4 +1,4 @@
-function [Ui,Vi,n0,np,ixmC0Pres] = ftd_non_rec_5v(lags,nvar,nexo,indxC0Pres)
+function [Ui,Vi,n0,np,ixmC0Pres] = ftd_upperchol5v(lags,nvar,nexo,indxC0Pres)
 %  vlist = [127 124 93 141 21];    % 1: GDP; 2: GDP deflator 124 (consumption deflator 79); 3: R; 4: M3 141 (M2 140); 5: exchange rate 21.
 %  varlist={'y', 'P', 'R', 'M3', 'Ex'};
 %
@@ -45,17 +45,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -71,20 +71,20 @@ Qi(1:4,:,1) = [
     0 0 1 0 0
     0 0 0 1 0
     0 0 0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:3,:,2) = [
     0 0 1 0 0
     0 0 0 1 0
     0 0 0 0 1
-              ];
+        ];
 
 %======== The third equation ===========
 Qi(1:2,:,3) = [
     0 0 0 1 0
     0 0 0 0 1
-              ];
+        ];
 
 
 %======== The fourth equation ===========
@@ -99,7 +99,7 @@ Qi(1:3,:,5) = [
     1 0 0 0 0
     0 1 0 0 0
     0 0 1 0 0
-              ];
+         ];
 
 
 
@@ -149,10 +149,10 @@ Qi(1:3,:,5) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -163,30 +163,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_simszha5v.m b/tests/ms-sbvar/archive-files/ftd_simszha5v.m
index a48168fc6a16d886e6c5c7ba0c8c9b365b562ac7..0a0034a9d0298e983674cc113fae1b28a8311c70 100644
--- a/tests/ms-sbvar/archive-files/ftd_simszha5v.m
+++ b/tests/ms-sbvar/archive-files/ftd_simszha5v.m
@@ -45,17 +45,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -75,30 +75,30 @@ Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
 %   0 0 0 0 1
 %        ];    % Respond to Pcom.
 Qi(1:3,:,2) = [
-    1 0 0 0 0
-    0 0 0 1 0
-    0 0 0 0 1
-              ];    % Not respond to Pcom.
+   1 0 0 0 0
+   0 0 0 1 0
+   0 0 0 0 1
+        ];    % Not respond to Pcom.
 
 %======== The third equation: money demand ===========
 Qi(1,:,3) = [
-    1 0 0 0 0
-            ];
+   1 0 0 0 0
+        ];
 
 %======== The fourth equation: y equation ===========
 Qi(1:4,:,4) = [
-    1 0 0 0 0
-    0 1 0 0 0
-    0 0 1 0 0
-    0 0 0 0 1
-              ];
+   1 0 0 0 0
+   0 1 0 0 0
+   0 0 1 0 0
+   0 0 0 0 1
+        ];
 
 %======== The fifth equation: p equation ===========
 Qi(1:3,:,5) = [
-    1 0 0 0 0
-    0 1 0 0 0
-    0 0 1 0 0
-              ];
+   1 0 0 0 0
+   0 1 0 0 0
+   0 0 1 0 0
+        ];
 
 
 %===== Lagged restrictions in foreign (Granger causing) block
@@ -147,10 +147,10 @@ Qi(1:3,:,5) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -161,30 +161,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_upperchol3v.m b/tests/ms-sbvar/archive-files/ftd_upperchol3v.m
index 4c221df74fc460b5764781cf22d22bbcd5a65b62..a5c19f79e8ef575e6e0ff1480593e73b84ebf19e 100644
--- a/tests/ms-sbvar/archive-files/ftd_upperchol3v.m
+++ b/tests/ms-sbvar/archive-files/ftd_upperchol3v.m
@@ -44,17 +44,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -69,12 +69,12 @@ Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
 Qi(1:2,:,1) = [
     0 1 0
     0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:1,:,2) = [
     0 0 1
-              ];
+        ];
 
 
 %======== The third equation ===========
@@ -127,10 +127,10 @@ Qi(1:1,:,2) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -141,30 +141,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_upperchol4v.m b/tests/ms-sbvar/archive-files/ftd_upperchol4v.m
index db0b9c371af64021f0ffe676b90d01c8e10d3890..aadac9512f31724b77225a07edc5ede987795aa4 100644
--- a/tests/ms-sbvar/archive-files/ftd_upperchol4v.m
+++ b/tests/ms-sbvar/archive-files/ftd_upperchol4v.m
@@ -45,17 +45,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -70,18 +70,18 @@ Qi(1:3,:,1) = [
     0 1 0 0
     0 0 1 0
     0 0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:2,:,2) = [
     0 0 1 0
     0 0 0 1
-              ];
+        ];
 
 %======== The third equation ===========
 Qi(1:1,:,3) = [
     0 0 0 1
-              ];
+        ];
 
 
 %======== The fourth equation ===========
@@ -135,10 +135,10 @@ Qi(1:1,:,3) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -149,30 +149,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_upperchol5v.m b/tests/ms-sbvar/archive-files/ftd_upperchol5v.m
index 948d0c0d19e17b069aa0d9165876f8219c79e503..b41a60c1747dde3075a4d4ae7cac3cc1e3a8cdab 100644
--- a/tests/ms-sbvar/archive-files/ftd_upperchol5v.m
+++ b/tests/ms-sbvar/archive-files/ftd_upperchol5v.m
@@ -45,17 +45,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -71,26 +71,26 @@ Qi(1:4,:,1) = [
     0 0 1 0 0
     0 0 0 1 0
     0 0 0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:3,:,2) = [
     0 0 1 0 0
     0 0 0 1 0
     0 0 0 0 1
-              ];
+        ];
 
 %======== The third equation ===========
 Qi(1:2,:,3) = [
     0 0 0 1 0
     0 0 0 0 1
-              ];
+        ];
 
 
 %======== The fourth equation ===========
 Qi(1:1,:,4) = [
     0 0 0 0 1
-              ];
+         ];
 
 
 %======== The fifth equation ===========
@@ -144,10 +144,10 @@ Qi(1:1,:,4) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -158,30 +158,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_upperchol6v.m b/tests/ms-sbvar/archive-files/ftd_upperchol6v.m
index 462704c240d05115a8f9c6ee00e41954a2d8fb19..c6560ffd986fccb13b4e8e499f434512d612b16e 100644
--- a/tests/ms-sbvar/archive-files/ftd_upperchol6v.m
+++ b/tests/ms-sbvar/archive-files/ftd_upperchol6v.m
@@ -45,17 +45,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -72,7 +72,7 @@ Qi(1:5,:,1) = [
     0 0 0 1 0 0
     0 0 0 0 1 0
     0 0 0 0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:4,:,2) = [
@@ -80,27 +80,27 @@ Qi(1:4,:,2) = [
     0 0 0 1 0 0
     0 0 0 0 1 0
     0 0 0 0 0 1
-              ];
+        ];
 
 %======== The third equation ===========
 Qi(1:3,:,3) = [
     0 0 0 1 0 0
     0 0 0 0 1 0
     0 0 0 0 0 1
-              ];
+        ];
 
 
 %======== The fourth equation ===========
 Qi(1:2,:,4) = [
     0 0 0 0 1 0
     0 0 0 0 0 1
-              ];
+         ];
 
 
 %======== The fifth equation ===========
 Qi(1:1,:,5) = [
     0 0 0 0 0 1
-              ];
+         ];
 
 
 %======== The sixth equation ===========
@@ -151,10 +151,10 @@ Qi(1:1,:,5) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -165,30 +165,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_upperchol7v.m b/tests/ms-sbvar/archive-files/ftd_upperchol7v.m
index dc7db34accef8103be6ab8153aac3012ccee0604..d0dc7969c4bc3d435bc427a6c62300a24584a9c9 100644
--- a/tests/ms-sbvar/archive-files/ftd_upperchol7v.m
+++ b/tests/ms-sbvar/archive-files/ftd_upperchol7v.m
@@ -45,17 +45,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -73,7 +73,7 @@ Qi(1:6,:,1) = [
     0 0 0 0 1 0 0
     0 0 0 0 0 1 0
     0 0 0 0 0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:5,:,2) = [
@@ -82,7 +82,7 @@ Qi(1:5,:,2) = [
     0 0 0 0 1 0 0
     0 0 0 0 0 1 0
     0 0 0 0 0 0 1
-              ];
+        ];
 
 %======== The third equation ===========
 Qi(1:4,:,3) = [
@@ -90,27 +90,27 @@ Qi(1:4,:,3) = [
     0 0 0 0 1 0 0
     0 0 0 0 0 1 0
     0 0 0 0 0 0 1
-              ];
+        ];
 
 %======== The fourth equation ===========
 Qi(1:3,:,4) = [
     0 0 0 0 1 0 0
     0 0 0 0 0 1 0
     0 0 0 0 0 0 1
-              ];
+        ];
 
 
 %======== The fifth equation ===========
 Qi(1:2,:,5) = [
     0 0 0 0 0 1 0
     0 0 0 0 0 0 1
-              ];
+         ];
 
 
 %======== The sixth equation ===========
 Qi(1:1,:,6) = [
     0 0 0 0 0 0 1
-              ];
+         ];
 
 
 %======== The seventh equation ===========
@@ -161,10 +161,10 @@ Qi(1:1,:,6) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -175,30 +175,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/data.m b/tests/ms-sbvar/data.m
index d8a7c941254756b2753b5457b493b0579ee65aab..6f738015c7dfd1d207906084dca5781f0c7508ee 100644
--- a/tests/ms-sbvar/data.m
+++ b/tests/ms-sbvar/data.m
@@ -1,193 +1,193 @@
 sbvar_data = [
-    -9.3174834887745916e-003,       1.7994658843431877e-002,        2.5699999999999997e-002;
-    7.7668705855149511e-003,        6.0096276044880881e-003,        3.0800000000000001e-002;
-    -1.9541593158383108e-003,       1.1443694953360728e-002,        3.5799999999999998e-002;
-    -7.3230760374594084e-003,       1.6080663886388402e-002,        3.9900000000000005e-002;
-    5.7366104256297845e-003,        9.6254961625830138e-003,        3.9300000000000002e-002;
-    -8.3093609995312789e-003,       1.7721697565065142e-002,        3.7000000000000005e-002;
-    -1.5818734568909143e-002,       1.8802248364432783e-002,        2.9399999999999999e-002;
-    -3.8114188274117389e-002,       1.7753163941062411e-002,        2.3000000000000000e-002;
-    -4.1399862204639426e-002,       4.5389998028741996e-003,        2.0000000000000000e-002;
-    -3.2217707697825837e-002,       7.3753322217300354e-003,        1.7299999999999999e-002;
-    -2.5646357007195419e-002,       1.0583418386522991e-002,        1.6799999999999999e-002;
-    -1.4897222570872337e-002,       1.0366269881014523e-002,        2.4000000000000000e-002;
-    -6.6220480083236666e-003,       2.3042923285839567e-002,        2.4600000000000000e-002;
-    -5.3027079623060303e-003,       1.0468178907987236e-002,        2.6099999999999998e-002;
-    -5.7275387773225717e-003,       1.0815248301383029e-002,        2.8500000000000001e-002;
-    -1.2909019643277730e-002,       1.3963993831495269e-002,        2.9200000000000000e-002;
-    -9.6082193296807006e-003,       1.1306915202373702e-002,        2.9700000000000001e-002;
-    -6.9847294194245180e-003,       4.0554812275257479e-003,        2.9600000000000001e-002;
-    1.8176103434601742e-003,        7.3752799189321649e-003,        3.3300000000000003e-002;
-    -4.5038023245602687e-004,       2.3887283546807359e-002,        3.4500000000000003e-002;
-    1.1624668564948593e-002,        1.4307761419874110e-002,        3.4599999999999999e-002;
-    1.2948656776092804e-002,        1.3154713006571006e-002,        3.4900000000000000e-002;
-    1.6160285046599832e-002,        1.9531653948000383e-002,        3.4599999999999999e-002;
-    8.4081398395898788e-003,        1.8522230201726275e-002,        3.5799999999999998e-002;
-    2.2153370885423129e-002,        1.7709079726716315e-002,        3.9699999999999999e-002;
-    2.4844201757035833e-002,        1.7812125625833675e-002,        4.0800000000000003e-002;
-    3.4050690186470334e-002,        1.7733161216544779e-002,        4.0700000000000000e-002;
-    4.6893307071320223e-002,        2.4854086852623247e-002,        4.1700000000000001e-002;
-    5.9972460768834779e-002,        2.4879959563927745e-002,        4.5599999999999995e-002;
-    5.2289186415585220e-002,        3.7979469553559353e-002,        4.9100000000000005e-002;
-    4.7741188658148914e-002,        3.9049003040727781e-002,        5.4100000000000002e-002;
-    4.4667561574096126e-002,        3.5671179948047138e-002,        5.5599999999999997e-002;
-    4.2427836565945398e-002,        1.9374879269963063e-002,        4.8200000000000000e-002;
-    3.1462874033119093e-002,        2.5309792721300628e-002,        3.9900000000000005e-002;
-    2.8437659950142802e-002,        3.7210113920888466e-002,    3.8900000000000004e-002;
-    2.5156025048538311e-002,        4.4947363315081201e-002,        4.1700000000000001e-002;
-    3.4855619579102992e-002,        4.3766256282161686e-002,        4.7899999999999998e-002;
-    4.1146105898716812e-002,        4.5485089147871749e-002,        5.9800000000000006e-002;
-    3.7608522339491302e-002,        3.9312213398265738e-002,        5.9400000000000001e-002;
-    3.1755688168807694e-002,        5.7147340097736921e-002,        5.9200000000000003e-002;
-    3.7547536338742304e-002,        4.0820102882030529e-002,        6.5700000000000008e-002;
-    3.0780798807969134e-002,        5.4795099957268389e-002,        8.3299999999999999e-002;
-    2.7622883356809069e-002,        5.9674785474016057e-002,        8.9800000000000005e-002;
-    1.3687491471252144e-002,        5.1526594947709725e-002,        8.9399999999999993e-002;
-    3.0365204590552253e-003,        5.7110106004252703e-002,        8.5699999999999998e-002;
-    -3.8946120840908094e-003,       5.8310720503999880e-002,        7.8799999999999995e-002;
-    -3.7031729362304588e-003,       3.2162694194911579e-002,        6.7000000000000004e-002;
-    -2.2953853215847531e-002,       5.2193859691229916e-002,        5.5700000000000000e-002;
-    -3.9774834192911612e-003,       6.1343390594280400e-002,        3.8599999999999995e-002;
-    -6.6430088990969693e-003,       5.4548116487401987e-002,        4.5599999999999995e-002;
-    -6.9966828696923500e-003,       4.0591135320590110e-002,        5.4699999999999999e-002;
-    -1.2347397716578001e-002,       3.2276797966984239e-002,        4.7500000000000001e-002;
-    -2.9473495209533240e-003,       6.7805039825567626e-002,        3.5400000000000001e-002;
-    1.2120764500071601e-002,        2.3686434724627725e-002,        4.2999999999999997e-002;
-    1.3231348379735053e-002,        3.7187744116042420e-002,        4.7400000000000005e-002;
-    2.0987028138604202e-002,        4.7889363970077925e-002,        5.1399999999999994e-002;
-    3.7485754706574781e-002,        5.3965548807981989e-002,        6.5400000000000000e-002;
-    4.0318879693293397e-002,        6.8340638829176292e-002,        7.8200000000000006e-002;
-    2.6218511286559831e-002,        7.8958874043481897e-002,        1.0560000000000000e-001;
-    2.6929695576288992e-002,        7.0997794665009550e-002,        1.0000000000000001e-001;
-    9.4554586277908470e-003,    8.4242699131246379e-002,    9.3200000000000005e-002;
-    3.6174737897027853e-003,        9.1565984601668537e-002,        1.1250000000000000e-001;
-    -1.4685635040370570e-002,       1.2944791465588246e-001,        1.2089999999999999e-001;
-    -2.7095820218557165e-002,       1.2813135610460602e-001,        9.3500000000000000e-002;
-    -4.7490291499844517e-002,       9.5634229266530868e-002,        6.3000000000000000e-002;
-    -4.8493379593802288e-002,       6.0105697293320492e-002,        5.4199999999999998e-002;
-    -3.9943449805699416e-002,       7.6752303729665350e-002,        6.1600000000000002e-002;
-    -3.5077206071779443e-002,       7.2995258807648344e-002,        5.4100000000000002e-002;
-    -2.0906071356066036e-002,       4.5679585226099162e-002,        4.8300000000000003e-002;
-    -2.1531096410072337e-002,       4.3592360792875207e-002,        5.2000000000000005e-002;
-    -2.4735476775209264e-002,       5.5187881222506396e-002,        5.2800000000000000e-002;
-    -2.5561529099840996e-002,       7.0182306554444240e-002,        4.8700000000000000e-002;
-    -2.1575901985043444e-002,       6.8358747781264828e-002,        4.6600000000000003e-002;
-    -1.0282812897440152e-002,       6.5803889922906311e-002,        5.1600000000000000e-002;
-    -9.1324207260257140e-004,       5.6172786341162295e-002,        5.8200000000000002e-002;
-    -9.5486836624303351e-003,       6.9205174325260410e-002,        6.5099999999999991e-002;
-    -1.4957543819619445e-002,       6.8508819756844419e-002,        6.7599999999999993e-002;
-    1.5069561708809687e-002,        7.9300571687745292e-002,        7.2800000000000004e-002;
-    1.6283475252537372e-002,        7.0872150059167804e-002,        8.1000000000000003e-002;
-    2.0908466837013862e-002,        8.4120663761548808e-002,        9.5799999999999996e-002;
-    1.4559374240283418e-002,        7.4654989747748868e-002,        1.0070000000000000e-001;
-    7.4026792768986382e-003,        1.0065048845414548e-001,        1.0180000000000000e-001;
-    6.7867658044900026e-003,        8.4869122045493794e-002,        1.0949999999999999e-001;
-    2.0964569874966088e-003,        8.1073829867721159e-002,        1.3580000000000000e-001;
-    -2.1618734445638665e-003,       9.0701460926355892e-002,        1.5049999999999999e-001;
-    -2.9866760868227260e-002,       9.1306883112545645e-002,        1.2689999999999999e-001;
-    -3.8807200394211705e-002,       9.3833166941218682e-002,        9.8400000000000001e-002;
-    -2.7491967650325577e-002,       1.1718934484063248e-001,        1.5850000000000000e-001;
-    -1.4366396848604523e-002,       1.0830156525255896e-001,        1.6570000000000001e-001;
-    -2.8990249638850329e-002,       7.2488303659308695e-002,        1.7780000000000001e-001;
-    -2.3603799101664436e-002,       7.5735091281379452e-002,        1.7579999999999998e-001;
-    -4.2733757910307091e-002,       7.1783638615472212e-002,        1.3589999999999999e-001;
-    -6.5834256612443909e-002,       5.7815346934783074e-002,        1.4230000000000001e-001;
-    -6.7076173517195414e-002,       5.0774215309779880e-002,        1.4510000000000001e-001;
-    -7.7493754839396800e-002,       5.6543508350202609e-002,        1.1010000000000000e-001;
-    -8.3437100867300273e-002,       4.3285023548542245e-002,        9.2899999999999996e-002;
-    -7.8140443582185526e-002,       3.4701884333945499e-002,        8.6500000000000007e-002;
-    -6.2904972370690260e-002,       2.9380728193572736e-002,        8.8000000000000009e-002;
-    -5.0575674226140066e-002,       4.1378527908603857e-002,        9.4600000000000004e-002;
-    -3.7530293571547801e-002,       2.9492818368749285e-002,        9.4299999999999995e-002;
-    -2.5480519753907416e-002,       5.0489471212566306e-002,        9.6900000000000000e-002;
-    -1.5811147128429681e-002,       3.6455602629870576e-002,        1.0560000000000000e-001;
-    -1.3623195024511148e-002,       3.3023322354348572e-002,        1.1390000000000000e-001;
-    -1.3078242370475834e-002,       2.3921358528453451e-002,        9.2699999999999991e-002;
-    -1.1665978412656486e-002,       4.6889910860992590e-002,    8.4800000000000000e-002;
-    -1.1057518477750605e-002,       2.1095767295774115e-002,    7.9199999999999993e-002;
-    -3.5500769385130582e-003,       1.9350259876930620e-002,    7.9000000000000001e-002;
-    -4.0091273397440119e-003,       2.4435086241793469e-002,    8.1000000000000003e-002;
-    -2.6706581505724358e-003,       2.0699597271832237e-002,        7.8299999999999995e-002;
-    -6.9080484514429941e-003,       1.9443895441419112e-002,        6.9199999999999998e-002;
-    -5.5474687375021148e-003,       2.5823472588566876e-002,        6.2100000000000002e-002;
-    -8.5975304020564636e-003,       2.8570642360117970e-002,        6.2699999999999992e-002;
-    -1.0035881703480243e-002,       3.1152336660817959e-002,        6.2199999999999998e-002;
-    -7.0303958060371485e-003,       2.1687265092285912e-002,        6.6500000000000004e-002;
-    -5.8350389745083220e-003,       3.0295425205495219e-002,        6.8400000000000002e-002;
-    3.7000011882959427e-003,        2.7397559342506872e-002,        6.9199999999999998e-002;
-    8.4384375816348722e-004,        3.3739380042497880e-002,        6.6600000000000006e-002;
-    5.7875193242438172e-003,        3.9850322530345039e-002,        7.1599999999999997e-002;
-    3.4826974951247536e-003,        4.7684800945334560e-002,        7.9800000000000010e-002;
-    9.0205001602736701e-003,        3.2309473053872662e-002,    8.4700000000000011e-002;
-    1.1602002723241966e-002,        4.2437558261487096e-002,        9.4399999999999998e-002;
-    1.0727253531554126e-002,        3.9442307350746830e-002,        9.7299999999999998e-002;
-    1.0478054167251116e-002,        2.9474511048905416e-002,        9.0800000000000006e-002;
-    5.7769411729271525e-003,        2.6619819505881992e-002,        8.6099999999999996e-002;
-    1.0146775956780374e-002,        4.9017285623800477e-002,        8.2500000000000004e-002;
-    5.6961778759188064e-003,        4.7444796184034521e-002,        8.2400000000000001e-002;
-    -1.1072568495222868e-003,       3.6239655982325480e-002,        8.1600000000000006e-002;
-    -1.5465707409310525e-002,       3.1366693341789098e-002,        7.7399999999999997e-002;
-    -2.7250024246535887e-002,       4.7905236749817171e-002,        6.4299999999999996e-002;
-    -2.7337568911169896e-002,       2.5679327033720556e-002,        5.8600000000000006e-002;
-    -2.8996765457870666e-002,       2.7744462882228538e-002,        5.6399999999999999e-002;
-    -3.0694988523064737e-002,       2.0348807487869491e-002,        4.8200000000000000e-002;
-    -2.6687542665930764e-002,       2.6838736648956640e-002,        4.0199999999999993e-002;
-    -2.3361909698373040e-002,       2.0963598977361553e-002,        3.7699999999999997e-002;
-    -1.9843866905633334e-002,       1.7512821090635011e-002,        3.2599999999999997e-002;
-    -1.5118603774070039e-002,       2.1185582236595835e-002,        3.0400000000000000e-002;
-    -2.0197613265910519e-002,       3.1946708550473213e-002,        3.0400000000000000e-002;
-    -2.1520678025641615e-002,       2.1834134877041667e-002,        2.9999999999999999e-002;
-    -2.2826650301176699e-002,       1.8033708065957166e-002,        3.0600000000000002e-002;
-    -1.5976648136103222e-002,       1.9600906791856332e-002,        2.9900000000000003e-002;
-    -1.2481565520511495e-002,       2.5764744780397253e-002,        3.2099999999999997e-002;
-    -6.2498609089072232e-003,       1.7163326403677015e-002,        3.9399999999999998e-002;
-    -7.5419440421207184e-003,       2.4448612633015232e-002,        4.4900000000000002e-002;
-    -2.9008641302628035e-003,       1.9270549031769058e-002,        5.1699999999999996e-002;
-    -7.2102329848391378e-003,       2.6468635791329520e-002,        5.8099999999999999e-002;
-    -1.2589423111688092e-002,       1.4805044409490042e-002,        6.0199999999999997e-002;
-    -1.1715387895728568e-002,       1.7085018789666284e-002,        5.7999999999999996e-002;
-    -1.1777024741238762e-002,       1.9780736678506994e-002,        5.7200000000000001e-002;
-    -1.2215155411272605e-002,       2.4726200999461767e-002,        5.3600000000000002e-002;
-    -3.5465932809213285e-003,       1.3486465713533846e-002,        5.2400000000000002e-002;
-    -2.9219038194341351e-003,       1.9323425037825803e-002,        5.3099999999999994e-002;
-    8.2672938771111149e-004,        1.6730936106534644e-002,        5.2800000000000000e-002;
-    5.2731183513543556e-004,        2.1687064498104203e-002,        5.2800000000000000e-002;
-    7.4708897268216390e-003,        1.3887651948481405e-002,        5.5199999999999999e-002;
-    1.1578449231922860e-002,        1.0535540622131023e-002,        5.5300000000000002e-002;
-    1.0543713785281739e-002,        1.3591721544186308e-002,        5.5099999999999996e-002;
-    1.3043222430857426e-002,        9.7155784328055717e-003,        5.5199999999999999e-002;
-    1.1021797245557963e-002,        7.8485022563632434e-003,        5.5000000000000000e-002;
-    1.3766304579396760e-002,        1.4031942678612408e-002,        5.5300000000000002e-002;
-    2.0010289782806723e-002,        1.1684049976040223e-002,        4.8600000000000004e-002;
-    1.9500810360241871e-002,        1.5486288460806463e-002,        4.7300000000000002e-002;
-    1.8677267947765586e-002,        1.7674602281525287e-002,        4.7500000000000001e-002;
-    2.1068187519647452e-002,        1.3207048148448308e-002,        5.0900000000000001e-002;
-    2.9432867931319606e-002,        1.8614186008366396e-002,        5.3099999999999994e-002;
-    2.2709401609937174e-002,        3.3601370511199269e-002,        5.6799999999999996e-002;
-    2.9063996825298588e-002,        1.9804593863093523e-002,        6.2699999999999992e-002;
-    1.8810297095397388e-002,        1.8609127901011213e-002,        6.5199999999999994e-002;
-    1.4978576794066001e-002,        1.7916238079900726e-002,        6.4699999999999994e-002;
-    4.8316137761403866e-003,        3.2976319868455617e-002,        5.5899999999999998e-002;
-    -9.1822274865016595e-004,       3.1213866380320532e-002,    4.3299999999999998e-002;
-    -1.3163778876048582e-002,       1.5733791887268644e-002,        3.5000000000000003e-002;
-    -1.7841900605217731e-002,       1.6933827369602694e-002,        2.1299999999999999e-002;
-    -1.9532762689722816e-002,       1.6823164543461777e-002,        1.7299999999999999e-002;
-    -2.2376267503108949e-002,       1.5189134545742444e-002,        1.7500000000000002e-002;
-    -2.4570058045892296e-002,       1.5598774847326746e-002,        1.7399999999999999e-002;
-    -3.1885812767447064e-002,       2.2380594713903079e-002,        1.4400000000000000e-002;
-    -3.5301487936340692e-002,       3.0770251840726015e-002,        1.2500000000000001e-002;
-    -3.3809664438850362e-002,       1.1207937615285157e-002,        1.2500000000000001e-002;
-    -2.3738888747095288e-002,       1.8271566479553414e-002,        1.0200000000000001e-002;
-    -2.2389486776477341e-002,       1.8759653895370487e-002,        1.0000000000000000e-002;
-    -1.9372963882339889e-002,       3.6183114349394030e-002,        1.0000000000000000e-002;
-    -1.8172640165300180e-002,       3.8524562683139418e-002,        1.0100000000000000e-002;
-    -1.5851276113677315e-002,       1.4577624436418635e-002,        1.4300000000000000e-002;
-    -1.5145664166732686e-002,       2.7339757365790307e-002,        1.9500000000000000e-002;
-    -1.3284941407389894e-002,       3.0828456732055809e-002,        2.4700000000000003e-002;
-    -1.2679438144379773e-002,       2.5660138484441486e-002,        2.9399999999999999e-002;
-    -1.0133886633141742e-002,       3.3074553498490200e-002,        3.4599999999999999e-002;
-    -1.5055016783550812e-002,       3.0184663811322121e-002,        3.9800000000000002e-002;
-             ];
+-9.3174834887745916e-003,	1.7994658843431877e-002,	2.5699999999999997e-002;
+7.7668705855149511e-003,	6.0096276044880881e-003,	3.0800000000000001e-002;
+-1.9541593158383108e-003,	1.1443694953360728e-002,	3.5799999999999998e-002;
+-7.3230760374594084e-003,	1.6080663886388402e-002,	3.9900000000000005e-002;
+5.7366104256297845e-003,	9.6254961625830138e-003,	3.9300000000000002e-002;
+-8.3093609995312789e-003,	1.7721697565065142e-002,	3.7000000000000005e-002;
+-1.5818734568909143e-002,	1.8802248364432783e-002,	2.9399999999999999e-002;
+-3.8114188274117389e-002,	1.7753163941062411e-002,	2.3000000000000000e-002;
+-4.1399862204639426e-002,	4.5389998028741996e-003,	2.0000000000000000e-002;
+-3.2217707697825837e-002,	7.3753322217300354e-003,	1.7299999999999999e-002;
+-2.5646357007195419e-002,	1.0583418386522991e-002,	1.6799999999999999e-002;
+-1.4897222570872337e-002,	1.0366269881014523e-002,	2.4000000000000000e-002;
+-6.6220480083236666e-003,	2.3042923285839567e-002,	2.4600000000000000e-002;
+-5.3027079623060303e-003,	1.0468178907987236e-002,	2.6099999999999998e-002;
+-5.7275387773225717e-003,	1.0815248301383029e-002,	2.8500000000000001e-002;
+-1.2909019643277730e-002,	1.3963993831495269e-002,	2.9200000000000000e-002;
+-9.6082193296807006e-003,	1.1306915202373702e-002,	2.9700000000000001e-002;
+-6.9847294194245180e-003,	4.0554812275257479e-003,	2.9600000000000001e-002;
+1.8176103434601742e-003,	7.3752799189321649e-003,	3.3300000000000003e-002;
+-4.5038023245602687e-004,	2.3887283546807359e-002,	3.4500000000000003e-002;
+1.1624668564948593e-002,	1.4307761419874110e-002,	3.4599999999999999e-002;
+1.2948656776092804e-002,	1.3154713006571006e-002,	3.4900000000000000e-002;
+1.6160285046599832e-002,	1.9531653948000383e-002,	3.4599999999999999e-002;
+8.4081398395898788e-003,	1.8522230201726275e-002,	3.5799999999999998e-002;
+2.2153370885423129e-002,	1.7709079726716315e-002,	3.9699999999999999e-002;
+2.4844201757035833e-002,	1.7812125625833675e-002,	4.0800000000000003e-002;
+3.4050690186470334e-002,	1.7733161216544779e-002,	4.0700000000000000e-002;
+4.6893307071320223e-002,	2.4854086852623247e-002,	4.1700000000000001e-002;
+5.9972460768834779e-002,	2.4879959563927745e-002,	4.5599999999999995e-002;
+5.2289186415585220e-002,	3.7979469553559353e-002,	4.9100000000000005e-002;
+4.7741188658148914e-002,	3.9049003040727781e-002,	5.4100000000000002e-002;
+4.4667561574096126e-002,	3.5671179948047138e-002,	5.5599999999999997e-002;
+4.2427836565945398e-002,	1.9374879269963063e-002,	4.8200000000000000e-002;
+3.1462874033119093e-002,	2.5309792721300628e-002,	3.9900000000000005e-002;
+2.8437659950142802e-002,	3.7210113920888466e-002,    3.8900000000000004e-002;
+2.5156025048538311e-002,	4.4947363315081201e-002,	4.1700000000000001e-002;
+3.4855619579102992e-002,	4.3766256282161686e-002,	4.7899999999999998e-002;
+4.1146105898716812e-002,	4.5485089147871749e-002,	5.9800000000000006e-002;
+3.7608522339491302e-002,	3.9312213398265738e-002,	5.9400000000000001e-002;
+3.1755688168807694e-002,	5.7147340097736921e-002,	5.9200000000000003e-002;
+3.7547536338742304e-002,	4.0820102882030529e-002,	6.5700000000000008e-002;
+3.0780798807969134e-002,	5.4795099957268389e-002,	8.3299999999999999e-002;
+2.7622883356809069e-002,	5.9674785474016057e-002,	8.9800000000000005e-002;
+1.3687491471252144e-002,	5.1526594947709725e-002,	8.9399999999999993e-002;
+3.0365204590552253e-003,	5.7110106004252703e-002,	8.5699999999999998e-002;
+-3.8946120840908094e-003,	5.8310720503999880e-002,	7.8799999999999995e-002;
+-3.7031729362304588e-003,	3.2162694194911579e-002,	6.7000000000000004e-002;
+-2.2953853215847531e-002,	5.2193859691229916e-002,	5.5700000000000000e-002;
+-3.9774834192911612e-003,	6.1343390594280400e-002,	3.8599999999999995e-002;
+-6.6430088990969693e-003,	5.4548116487401987e-002,	4.5599999999999995e-002;
+-6.9966828696923500e-003,	4.0591135320590110e-002,	5.4699999999999999e-002;
+-1.2347397716578001e-002,	3.2276797966984239e-002,	4.7500000000000001e-002;
+-2.9473495209533240e-003,	6.7805039825567626e-002,	3.5400000000000001e-002;
+1.2120764500071601e-002,	2.3686434724627725e-002,	4.2999999999999997e-002;
+1.3231348379735053e-002,	3.7187744116042420e-002,	4.7400000000000005e-002;
+2.0987028138604202e-002,	4.7889363970077925e-002,	5.1399999999999994e-002;
+3.7485754706574781e-002,	5.3965548807981989e-002,	6.5400000000000000e-002;
+4.0318879693293397e-002,	6.8340638829176292e-002,	7.8200000000000006e-002;
+2.6218511286559831e-002,	7.8958874043481897e-002,	1.0560000000000000e-001;
+2.6929695576288992e-002,	7.0997794665009550e-002,	1.0000000000000001e-001;
+9.4554586277908470e-003,    8.4242699131246379e-002,   	9.3200000000000005e-002;
+3.6174737897027853e-003,	9.1565984601668537e-002,	1.1250000000000000e-001;
+-1.4685635040370570e-002,	1.2944791465588246e-001,	1.2089999999999999e-001;
+-2.7095820218557165e-002,	1.2813135610460602e-001,	9.3500000000000000e-002;
+-4.7490291499844517e-002,	9.5634229266530868e-002,	6.3000000000000000e-002;
+-4.8493379593802288e-002,	6.0105697293320492e-002,	5.4199999999999998e-002;
+-3.9943449805699416e-002,	7.6752303729665350e-002,	6.1600000000000002e-002;
+-3.5077206071779443e-002,	7.2995258807648344e-002,	5.4100000000000002e-002;
+-2.0906071356066036e-002,	4.5679585226099162e-002,	4.8300000000000003e-002;
+-2.1531096410072337e-002,	4.3592360792875207e-002,	5.2000000000000005e-002;
+-2.4735476775209264e-002,	5.5187881222506396e-002,	5.2800000000000000e-002;
+-2.5561529099840996e-002,	7.0182306554444240e-002,	4.8700000000000000e-002;
+-2.1575901985043444e-002,	6.8358747781264828e-002,	4.6600000000000003e-002;
+-1.0282812897440152e-002,	6.5803889922906311e-002,	5.1600000000000000e-002;
+-9.1324207260257140e-004,	5.6172786341162295e-002,	5.8200000000000002e-002;
+-9.5486836624303351e-003,	6.9205174325260410e-002,	6.5099999999999991e-002;
+-1.4957543819619445e-002,	6.8508819756844419e-002,	6.7599999999999993e-002;
+1.5069561708809687e-002,	7.9300571687745292e-002,	7.2800000000000004e-002;
+1.6283475252537372e-002,	7.0872150059167804e-002,	8.1000000000000003e-002;
+2.0908466837013862e-002,	8.4120663761548808e-002,	9.5799999999999996e-002;
+1.4559374240283418e-002,	7.4654989747748868e-002,	1.0070000000000000e-001;
+7.4026792768986382e-003,	1.0065048845414548e-001,	1.0180000000000000e-001;
+6.7867658044900026e-003,	8.4869122045493794e-002,	1.0949999999999999e-001;
+2.0964569874966088e-003,	8.1073829867721159e-002,	1.3580000000000000e-001;
+-2.1618734445638665e-003,	9.0701460926355892e-002,	1.5049999999999999e-001;
+-2.9866760868227260e-002,	9.1306883112545645e-002,	1.2689999999999999e-001;
+-3.8807200394211705e-002,	9.3833166941218682e-002,	9.8400000000000001e-002;
+-2.7491967650325577e-002,	1.1718934484063248e-001,	1.5850000000000000e-001;
+-1.4366396848604523e-002,	1.0830156525255896e-001,	1.6570000000000001e-001;
+-2.8990249638850329e-002,	7.2488303659308695e-002,	1.7780000000000001e-001;
+-2.3603799101664436e-002,	7.5735091281379452e-002,	1.7579999999999998e-001;
+-4.2733757910307091e-002,	7.1783638615472212e-002,	1.3589999999999999e-001;
+-6.5834256612443909e-002,	5.7815346934783074e-002,	1.4230000000000001e-001;
+-6.7076173517195414e-002,	5.0774215309779880e-002,	1.4510000000000001e-001;
+-7.7493754839396800e-002,	5.6543508350202609e-002,	1.1010000000000000e-001;
+-8.3437100867300273e-002,	4.3285023548542245e-002,	9.2899999999999996e-002;
+-7.8140443582185526e-002,	3.4701884333945499e-002,	8.6500000000000007e-002;
+-6.2904972370690260e-002,	2.9380728193572736e-002,	8.8000000000000009e-002;
+-5.0575674226140066e-002,	4.1378527908603857e-002,	9.4600000000000004e-002;
+-3.7530293571547801e-002,	2.9492818368749285e-002,	9.4299999999999995e-002;
+-2.5480519753907416e-002,	5.0489471212566306e-002,	9.6900000000000000e-002;
+-1.5811147128429681e-002,	3.6455602629870576e-002,	1.0560000000000000e-001;
+-1.3623195024511148e-002,	3.3023322354348572e-002,	1.1390000000000000e-001;
+-1.3078242370475834e-002,	2.3921358528453451e-002,	9.2699999999999991e-002;
+-1.1665978412656486e-002,	4.6889910860992590e-002,    8.4800000000000000e-002;
+-1.1057518477750605e-002,	2.1095767295774115e-002,    7.9199999999999993e-002;
+-3.5500769385130582e-003,	1.9350259876930620e-002,    7.9000000000000001e-002;
+-4.0091273397440119e-003,	2.4435086241793469e-002,    8.1000000000000003e-002;
+-2.6706581505724358e-003,	2.0699597271832237e-002,	7.8299999999999995e-002;
+-6.9080484514429941e-003,	1.9443895441419112e-002,	6.9199999999999998e-002;
+-5.5474687375021148e-003,	2.5823472588566876e-002,	6.2100000000000002e-002;
+-8.5975304020564636e-003,	2.8570642360117970e-002,	6.2699999999999992e-002;
+-1.0035881703480243e-002,	3.1152336660817959e-002,	6.2199999999999998e-002;
+-7.0303958060371485e-003,	2.1687265092285912e-002,	6.6500000000000004e-002;
+-5.8350389745083220e-003,	3.0295425205495219e-002,	6.8400000000000002e-002;
+3.7000011882959427e-003,	2.7397559342506872e-002,	6.9199999999999998e-002;
+8.4384375816348722e-004,	3.3739380042497880e-002,	6.6600000000000006e-002;
+5.7875193242438172e-003,	3.9850322530345039e-002,	7.1599999999999997e-002;
+3.4826974951247536e-003,	4.7684800945334560e-002,	7.9800000000000010e-002;
+9.0205001602736701e-003,	3.2309473053872662e-002,    8.4700000000000011e-002;
+1.1602002723241966e-002,	4.2437558261487096e-002,	9.4399999999999998e-002;
+1.0727253531554126e-002,	3.9442307350746830e-002,	9.7299999999999998e-002;
+1.0478054167251116e-002,	2.9474511048905416e-002,	9.0800000000000006e-002;
+5.7769411729271525e-003,	2.6619819505881992e-002,	8.6099999999999996e-002;
+1.0146775956780374e-002,	4.9017285623800477e-002,	8.2500000000000004e-002;
+5.6961778759188064e-003,	4.7444796184034521e-002,	8.2400000000000001e-002;
+-1.1072568495222868e-003,	3.6239655982325480e-002,	8.1600000000000006e-002;
+-1.5465707409310525e-002,	3.1366693341789098e-002,	7.7399999999999997e-002;
+-2.7250024246535887e-002,	4.7905236749817171e-002,	6.4299999999999996e-002;
+-2.7337568911169896e-002,	2.5679327033720556e-002,	5.8600000000000006e-002;
+-2.8996765457870666e-002,	2.7744462882228538e-002,	5.6399999999999999e-002;
+-3.0694988523064737e-002,	2.0348807487869491e-002,	4.8200000000000000e-002;
+-2.6687542665930764e-002,	2.6838736648956640e-002,	4.0199999999999993e-002;
+-2.3361909698373040e-002,	2.0963598977361553e-002,	3.7699999999999997e-002;
+-1.9843866905633334e-002,	1.7512821090635011e-002,	3.2599999999999997e-002;
+-1.5118603774070039e-002,	2.1185582236595835e-002,	3.0400000000000000e-002;
+-2.0197613265910519e-002,	3.1946708550473213e-002,	3.0400000000000000e-002;
+-2.1520678025641615e-002,	2.1834134877041667e-002,	2.9999999999999999e-002;
+-2.2826650301176699e-002,	1.8033708065957166e-002,	3.0600000000000002e-002;
+-1.5976648136103222e-002,	1.9600906791856332e-002,	2.9900000000000003e-002;
+-1.2481565520511495e-002,	2.5764744780397253e-002,	3.2099999999999997e-002;
+-6.2498609089072232e-003,	1.7163326403677015e-002,	3.9399999999999998e-002;
+-7.5419440421207184e-003,	2.4448612633015232e-002,	4.4900000000000002e-002;
+-2.9008641302628035e-003,	1.9270549031769058e-002,	5.1699999999999996e-002;
+-7.2102329848391378e-003,	2.6468635791329520e-002,	5.8099999999999999e-002;
+-1.2589423111688092e-002,	1.4805044409490042e-002,	6.0199999999999997e-002;
+-1.1715387895728568e-002,	1.7085018789666284e-002,	5.7999999999999996e-002;
+-1.1777024741238762e-002,	1.9780736678506994e-002,	5.7200000000000001e-002;
+-1.2215155411272605e-002,	2.4726200999461767e-002,	5.3600000000000002e-002;
+-3.5465932809213285e-003,	1.3486465713533846e-002,	5.2400000000000002e-002;
+-2.9219038194341351e-003,	1.9323425037825803e-002,	5.3099999999999994e-002;
+8.2672938771111149e-004,	1.6730936106534644e-002,	5.2800000000000000e-002;
+5.2731183513543556e-004,	2.1687064498104203e-002,	5.2800000000000000e-002;
+7.4708897268216390e-003,	1.3887651948481405e-002,	5.5199999999999999e-002;
+1.1578449231922860e-002,	1.0535540622131023e-002,	5.5300000000000002e-002;
+1.0543713785281739e-002,	1.3591721544186308e-002,	5.5099999999999996e-002;
+1.3043222430857426e-002,	9.7155784328055717e-003,	5.5199999999999999e-002;
+1.1021797245557963e-002,	7.8485022563632434e-003,	5.5000000000000000e-002;
+1.3766304579396760e-002,	1.4031942678612408e-002,	5.5300000000000002e-002;
+2.0010289782806723e-002,	1.1684049976040223e-002,	4.8600000000000004e-002;
+1.9500810360241871e-002,	1.5486288460806463e-002,	4.7300000000000002e-002;
+1.8677267947765586e-002,	1.7674602281525287e-002,	4.7500000000000001e-002;
+2.1068187519647452e-002,	1.3207048148448308e-002,	5.0900000000000001e-002;
+2.9432867931319606e-002,	1.8614186008366396e-002,	5.3099999999999994e-002;
+2.2709401609937174e-002,	3.3601370511199269e-002,	5.6799999999999996e-002;
+2.9063996825298588e-002,	1.9804593863093523e-002,	6.2699999999999992e-002;
+1.8810297095397388e-002,	1.8609127901011213e-002,	6.5199999999999994e-002;
+1.4978576794066001e-002,	1.7916238079900726e-002,	6.4699999999999994e-002;
+4.8316137761403866e-003,	3.2976319868455617e-002,	5.5899999999999998e-002;
+-9.1822274865016595e-004,	3.1213866380320532e-002,    4.3299999999999998e-002;
+-1.3163778876048582e-002,	1.5733791887268644e-002,	3.5000000000000003e-002;
+-1.7841900605217731e-002,	1.6933827369602694e-002,	2.1299999999999999e-002;
+-1.9532762689722816e-002,	1.6823164543461777e-002,	1.7299999999999999e-002;
+-2.2376267503108949e-002,	1.5189134545742444e-002,	1.7500000000000002e-002;
+-2.4570058045892296e-002,	1.5598774847326746e-002,	1.7399999999999999e-002;
+-3.1885812767447064e-002,	2.2380594713903079e-002,	1.4400000000000000e-002;
+-3.5301487936340692e-002,	3.0770251840726015e-002,	1.2500000000000001e-002;
+-3.3809664438850362e-002,	1.1207937615285157e-002,	1.2500000000000001e-002;
+-2.3738888747095288e-002,	1.8271566479553414e-002,	1.0200000000000001e-002;
+-2.2389486776477341e-002,	1.8759653895370487e-002,	1.0000000000000000e-002;
+-1.9372963882339889e-002,	3.6183114349394030e-002,	1.0000000000000000e-002;
+-1.8172640165300180e-002,	3.8524562683139418e-002,	1.0100000000000000e-002;
+-1.5851276113677315e-002,	1.4577624436418635e-002,	1.4300000000000000e-002;
+-1.5145664166732686e-002,	2.7339757365790307e-002,	1.9500000000000000e-002;
+-1.3284941407389894e-002,	3.0828456732055809e-002,	2.4700000000000003e-002;
+-1.2679438144379773e-002,	2.5660138484441486e-002,	2.9399999999999999e-002;
+-1.0133886633141742e-002,	3.3074553498490200e-002,	3.4599999999999999e-002;
+-1.5055016783550812e-002,	3.0184663811322121e-002, 	3.9800000000000002e-002;
+];
 
 Y = sbvar_data(:, 1);
 Pie = sbvar_data(:, 2);
diff --git a/tests/parallel/data_ca1.m b/tests/parallel/data_ca1.m
index ca003056bded971e9bf00232802e453a096e9cdf..c28fae1a2800e83eda0e6343196e8aeafad2935f 100644
--- a/tests/parallel/data_ca1.m
+++ b/tests/parallel/data_ca1.m
@@ -1,98 +1,98 @@
 data = [0.928467646476  11.8716889412   20  0.418037507392  0.227382377518 ...
-        -0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
-        -0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
-        -0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
-        -0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
-        -0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
-        -0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
-        1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
-        2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
-        1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
-        1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
-        1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
-        1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
-        0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
-        1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
-        1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
-        0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
-        1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
-        1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
-        -0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
-        0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
-        0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
-        -0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
-        2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
-        1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
-        1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
-        1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
-        1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
-        1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
-        0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
-        0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
-        1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
-        0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
-        0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
-        0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
-        0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
-        -0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
-        -0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
-        -0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
-        -1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
-        0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
-        0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
-        0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
-        -0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
-        0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
-        0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
-        0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
-        0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
-        0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
-        0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
-        0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
-        1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
-        1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
-        1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
-        0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
-        0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
-        -0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
-        0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
-        0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
-        0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
-        0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
-        1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
-        0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
-        0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
-        1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
-        1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
-        0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
-        1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
-        0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
-        1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
-        1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
-        1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
-        1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
-        1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
-        1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
-        1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
-        0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
-        1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
-        0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
-        0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
-        0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
-        -0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
-        0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
-        1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
-        1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
-        0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
-       ]; 
-
+-0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
+-0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
+-0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
+-0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
+-0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
+-0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
+1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
+2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
+1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
+1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
+1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
+1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
+0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
+1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
+1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
+0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
+1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
+1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
+-0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
+0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
+0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
+-0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
+2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
+1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
+1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
+1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
+1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
+1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
+0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
+0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
+1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
+0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
+0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
+0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
+0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
+-0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
+-0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
+-0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
+-1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
+0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
+0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
+0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
+-0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
+0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
+0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
+0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
+0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
+0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
+0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
+0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
+1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
+1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
+1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
+0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
+0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
+-0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
+0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
+0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
+0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
+0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
+1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
+0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
+0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
+1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
+1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
+0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
+1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
+0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
+1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
+1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
+1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
+1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
+1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
+1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
+1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
+0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
+1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
+0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
+0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
+0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
+-0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
+0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
+1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
+1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
+0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
+]; 
+ 
 data = reshape(data,5,86)'; 
 y_obs = data(:,1); 
 pie_obs = data(:,2); 
 R_obs = data(:,3); 
 de = data(:,4); 
 dq = data(:,5); 
-
+ 
 %Country: Canada 
 %Sample Range: 1981:2 to 2002:3 
 %Observations: 86 
diff --git a/tests/particle/benchmark.m b/tests/particle/benchmark.m
index ddf74133cd257a001e17f522ebede00afaf105a2..6531fa3bca537185b504c8e278b3e01b878e3964 100644
--- a/tests/particle/benchmark.m
+++ b/tests/particle/benchmark.m
@@ -1,153 +1,153 @@
 series = [     1.760105924130475   0.312845989288584   0.472239512216113
-               1.791115550250920   0.315305579629763   0.495435385609039
-               1.751331053949751   0.311989642569820   0.464766630177063
-               1.765929133664154   0.313176251276488   0.475784761647821
-               1.770872676560947   0.313535941672459   0.479277718740513
-               1.748075630214838   0.311640694207934   0.461812669855265
-               1.740886476370027   0.311073006485788   0.456517504298258
-               1.746988485610710   0.311609842604230   0.461340624803336
-               1.808281456868951   0.316539782119637   0.507629282479002
-               1.854947854385870   0.320010198263909   0.541895324334327
-               1.827811476526137   0.317608694730638   0.519624032701902
-               1.879047068282612   0.321359760057394   0.557145907254063
-               1.887936238720303   0.321683176283716   0.561813543154462
-               1.882365288701271   0.320907888275609   0.555461197000685
-               1.890963491380599   0.321242988024427   0.560026873563179
-               1.882743098340623   0.320289640711274   0.551797310779183
-               1.876245428003903   0.319508363989648   0.545106040180286
-               1.899034955459843   0.320980198691605   0.560776758509276
-               1.919897524223688   0.322227856348739   0.574674345449269
-               1.940465687586868   0.323391885583672   0.588076473486549
-               1.946743468303839   0.323448346524082   0.590378789190440
-               1.918157772981919   0.320928920092838   0.566236466080824
-               1.925845147314101   0.321216558537531   0.570201396175100
-               1.950276054315104   0.322717541652949   0.586824950361549
-               1.952915927458601   0.322540993947346   0.586583808819511
-               1.965636934883926   0.323122493559917   0.594038815545898
-               1.972278860444277   0.323231527516691   0.596759621388749
-               1.959399309100668   0.321916338391799   0.584645544633759
-               1.958073327908836   0.321508830194106   0.581624183440973
-               1.936706642470067   0.319634602213589   0.563522208941135
-               1.947132164851317   0.320188564417158   0.569981980824923
-               1.919592010791757   0.317893953785440   0.547555649660018
-               1.894582145436749   0.315863589696844   0.527608826086009
-               1.875328652440384   0.314322533775785   0.512518217710308
-               1.818937674207909   0.309930593995679   0.469772963605365
-               1.842409309222495   0.311897436693824   0.488301677052811
-               1.845447947284471   0.312192107041639   0.490975676211932
-               1.829190530052879   0.310975037205003   0.479016383910071
-               1.851212468593380   0.312780063456632   0.496217792811673
-               1.817833267055856   0.310203236444623   0.471201641902107
-               1.814097651048634   0.310028641358866   0.469129333784112
-               1.808063752653222   0.309676136030093   0.465359164080259
-               1.812053865835763   0.310126209868808   0.469216929060463
-               1.815799385165197   0.310539545366918   0.472785315494855
-               1.798798028758880   0.309298628496020   0.460618548651907
-               1.796971476500592   0.309299647541166   0.460158134508980
-               1.792859811632106   0.309117520299899   0.457969407540741
-               1.802670357795570   0.310047046957601   0.466302337158534
-               1.820354449456020   0.311558370446942   0.480365151317462
-               1.837863518950930   0.312988951978216   0.493967328821185
-               1.819974600115587   0.311600489058620   0.480537413839488
-               1.819271706701453   0.311606389118186   0.480384082633725
-               1.796029494102046   0.309829708408597   0.463237300920444
-               1.775524357691159   0.308313824436222   0.448559541114655
-               1.774854815875979   0.308434688960723   0.449144066862645
-               1.800835802767033   0.310677704459576   0.469765050688536
-               1.786059157721867   0.309590821826591   0.459188017661675
-               1.791551405000660   0.310156043725194   0.464114176691556
-               1.786523594020741   0.309861195621005   0.460986828042084
-               1.804952143362207   0.311441919821646   0.475591467341628
-               1.784480090431664   0.309872669759674   0.460532950060849
-               1.784140477821738   0.309959999276874   0.460985722206660
-               1.792798863056227   0.310761222426831   0.468191678518626
-               1.810747873450371   0.312264562058321   0.482223441024178
-               1.836065173354547   0.314274983408592   0.501492175433812
-               1.834938445492660   0.314139706316670   0.500357204123308
-               1.806164052494138   0.311841299442154   0.478396307371778
-               1.791620538153089   0.310730861290031   0.467698336394830
-               1.772173414017760   0.309256295298234   0.453561242440342
-               1.812359648762609   0.312589557817234   0.484663233994422
-               1.799780206306195   0.311608460056369   0.475265269172501
-               1.811364242815336   0.312573632439023   0.484300778401714
-               1.806180627845691   0.312178076723633   0.480478570801151
-               1.820046807592720   0.313298422774191   0.491109285086001
-               1.804568707455205   0.312065809617281   0.479359179539144
-               1.778702229794904   0.310038401087946   0.460068807524478
-               1.753649470369830   0.308120981940320   0.441860777634412
-               1.762068124424802   0.308974588046040   0.449247521833160
-               1.758856007155504   0.308854726469356   0.447693105953493
-               1.755433459009933   0.308720641041879   0.446000172507877
-               1.779715943854885   0.310825716005938   0.465178127643472
-               1.783930656673236   0.311234452750944   0.468790547227773
-               1.786393861473134   0.311487455757189   0.470991209360008
-               1.812898088968145   0.313635733468485   0.491256411174780
-               1.797000942820567   0.312346799207385   0.479078496049043
-               1.807708490475648   0.313210619724172   0.487246468090725
-               1.820545018487566   0.314204773496048   0.496832484203625
-               1.814116326762029   0.313647239601944   0.491664078190780
-               1.815926310618496   0.313758727958057   0.492837457825446
-               1.793643825095235   0.311961730422198   0.475822245177027
-               1.772611874266904   0.310310656389495   0.460168156652974
-               1.773842053215969   0.310499043015798   0.461642812402857
-               1.785642136192052   0.311526453631286   0.471032222071789
-               1.829627605677892   0.315044478550508   0.504474308367718
-               1.815474499865232   0.313850063604634   0.493282068447158
-               1.816739274169429   0.313910944956201   0.493994123075643
-               1.813254431983305   0.313595577041968   0.491112183202942
-               1.777865207201645   0.310754679633359   0.464261094025897
-               1.769595829699111   0.310163842241233   0.458485858065570
-               1.738659830875185   0.307745681157472   0.435795806472776
-               1.753436721676202   0.309129771430515   0.447999836470890
-               1.738481436021817   0.308039101942578   0.437545017347768
-               1.740721029687560   0.308389115201939   0.440245658063711
-               1.732029327854716   0.307829919218540   0.434648762458203
-               1.737881122071139   0.308481963044799   0.440093163154560
-               1.728349104083563   0.307847119795516   0.433830656073788
-               1.737427954717117   0.308761979466418   0.441680792447009
-               1.750442947374700   0.309959966873872   0.452290462457059
-               1.779708864329036   0.312413921952660   0.474876889887843
-               1.775517700307935   0.312080924290991   0.471738746822015
-               1.738514480440751   0.309096953236020   0.443991465279803
-               1.724939674799569   0.308103998655976   0.434532905394758
-               1.748639894643620   0.310202459511950   0.453294130844291
-               1.730755612953242   0.308820365538791   0.440340001996458
-               1.747650308897352   0.310332409785786   0.453823831757850
-               1.749916699862329   0.310591600424986   0.455980263561499
-               1.774426772869005   0.312637115042041   0.474818879600935
-               1.740468164509070   0.309876282879142   0.449208911368321
-               1.737549008596557   0.309727704615865   0.447559410722363
-               1.717860431453982   0.308201819817147   0.433340786017471
-               1.767957927064596   0.312440621914469   0.471904911234585
-               1.781541660272785   0.313526179152300   0.482105532880402
-               1.804344557934195   0.315294209577413   0.499025051607507
-               1.784390243718790   0.313599070228016   0.483320723495016
-               1.775311536722649   0.312826632807963   0.476202483262179
-               1.769910016585468   0.312375180855473   0.472029256009528
-               1.788150491156262   0.313835100220238   0.485763549426003
-               1.782208569646677   0.313306245996605   0.480957924899580
-               1.793299392486021   0.314155939009175   0.489106667914307
-               1.756885968603183   0.311168062389533   0.461287567602054
-               1.750759539703974   0.310714859720743   0.456944873825189
-               1.736951131154746   0.309648094136421   0.446925313549972
-               1.711160587304450   0.307618648711839   0.428144813997209
-               1.720963686450892   0.308600975424972   0.436526291240511
-               1.726695519089401   0.309207201827563   0.441636496567855
-               1.728089508420109   0.309432993463704   0.443352306847972
-               1.706713941073114   0.307765747865817   0.427915961562161
-               1.726924471697119   0.309600667916548   0.444058294820935
-               1.733588015863146   0.310242486127838   0.449633093256537
-               1.729174707935853   0.309950688669380   0.446740897858215
-               1.730286135569681   0.310122869634148   0.448060312437253
-               1.726601265171260   0.309893747429677   0.445735020251979
-               1.698421870820049   0.307636786323920   0.425068312709748
-               1.695448780500048   0.307550916364643   0.423804837967207
-               1.683650854279764   0.306723382060783   0.415936535399100
-               1.669913985903250   0.305753527158022   0.406787487941312
-               1.653878134082938   0.304611079255971   0.396118930676138
-               1.648446560982758   0.304410745365111   0.393617956062407
-               1.619912950387850   0.302205289654123   0.373881240161860
-               1.639388896456292   0.304249793143430   0.390462851630105] ;
+   1.791115550250920   0.315305579629763   0.495435385609039
+   1.751331053949751   0.311989642569820   0.464766630177063
+   1.765929133664154   0.313176251276488   0.475784761647821
+   1.770872676560947   0.313535941672459   0.479277718740513
+   1.748075630214838   0.311640694207934   0.461812669855265
+   1.740886476370027   0.311073006485788   0.456517504298258
+   1.746988485610710   0.311609842604230   0.461340624803336
+   1.808281456868951   0.316539782119637   0.507629282479002
+   1.854947854385870   0.320010198263909   0.541895324334327
+   1.827811476526137   0.317608694730638   0.519624032701902
+   1.879047068282612   0.321359760057394   0.557145907254063
+   1.887936238720303   0.321683176283716   0.561813543154462
+   1.882365288701271   0.320907888275609   0.555461197000685
+   1.890963491380599   0.321242988024427   0.560026873563179
+   1.882743098340623   0.320289640711274   0.551797310779183
+   1.876245428003903   0.319508363989648   0.545106040180286
+   1.899034955459843   0.320980198691605   0.560776758509276
+   1.919897524223688   0.322227856348739   0.574674345449269
+   1.940465687586868   0.323391885583672   0.588076473486549
+   1.946743468303839   0.323448346524082   0.590378789190440
+   1.918157772981919   0.320928920092838   0.566236466080824
+   1.925845147314101   0.321216558537531   0.570201396175100
+   1.950276054315104   0.322717541652949   0.586824950361549
+   1.952915927458601   0.322540993947346   0.586583808819511
+   1.965636934883926   0.323122493559917   0.594038815545898
+   1.972278860444277   0.323231527516691   0.596759621388749
+   1.959399309100668   0.321916338391799   0.584645544633759
+   1.958073327908836   0.321508830194106   0.581624183440973
+   1.936706642470067   0.319634602213589   0.563522208941135
+   1.947132164851317   0.320188564417158   0.569981980824923
+   1.919592010791757   0.317893953785440   0.547555649660018
+   1.894582145436749   0.315863589696844   0.527608826086009
+   1.875328652440384   0.314322533775785   0.512518217710308
+   1.818937674207909   0.309930593995679   0.469772963605365
+   1.842409309222495   0.311897436693824   0.488301677052811
+   1.845447947284471   0.312192107041639   0.490975676211932
+   1.829190530052879   0.310975037205003   0.479016383910071
+   1.851212468593380   0.312780063456632   0.496217792811673
+   1.817833267055856   0.310203236444623   0.471201641902107
+   1.814097651048634   0.310028641358866   0.469129333784112
+   1.808063752653222   0.309676136030093   0.465359164080259
+   1.812053865835763   0.310126209868808   0.469216929060463
+   1.815799385165197   0.310539545366918   0.472785315494855
+   1.798798028758880   0.309298628496020   0.460618548651907
+   1.796971476500592   0.309299647541166   0.460158134508980
+   1.792859811632106   0.309117520299899   0.457969407540741
+   1.802670357795570   0.310047046957601   0.466302337158534
+   1.820354449456020   0.311558370446942   0.480365151317462
+   1.837863518950930   0.312988951978216   0.493967328821185
+   1.819974600115587   0.311600489058620   0.480537413839488
+   1.819271706701453   0.311606389118186   0.480384082633725
+   1.796029494102046   0.309829708408597   0.463237300920444
+   1.775524357691159   0.308313824436222   0.448559541114655
+   1.774854815875979   0.308434688960723   0.449144066862645
+   1.800835802767033   0.310677704459576   0.469765050688536
+   1.786059157721867   0.309590821826591   0.459188017661675
+   1.791551405000660   0.310156043725194   0.464114176691556
+   1.786523594020741   0.309861195621005   0.460986828042084
+   1.804952143362207   0.311441919821646   0.475591467341628
+   1.784480090431664   0.309872669759674   0.460532950060849
+   1.784140477821738   0.309959999276874   0.460985722206660
+   1.792798863056227   0.310761222426831   0.468191678518626
+   1.810747873450371   0.312264562058321   0.482223441024178
+   1.836065173354547   0.314274983408592   0.501492175433812
+   1.834938445492660   0.314139706316670   0.500357204123308
+   1.806164052494138   0.311841299442154   0.478396307371778
+   1.791620538153089   0.310730861290031   0.467698336394830
+   1.772173414017760   0.309256295298234   0.453561242440342
+   1.812359648762609   0.312589557817234   0.484663233994422
+   1.799780206306195   0.311608460056369   0.475265269172501
+   1.811364242815336   0.312573632439023   0.484300778401714
+   1.806180627845691   0.312178076723633   0.480478570801151
+   1.820046807592720   0.313298422774191   0.491109285086001
+   1.804568707455205   0.312065809617281   0.479359179539144
+   1.778702229794904   0.310038401087946   0.460068807524478
+   1.753649470369830   0.308120981940320   0.441860777634412
+   1.762068124424802   0.308974588046040   0.449247521833160
+   1.758856007155504   0.308854726469356   0.447693105953493
+   1.755433459009933   0.308720641041879   0.446000172507877
+   1.779715943854885   0.310825716005938   0.465178127643472
+   1.783930656673236   0.311234452750944   0.468790547227773
+   1.786393861473134   0.311487455757189   0.470991209360008
+   1.812898088968145   0.313635733468485   0.491256411174780
+   1.797000942820567   0.312346799207385   0.479078496049043
+   1.807708490475648   0.313210619724172   0.487246468090725
+   1.820545018487566   0.314204773496048   0.496832484203625
+   1.814116326762029   0.313647239601944   0.491664078190780
+   1.815926310618496   0.313758727958057   0.492837457825446
+   1.793643825095235   0.311961730422198   0.475822245177027
+   1.772611874266904   0.310310656389495   0.460168156652974
+   1.773842053215969   0.310499043015798   0.461642812402857
+   1.785642136192052   0.311526453631286   0.471032222071789
+   1.829627605677892   0.315044478550508   0.504474308367718
+   1.815474499865232   0.313850063604634   0.493282068447158
+   1.816739274169429   0.313910944956201   0.493994123075643
+   1.813254431983305   0.313595577041968   0.491112183202942
+   1.777865207201645   0.310754679633359   0.464261094025897
+   1.769595829699111   0.310163842241233   0.458485858065570
+   1.738659830875185   0.307745681157472   0.435795806472776
+   1.753436721676202   0.309129771430515   0.447999836470890
+   1.738481436021817   0.308039101942578   0.437545017347768
+   1.740721029687560   0.308389115201939   0.440245658063711
+   1.732029327854716   0.307829919218540   0.434648762458203
+   1.737881122071139   0.308481963044799   0.440093163154560
+   1.728349104083563   0.307847119795516   0.433830656073788
+   1.737427954717117   0.308761979466418   0.441680792447009
+   1.750442947374700   0.309959966873872   0.452290462457059
+   1.779708864329036   0.312413921952660   0.474876889887843
+   1.775517700307935   0.312080924290991   0.471738746822015
+   1.738514480440751   0.309096953236020   0.443991465279803
+   1.724939674799569   0.308103998655976   0.434532905394758
+   1.748639894643620   0.310202459511950   0.453294130844291
+   1.730755612953242   0.308820365538791   0.440340001996458
+   1.747650308897352   0.310332409785786   0.453823831757850
+   1.749916699862329   0.310591600424986   0.455980263561499
+   1.774426772869005   0.312637115042041   0.474818879600935
+   1.740468164509070   0.309876282879142   0.449208911368321
+   1.737549008596557   0.309727704615865   0.447559410722363
+   1.717860431453982   0.308201819817147   0.433340786017471
+   1.767957927064596   0.312440621914469   0.471904911234585
+   1.781541660272785   0.313526179152300   0.482105532880402
+   1.804344557934195   0.315294209577413   0.499025051607507
+   1.784390243718790   0.313599070228016   0.483320723495016
+   1.775311536722649   0.312826632807963   0.476202483262179
+   1.769910016585468   0.312375180855473   0.472029256009528
+   1.788150491156262   0.313835100220238   0.485763549426003
+   1.782208569646677   0.313306245996605   0.480957924899580
+   1.793299392486021   0.314155939009175   0.489106667914307
+   1.756885968603183   0.311168062389533   0.461287567602054
+   1.750759539703974   0.310714859720743   0.456944873825189
+   1.736951131154746   0.309648094136421   0.446925313549972
+   1.711160587304450   0.307618648711839   0.428144813997209
+   1.720963686450892   0.308600975424972   0.436526291240511
+   1.726695519089401   0.309207201827563   0.441636496567855
+   1.728089508420109   0.309432993463704   0.443352306847972
+   1.706713941073114   0.307765747865817   0.427915961562161
+   1.726924471697119   0.309600667916548   0.444058294820935
+   1.733588015863146   0.310242486127838   0.449633093256537
+   1.729174707935853   0.309950688669380   0.446740897858215
+   1.730286135569681   0.310122869634148   0.448060312437253
+   1.726601265171260   0.309893747429677   0.445735020251979
+   1.698421870820049   0.307636786323920   0.425068312709748
+   1.695448780500048   0.307550916364643   0.423804837967207
+   1.683650854279764   0.306723382060783   0.415936535399100
+   1.669913985903250   0.305753527158022   0.406787487941312
+   1.653878134082938   0.304611079255971   0.396118930676138
+   1.648446560982758   0.304410745365111   0.393617956062407
+   1.619912950387850   0.302205289654123   0.373881240161860
+   1.639388896456292   0.304249793143430   0.390462851630105] ;
 
 set_dynare_seed('default');
 
diff --git a/tests/particle/extreme.m b/tests/particle/extreme.m
index cf22bc161c3731ff22542627449cbb175b03a427..c6a7dba26e612eadb4cd10bbce51b978cf5d3a2c 100644
--- a/tests/particle/extreme.m
+++ b/tests/particle/extreme.m
@@ -1,153 +1,153 @@
 series = [  1.831805242058402   0.326183687045750   0.571394980772413
-            1.984702489138465   0.335169748463059   0.670420465974991
-            1.797086108881765   0.323738578123985   0.547308667595199
-            1.868444017934854   0.328080679826740   0.593052853366243
-            1.895360226929111   0.329595817929623   0.609928225756056
-            1.790832321540929   0.323045792420179   0.541464341531705
-            1.760361113136238   0.321043326280900   0.521508650424371
-            1.790915969739093   0.322955490721488   0.540943037175086
-            2.094179862755653   0.340746414276014   0.739070344706716
-            2.351323603033167   0.353813072593956   0.910247160484619
-            2.210203726655083   0.345882571920415   0.814539583358436
-            2.502764243167320   0.360529072208579   1.010034424820335
-            2.569208789183717   0.362428841518866   1.055534562597981
-            2.547595154425792   0.360952177511515   1.039047992042150
-            2.609146531246866   0.363696577503416   1.078846711754488
-            2.571616001378042   0.361498291257734   1.051509986784717
-            2.541891024016321   0.360071155104088   1.028624099377237
-            2.689409275114334   0.366815600832908   1.128105032869184
-            2.836542116534716   0.372524050373151   1.229814150394072
-            2.989371778822207   0.378100564290163   1.336372695875410
-            3.053527484610819   0.379663367671839   1.381646099750626
-            2.881583926807516   0.371937515643922   1.259734111646857
-            2.937243454748999   0.375283171360020   1.293755438734926
-            3.118203726771490   0.382439157449350   1.420284000580079
-            3.162221425436911   0.382978730072962   1.452879778911405
-            3.270131116244304   0.387045130060735   1.528307700189284
-            3.342461488854179   0.389086673292955   1.580437828600709
-            3.273192452854725   0.385774052536333   1.531120751032252
-            3.275458381986319   0.386357608290016   1.529824198671000
-            3.140839718197673   0.380646875429989   1.433095635793685
-            3.219561570532605   0.384603663097986   1.485897119680615
-            3.046020484023621   0.376619364484571   1.363233558132235
-            2.875797146770958   0.369735139885355   1.238996996305890
-            2.749622178822991   0.364254301976450   1.147444649402347
-            2.392412920492719   0.346784183865998   0.894670846513585
-            2.538569352588205   0.354489172654320   0.995609156305664
-            2.568582116289918   0.355797653561804   1.017051641895211
-            2.473671797066097   0.350928176810026   0.950257635346841
-            2.620458952999331   0.358256344008751   1.053181588833955
-            2.417877040613256   0.347870025062447   0.911027320823617
-            2.397670314991495   0.346921694035742   0.896082963087687
-            2.366883065577286   0.345289845529682   0.874408874120826
-            2.398421161488027   0.346918229004658   0.896452534897949
-            2.429022432917506   0.348458911692765   0.917940360480214
-            2.329480001673114   0.343218039531235   0.848090572728616
-            2.323778203248307   0.342928605968239   0.843955176095121
-            2.304540951504139   0.341899250525543   0.830468123386457
-            2.371683909087846   0.345441636785679   0.877514351279621
-            2.490195690751581   0.351506590301081   0.960838542863225
-            2.611493982190879   0.357442690934199   1.046618170917642
-            2.503405760920729   0.351887256856341   0.970703524500816
-            2.502374477458479   0.351865505580769   0.969514474424414
-            2.359478710434038   0.344470328092121   0.868876338341471
-            2.235614401552562   0.337896673011709   0.781763976906244
-            2.237065512060965   0.337998138421979   0.782823153982811
-            2.405249293222310   0.346934628008361   0.900834255435682
-            2.317208444296528   0.342286974469216   0.839012239040374
-            2.356353796613430   0.344364397044866   0.866418340883992
-            2.329623188746103   0.342942028228397   0.847657055734664
-            2.451699791573160   0.349287377428137   0.933477131054643
-            2.326653326931049   0.342720642543720   0.845654324922242
-            2.328176409623511   0.342824741941796   0.846575965562970
-            2.387605984815603   0.345939128892875   0.888332186956944
-            2.508162718702005   0.352082240173918   0.973304394397491
-            2.682098704221850   0.360548632109151   1.096619975241019
-            2.683210187517440   0.360334208336806   1.098196347992521
-            2.495448180812561   0.351002978084749   0.965191387615425
-            2.400677321318541   0.346260011274923   0.897566056014340
-            2.279709427240636   0.339905112366486   0.812280162193439
-            2.543742139352676   0.353571759314430   0.998416614177836
-            2.466804544683231   0.349570487450388   0.944374705292784
-            2.545923232397798   0.353562161906674   1.000133847612044
-            2.516609766492527   0.351998960811952   0.979615171231177
-            2.612598123816773   0.356735709969249   1.047580818676070
-            2.514581877733644   0.351736314350723   0.978472497403178
-            2.346814819442599   0.343151537387364   0.859593502999736
-            2.190061053436186   0.334783668048696   0.749123665788591
-            2.248248190346710   0.337975537211722   0.790133451151325
-            2.231245577955952   0.337099249591117   0.778120306643938
-            2.213620813638347   0.336172963701584   0.765787919679999
-            2.372368622485876   0.344669139219734   0.877475808694303
-            2.402394532412963   0.346236714114806   0.898578702308663
-            2.421632200543405   0.347211723112796   0.912182166100545
-            2.600814823475984   0.356206951763316   1.039020125139189
-            2.499717430182296   0.351010191098421   0.967897548419094
-            2.572211042595633   0.354659119526649   1.018967108776286
-            2.663557373274198   0.359030754462987   1.084127294941044
-            2.624508384540186   0.356972637699486   1.056848324055082
-            2.638578391882532   0.357631581496546   1.066764536958948
-            2.490619544707827   0.350219619250241   0.961836430307891
-            2.351499685312523   0.343126531712676   0.862944429125821
-            2.361744409273265   0.343693557597678   0.870045243822348
-            2.442494968080141   0.347873202461086   0.927160968018594
-            2.745123805313629   0.362770643020118   1.142349343426111
-            2.655499503705102   0.358132929197389   1.079779897215503
-            2.663850696079126   0.358574973979539   1.085379958290025
-            2.642540272757401   0.357462408799286   1.070401889504760
-            2.404037994048185   0.345491588561572   0.900884395443159
-            2.348769349405146   0.342712258600463   0.861219163642359
-            2.151645849089095   0.332135094769575   0.722080451054128
-            2.252343203542463   0.337640454116440   0.793256172150181
-            2.158313350236808   0.332590653949928   0.726803768436609
-            2.177375300770910   0.333675009914873   0.740364253592691
-            2.125333870619463   0.330857624626525   0.703750112206580
-            2.166601866570710   0.333192210611845   0.732859178568121
-            2.108843923653465   0.330052027456209   0.692243810014626
-            2.170141182101418   0.333505871231270   0.735409067431057
-            2.254451075620278   0.338167643418567   0.794516594921980
-            2.446506792318999   0.348291161505242   0.929849297341202
-            2.420231514001146   0.346916032088861   0.911318264635804
-            2.181800682169253   0.334237425269950   0.743319742477540
-            2.099742314313267   0.329709128744430   0.685953130712018
-            2.253483605428042   0.338209143902201   0.794027010792921
-            2.139849820112224   0.332063175615470   0.714018808416182
-            2.250143469020041   0.338136253085361   0.791600043424550
-            2.264735780708348   0.338979274263224   0.801680191863518
-            2.425121660100526   0.347436401511180   0.914625338218002
-            2.206590644219017   0.335830510968584   0.760892479739662
-            2.189826738892797   0.334948331690477   0.749202347672420
-            2.069051029835663   0.328235256714593   0.664845519474291
-            2.391186717627713   0.345755663706005   0.891100361136644
-            2.478723828708481   0.350304667654797   0.952470631759343
-            2.633589418757750   0.357943374909926   1.062259709272963
-            2.501720459872961   0.351218582106388   0.969405568955396
-            2.438825464623843   0.348074452736294   0.924486170126454
-            2.402956953910124   0.346226899680829   0.899047137304136
-            2.524642865536631   0.352419486777799   0.985020882838327
-            2.486592708507011   0.350410839822111   0.958347818799192
-            2.561198294838873   0.354135408220830   1.011115336262727
-            2.320611782924737   0.341730318797737   0.841256200313256
-            2.279686641907904   0.339623952830723   0.812097446193594
-            2.192677970879956   0.334934939278205   0.750983611681066
-            2.034253696137675   0.326074943710870   0.640293522184461
-            2.100411653364924   0.329874859982984   0.687004183670506
-            2.136363142365890   0.331978934678318   0.712025267361496
-            2.145765618417357   0.332571647651874   0.718576738965439
-            2.015355353786295   0.325223748826715   0.627682513187217
-            2.144497911280442   0.332597163880719   0.718235199174144
-            2.184419901142909   0.334907791330299   0.745855884353715
-            2.156941988546521   0.333440304455754   0.726637490761326
-            2.164896092557094   0.333922888423381   0.732317236030551
-            2.142495889557134   0.332723978543999   0.716747302318746
-            1.972335146672318   0.323009944472129   0.598611382636265
-            1.960032978731420   0.322337700909600   0.590822458953444
-            1.892736021185325   0.318399928224863   0.544712037197812
-            1.817727518077365   0.313890597043592   0.493800641801013
-            1.732818354432900   0.308638151751227   0.436587334970866
-            1.709712053275818   0.307294092052731   0.421979569450315
-            1.560777278572816   0.297457158767192   0.322157189475494
-            1.678355925543266   0.305618851041591   0.403484108249424] ;
+   1.984702489138465   0.335169748463059   0.670420465974991
+   1.797086108881765   0.323738578123985   0.547308667595199
+   1.868444017934854   0.328080679826740   0.593052853366243
+   1.895360226929111   0.329595817929623   0.609928225756056
+   1.790832321540929   0.323045792420179   0.541464341531705
+   1.760361113136238   0.321043326280900   0.521508650424371
+   1.790915969739093   0.322955490721488   0.540943037175086
+   2.094179862755653   0.340746414276014   0.739070344706716
+   2.351323603033167   0.353813072593956   0.910247160484619
+   2.210203726655083   0.345882571920415   0.814539583358436
+   2.502764243167320   0.360529072208579   1.010034424820335
+   2.569208789183717   0.362428841518866   1.055534562597981
+   2.547595154425792   0.360952177511515   1.039047992042150
+   2.609146531246866   0.363696577503416   1.078846711754488
+   2.571616001378042   0.361498291257734   1.051509986784717
+   2.541891024016321   0.360071155104088   1.028624099377237
+   2.689409275114334   0.366815600832908   1.128105032869184
+   2.836542116534716   0.372524050373151   1.229814150394072
+   2.989371778822207   0.378100564290163   1.336372695875410
+   3.053527484610819   0.379663367671839   1.381646099750626
+   2.881583926807516   0.371937515643922   1.259734111646857
+   2.937243454748999   0.375283171360020   1.293755438734926
+   3.118203726771490   0.382439157449350   1.420284000580079
+   3.162221425436911   0.382978730072962   1.452879778911405
+   3.270131116244304   0.387045130060735   1.528307700189284
+   3.342461488854179   0.389086673292955   1.580437828600709
+   3.273192452854725   0.385774052536333   1.531120751032252
+   3.275458381986319   0.386357608290016   1.529824198671000
+   3.140839718197673   0.380646875429989   1.433095635793685
+   3.219561570532605   0.384603663097986   1.485897119680615
+   3.046020484023621   0.376619364484571   1.363233558132235
+   2.875797146770958   0.369735139885355   1.238996996305890
+   2.749622178822991   0.364254301976450   1.147444649402347
+   2.392412920492719   0.346784183865998   0.894670846513585
+   2.538569352588205   0.354489172654320   0.995609156305664
+   2.568582116289918   0.355797653561804   1.017051641895211
+   2.473671797066097   0.350928176810026   0.950257635346841
+   2.620458952999331   0.358256344008751   1.053181588833955
+   2.417877040613256   0.347870025062447   0.911027320823617
+   2.397670314991495   0.346921694035742   0.896082963087687
+   2.366883065577286   0.345289845529682   0.874408874120826
+   2.398421161488027   0.346918229004658   0.896452534897949
+   2.429022432917506   0.348458911692765   0.917940360480214
+   2.329480001673114   0.343218039531235   0.848090572728616
+   2.323778203248307   0.342928605968239   0.843955176095121
+   2.304540951504139   0.341899250525543   0.830468123386457
+   2.371683909087846   0.345441636785679   0.877514351279621
+   2.490195690751581   0.351506590301081   0.960838542863225
+   2.611493982190879   0.357442690934199   1.046618170917642
+   2.503405760920729   0.351887256856341   0.970703524500816
+   2.502374477458479   0.351865505580769   0.969514474424414
+   2.359478710434038   0.344470328092121   0.868876338341471
+   2.235614401552562   0.337896673011709   0.781763976906244
+   2.237065512060965   0.337998138421979   0.782823153982811
+   2.405249293222310   0.346934628008361   0.900834255435682
+   2.317208444296528   0.342286974469216   0.839012239040374
+   2.356353796613430   0.344364397044866   0.866418340883992
+   2.329623188746103   0.342942028228397   0.847657055734664
+   2.451699791573160   0.349287377428137   0.933477131054643
+   2.326653326931049   0.342720642543720   0.845654324922242
+   2.328176409623511   0.342824741941796   0.846575965562970
+   2.387605984815603   0.345939128892875   0.888332186956944
+   2.508162718702005   0.352082240173918   0.973304394397491
+   2.682098704221850   0.360548632109151   1.096619975241019
+   2.683210187517440   0.360334208336806   1.098196347992521
+   2.495448180812561   0.351002978084749   0.965191387615425
+   2.400677321318541   0.346260011274923   0.897566056014340
+   2.279709427240636   0.339905112366486   0.812280162193439
+   2.543742139352676   0.353571759314430   0.998416614177836
+   2.466804544683231   0.349570487450388   0.944374705292784
+   2.545923232397798   0.353562161906674   1.000133847612044
+   2.516609766492527   0.351998960811952   0.979615171231177
+   2.612598123816773   0.356735709969249   1.047580818676070
+   2.514581877733644   0.351736314350723   0.978472497403178
+   2.346814819442599   0.343151537387364   0.859593502999736
+   2.190061053436186   0.334783668048696   0.749123665788591
+   2.248248190346710   0.337975537211722   0.790133451151325
+   2.231245577955952   0.337099249591117   0.778120306643938
+   2.213620813638347   0.336172963701584   0.765787919679999
+   2.372368622485876   0.344669139219734   0.877475808694303
+   2.402394532412963   0.346236714114806   0.898578702308663
+   2.421632200543405   0.347211723112796   0.912182166100545
+   2.600814823475984   0.356206951763316   1.039020125139189
+   2.499717430182296   0.351010191098421   0.967897548419094
+   2.572211042595633   0.354659119526649   1.018967108776286
+   2.663557373274198   0.359030754462987   1.084127294941044
+   2.624508384540186   0.356972637699486   1.056848324055082
+   2.638578391882532   0.357631581496546   1.066764536958948
+   2.490619544707827   0.350219619250241   0.961836430307891
+   2.351499685312523   0.343126531712676   0.862944429125821
+   2.361744409273265   0.343693557597678   0.870045243822348
+   2.442494968080141   0.347873202461086   0.927160968018594
+   2.745123805313629   0.362770643020118   1.142349343426111
+   2.655499503705102   0.358132929197389   1.079779897215503
+   2.663850696079126   0.358574973979539   1.085379958290025
+   2.642540272757401   0.357462408799286   1.070401889504760
+   2.404037994048185   0.345491588561572   0.900884395443159
+   2.348769349405146   0.342712258600463   0.861219163642359
+   2.151645849089095   0.332135094769575   0.722080451054128
+   2.252343203542463   0.337640454116440   0.793256172150181
+   2.158313350236808   0.332590653949928   0.726803768436609
+   2.177375300770910   0.333675009914873   0.740364253592691
+   2.125333870619463   0.330857624626525   0.703750112206580
+   2.166601866570710   0.333192210611845   0.732859178568121
+   2.108843923653465   0.330052027456209   0.692243810014626
+   2.170141182101418   0.333505871231270   0.735409067431057
+   2.254451075620278   0.338167643418567   0.794516594921980
+   2.446506792318999   0.348291161505242   0.929849297341202
+   2.420231514001146   0.346916032088861   0.911318264635804
+   2.181800682169253   0.334237425269950   0.743319742477540
+   2.099742314313267   0.329709128744430   0.685953130712018
+   2.253483605428042   0.338209143902201   0.794027010792921
+   2.139849820112224   0.332063175615470   0.714018808416182
+   2.250143469020041   0.338136253085361   0.791600043424550
+   2.264735780708348   0.338979274263224   0.801680191863518
+   2.425121660100526   0.347436401511180   0.914625338218002
+   2.206590644219017   0.335830510968584   0.760892479739662
+   2.189826738892797   0.334948331690477   0.749202347672420
+   2.069051029835663   0.328235256714593   0.664845519474291
+   2.391186717627713   0.345755663706005   0.891100361136644
+   2.478723828708481   0.350304667654797   0.952470631759343
+   2.633589418757750   0.357943374909926   1.062259709272963
+   2.501720459872961   0.351218582106388   0.969405568955396
+   2.438825464623843   0.348074452736294   0.924486170126454
+   2.402956953910124   0.346226899680829   0.899047137304136
+   2.524642865536631   0.352419486777799   0.985020882838327
+   2.486592708507011   0.350410839822111   0.958347818799192
+   2.561198294838873   0.354135408220830   1.011115336262727
+   2.320611782924737   0.341730318797737   0.841256200313256
+   2.279686641907904   0.339623952830723   0.812097446193594
+   2.192677970879956   0.334934939278205   0.750983611681066
+   2.034253696137675   0.326074943710870   0.640293522184461
+   2.100411653364924   0.329874859982984   0.687004183670506
+   2.136363142365890   0.331978934678318   0.712025267361496
+   2.145765618417357   0.332571647651874   0.718576738965439
+   2.015355353786295   0.325223748826715   0.627682513187217
+   2.144497911280442   0.332597163880719   0.718235199174144
+   2.184419901142909   0.334907791330299   0.745855884353715
+   2.156941988546521   0.333440304455754   0.726637490761326
+   2.164896092557094   0.333922888423381   0.732317236030551
+   2.142495889557134   0.332723978543999   0.716747302318746
+   1.972335146672318   0.323009944472129   0.598611382636265
+   1.960032978731420   0.322337700909600   0.590822458953444
+   1.892736021185325   0.318399928224863   0.544712037197812
+   1.817727518077365   0.313890597043592   0.493800641801013
+   1.732818354432900   0.308638151751227   0.436587334970866
+   1.709712053275818   0.307294092052731   0.421979569450315
+   1.560777278572816   0.297457158767192   0.322157189475494
+   1.678355925543266   0.305618851041591   0.403484108249424] ;
 
 set_dynare_seed('default');
 
diff --git a/tests/particle/risky.m b/tests/particle/risky.m
index 33c64573ad46b7ea79cbea3d486e56a384400196..4d0b7a829971b6f2f937d3c4a47f9b3d31a6992a 100644
--- a/tests/particle/risky.m
+++ b/tests/particle/risky.m
@@ -1,153 +1,153 @@
 series = [  1.831805242058402   0.326183687045750   0.571394980772413
-            1.984702489138465   0.335169748463059   0.670420465974991
-            1.797086108881765   0.323738578123985   0.547308667595199
-            1.868444017934854   0.328080679826740   0.593052853366243
-            1.895360226929111   0.329595817929623   0.609928225756056
-            1.790832321540929   0.323045792420179   0.541464341531705
-            1.760361113136238   0.321043326280900   0.521508650424371
-            1.790915969739093   0.322955490721488   0.540943037175086
-            2.094179862755653   0.340746414276014   0.739070344706716
-            2.351323603033167   0.353813072593956   0.910247160484619
-            2.210203726655083   0.345882571920415   0.814539583358436
-            2.502764243167320   0.360529072208579   1.010034424820335
-            2.569208789183717   0.362428841518866   1.055534562597981
-            2.547595154425792   0.360952177511515   1.039047992042150
-            2.609146531246866   0.363696577503416   1.078846711754488
-            2.571616001378042   0.361498291257734   1.051509986784717
-            2.541891024016321   0.360071155104088   1.028624099377237
-            2.689409275114334   0.366815600832908   1.128105032869184
-            2.836542116534716   0.372524050373151   1.229814150394072
-            2.989371778822207   0.378100564290163   1.336372695875410
-            3.053527484610819   0.379663367671839   1.381646099750626
-            2.881583926807516   0.371937515643922   1.259734111646857
-            2.937243454748999   0.375283171360020   1.293755438734926
-            3.118203726771490   0.382439157449350   1.420284000580079
-            3.162221425436911   0.382978730072962   1.452879778911405
-            3.270131116244304   0.387045130060735   1.528307700189284
-            3.342461488854179   0.389086673292955   1.580437828600709
-            3.273192452854725   0.385774052536333   1.531120751032252
-            3.275458381986319   0.386357608290016   1.529824198671000
-            3.140839718197673   0.380646875429989   1.433095635793685
-            3.219561570532605   0.384603663097986   1.485897119680615
-            3.046020484023621   0.376619364484571   1.363233558132235
-            2.875797146770958   0.369735139885355   1.238996996305890
-            2.749622178822991   0.364254301976450   1.147444649402347
-            2.392412920492719   0.346784183865998   0.894670846513585
-            2.538569352588205   0.354489172654320   0.995609156305664
-            2.568582116289918   0.355797653561804   1.017051641895211
-            2.473671797066097   0.350928176810026   0.950257635346841
-            2.620458952999331   0.358256344008751   1.053181588833955
-            2.417877040613256   0.347870025062447   0.911027320823617
-            2.397670314991495   0.346921694035742   0.896082963087687
-            2.366883065577286   0.345289845529682   0.874408874120826
-            2.398421161488027   0.346918229004658   0.896452534897949
-            2.429022432917506   0.348458911692765   0.917940360480214
-            2.329480001673114   0.343218039531235   0.848090572728616
-            2.323778203248307   0.342928605968239   0.843955176095121
-            2.304540951504139   0.341899250525543   0.830468123386457
-            2.371683909087846   0.345441636785679   0.877514351279621
-            2.490195690751581   0.351506590301081   0.960838542863225
-            2.611493982190879   0.357442690934199   1.046618170917642
-            2.503405760920729   0.351887256856341   0.970703524500816
-            2.502374477458479   0.351865505580769   0.969514474424414
-            2.359478710434038   0.344470328092121   0.868876338341471
-            2.235614401552562   0.337896673011709   0.781763976906244
-            2.237065512060965   0.337998138421979   0.782823153982811
-            2.405249293222310   0.346934628008361   0.900834255435682
-            2.317208444296528   0.342286974469216   0.839012239040374
-            2.356353796613430   0.344364397044866   0.866418340883992
-            2.329623188746103   0.342942028228397   0.847657055734664
-            2.451699791573160   0.349287377428137   0.933477131054643
-            2.326653326931049   0.342720642543720   0.845654324922242
-            2.328176409623511   0.342824741941796   0.846575965562970
-            2.387605984815603   0.345939128892875   0.888332186956944
-            2.508162718702005   0.352082240173918   0.973304394397491
-            2.682098704221850   0.360548632109151   1.096619975241019
-            2.683210187517440   0.360334208336806   1.098196347992521
-            2.495448180812561   0.351002978084749   0.965191387615425
-            2.400677321318541   0.346260011274923   0.897566056014340
-            2.279709427240636   0.339905112366486   0.812280162193439
-            2.543742139352676   0.353571759314430   0.998416614177836
-            2.466804544683231   0.349570487450388   0.944374705292784
-            2.545923232397798   0.353562161906674   1.000133847612044
-            2.516609766492527   0.351998960811952   0.979615171231177
-            2.612598123816773   0.356735709969249   1.047580818676070
-            2.514581877733644   0.351736314350723   0.978472497403178
-            2.346814819442599   0.343151537387364   0.859593502999736
-            2.190061053436186   0.334783668048696   0.749123665788591
-            2.248248190346710   0.337975537211722   0.790133451151325
-            2.231245577955952   0.337099249591117   0.778120306643938
-            2.213620813638347   0.336172963701584   0.765787919679999
-            2.372368622485876   0.344669139219734   0.877475808694303
-            2.402394532412963   0.346236714114806   0.898578702308663
-            2.421632200543405   0.347211723112796   0.912182166100545
-            2.600814823475984   0.356206951763316   1.039020125139189
-            2.499717430182296   0.351010191098421   0.967897548419094
-            2.572211042595633   0.354659119526649   1.018967108776286
-            2.663557373274198   0.359030754462987   1.084127294941044
-            2.624508384540186   0.356972637699486   1.056848324055082
-            2.638578391882532   0.357631581496546   1.066764536958948
-            2.490619544707827   0.350219619250241   0.961836430307891
-            2.351499685312523   0.343126531712676   0.862944429125821
-            2.361744409273265   0.343693557597678   0.870045243822348
-            2.442494968080141   0.347873202461086   0.927160968018594
-            2.745123805313629   0.362770643020118   1.142349343426111
-            2.655499503705102   0.358132929197389   1.079779897215503
-            2.663850696079126   0.358574973979539   1.085379958290025
-            2.642540272757401   0.357462408799286   1.070401889504760
-            2.404037994048185   0.345491588561572   0.900884395443159
-            2.348769349405146   0.342712258600463   0.861219163642359
-            2.151645849089095   0.332135094769575   0.722080451054128
-            2.252343203542463   0.337640454116440   0.793256172150181
-            2.158313350236808   0.332590653949928   0.726803768436609
-            2.177375300770910   0.333675009914873   0.740364253592691
-            2.125333870619463   0.330857624626525   0.703750112206580
-            2.166601866570710   0.333192210611845   0.732859178568121
-            2.108843923653465   0.330052027456209   0.692243810014626
-            2.170141182101418   0.333505871231270   0.735409067431057
-            2.254451075620278   0.338167643418567   0.794516594921980
-            2.446506792318999   0.348291161505242   0.929849297341202
-            2.420231514001146   0.346916032088861   0.911318264635804
-            2.181800682169253   0.334237425269950   0.743319742477540
-            2.099742314313267   0.329709128744430   0.685953130712018
-            2.253483605428042   0.338209143902201   0.794027010792921
-            2.139849820112224   0.332063175615470   0.714018808416182
-            2.250143469020041   0.338136253085361   0.791600043424550
-            2.264735780708348   0.338979274263224   0.801680191863518
-            2.425121660100526   0.347436401511180   0.914625338218002
-            2.206590644219017   0.335830510968584   0.760892479739662
-            2.189826738892797   0.334948331690477   0.749202347672420
-            2.069051029835663   0.328235256714593   0.664845519474291
-            2.391186717627713   0.345755663706005   0.891100361136644
-            2.478723828708481   0.350304667654797   0.952470631759343
-            2.633589418757750   0.357943374909926   1.062259709272963
-            2.501720459872961   0.351218582106388   0.969405568955396
-            2.438825464623843   0.348074452736294   0.924486170126454
-            2.402956953910124   0.346226899680829   0.899047137304136
-            2.524642865536631   0.352419486777799   0.985020882838327
-            2.486592708507011   0.350410839822111   0.958347818799192
-            2.561198294838873   0.354135408220830   1.011115336262727
-            2.320611782924737   0.341730318797737   0.841256200313256
-            2.279686641907904   0.339623952830723   0.812097446193594
-            2.192677970879956   0.334934939278205   0.750983611681066
-            2.034253696137675   0.326074943710870   0.640293522184461
-            2.100411653364924   0.329874859982984   0.687004183670506
-            2.136363142365890   0.331978934678318   0.712025267361496
-            2.145765618417357   0.332571647651874   0.718576738965439
-            2.015355353786295   0.325223748826715   0.627682513187217
-            2.144497911280442   0.332597163880719   0.718235199174144
-            2.184419901142909   0.334907791330299   0.745855884353715
-            2.156941988546521   0.333440304455754   0.726637490761326
-            2.164896092557094   0.333922888423381   0.732317236030551
-            2.142495889557134   0.332723978543999   0.716747302318746
-            1.972335146672318   0.323009944472129   0.598611382636265
-            1.960032978731420   0.322337700909600   0.590822458953444
-            1.892736021185325   0.318399928224863   0.544712037197812
-            1.817727518077365   0.313890597043592   0.493800641801013
-            1.732818354432900   0.308638151751227   0.436587334970866
-            1.709712053275818   0.307294092052731   0.421979569450315
-            1.560777278572816   0.297457158767192   0.322157189475494
-            1.678355925543266   0.305618851041591   0.403484108249424] ;
+   1.984702489138465   0.335169748463059   0.670420465974991
+   1.797086108881765   0.323738578123985   0.547308667595199
+   1.868444017934854   0.328080679826740   0.593052853366243
+   1.895360226929111   0.329595817929623   0.609928225756056
+   1.790832321540929   0.323045792420179   0.541464341531705
+   1.760361113136238   0.321043326280900   0.521508650424371
+   1.790915969739093   0.322955490721488   0.540943037175086
+   2.094179862755653   0.340746414276014   0.739070344706716
+   2.351323603033167   0.353813072593956   0.910247160484619
+   2.210203726655083   0.345882571920415   0.814539583358436
+   2.502764243167320   0.360529072208579   1.010034424820335
+   2.569208789183717   0.362428841518866   1.055534562597981
+   2.547595154425792   0.360952177511515   1.039047992042150
+   2.609146531246866   0.363696577503416   1.078846711754488
+   2.571616001378042   0.361498291257734   1.051509986784717
+   2.541891024016321   0.360071155104088   1.028624099377237
+   2.689409275114334   0.366815600832908   1.128105032869184
+   2.836542116534716   0.372524050373151   1.229814150394072
+   2.989371778822207   0.378100564290163   1.336372695875410
+   3.053527484610819   0.379663367671839   1.381646099750626
+   2.881583926807516   0.371937515643922   1.259734111646857
+   2.937243454748999   0.375283171360020   1.293755438734926
+   3.118203726771490   0.382439157449350   1.420284000580079
+   3.162221425436911   0.382978730072962   1.452879778911405
+   3.270131116244304   0.387045130060735   1.528307700189284
+   3.342461488854179   0.389086673292955   1.580437828600709
+   3.273192452854725   0.385774052536333   1.531120751032252
+   3.275458381986319   0.386357608290016   1.529824198671000
+   3.140839718197673   0.380646875429989   1.433095635793685
+   3.219561570532605   0.384603663097986   1.485897119680615
+   3.046020484023621   0.376619364484571   1.363233558132235
+   2.875797146770958   0.369735139885355   1.238996996305890
+   2.749622178822991   0.364254301976450   1.147444649402347
+   2.392412920492719   0.346784183865998   0.894670846513585
+   2.538569352588205   0.354489172654320   0.995609156305664
+   2.568582116289918   0.355797653561804   1.017051641895211
+   2.473671797066097   0.350928176810026   0.950257635346841
+   2.620458952999331   0.358256344008751   1.053181588833955
+   2.417877040613256   0.347870025062447   0.911027320823617
+   2.397670314991495   0.346921694035742   0.896082963087687
+   2.366883065577286   0.345289845529682   0.874408874120826
+   2.398421161488027   0.346918229004658   0.896452534897949
+   2.429022432917506   0.348458911692765   0.917940360480214
+   2.329480001673114   0.343218039531235   0.848090572728616
+   2.323778203248307   0.342928605968239   0.843955176095121
+   2.304540951504139   0.341899250525543   0.830468123386457
+   2.371683909087846   0.345441636785679   0.877514351279621
+   2.490195690751581   0.351506590301081   0.960838542863225
+   2.611493982190879   0.357442690934199   1.046618170917642
+   2.503405760920729   0.351887256856341   0.970703524500816
+   2.502374477458479   0.351865505580769   0.969514474424414
+   2.359478710434038   0.344470328092121   0.868876338341471
+   2.235614401552562   0.337896673011709   0.781763976906244
+   2.237065512060965   0.337998138421979   0.782823153982811
+   2.405249293222310   0.346934628008361   0.900834255435682
+   2.317208444296528   0.342286974469216   0.839012239040374
+   2.356353796613430   0.344364397044866   0.866418340883992
+   2.329623188746103   0.342942028228397   0.847657055734664
+   2.451699791573160   0.349287377428137   0.933477131054643
+   2.326653326931049   0.342720642543720   0.845654324922242
+   2.328176409623511   0.342824741941796   0.846575965562970
+   2.387605984815603   0.345939128892875   0.888332186956944
+   2.508162718702005   0.352082240173918   0.973304394397491
+   2.682098704221850   0.360548632109151   1.096619975241019
+   2.683210187517440   0.360334208336806   1.098196347992521
+   2.495448180812561   0.351002978084749   0.965191387615425
+   2.400677321318541   0.346260011274923   0.897566056014340
+   2.279709427240636   0.339905112366486   0.812280162193439
+   2.543742139352676   0.353571759314430   0.998416614177836
+   2.466804544683231   0.349570487450388   0.944374705292784
+   2.545923232397798   0.353562161906674   1.000133847612044
+   2.516609766492527   0.351998960811952   0.979615171231177
+   2.612598123816773   0.356735709969249   1.047580818676070
+   2.514581877733644   0.351736314350723   0.978472497403178
+   2.346814819442599   0.343151537387364   0.859593502999736
+   2.190061053436186   0.334783668048696   0.749123665788591
+   2.248248190346710   0.337975537211722   0.790133451151325
+   2.231245577955952   0.337099249591117   0.778120306643938
+   2.213620813638347   0.336172963701584   0.765787919679999
+   2.372368622485876   0.344669139219734   0.877475808694303
+   2.402394532412963   0.346236714114806   0.898578702308663
+   2.421632200543405   0.347211723112796   0.912182166100545
+   2.600814823475984   0.356206951763316   1.039020125139189
+   2.499717430182296   0.351010191098421   0.967897548419094
+   2.572211042595633   0.354659119526649   1.018967108776286
+   2.663557373274198   0.359030754462987   1.084127294941044
+   2.624508384540186   0.356972637699486   1.056848324055082
+   2.638578391882532   0.357631581496546   1.066764536958948
+   2.490619544707827   0.350219619250241   0.961836430307891
+   2.351499685312523   0.343126531712676   0.862944429125821
+   2.361744409273265   0.343693557597678   0.870045243822348
+   2.442494968080141   0.347873202461086   0.927160968018594
+   2.745123805313629   0.362770643020118   1.142349343426111
+   2.655499503705102   0.358132929197389   1.079779897215503
+   2.663850696079126   0.358574973979539   1.085379958290025
+   2.642540272757401   0.357462408799286   1.070401889504760
+   2.404037994048185   0.345491588561572   0.900884395443159
+   2.348769349405146   0.342712258600463   0.861219163642359
+   2.151645849089095   0.332135094769575   0.722080451054128
+   2.252343203542463   0.337640454116440   0.793256172150181
+   2.158313350236808   0.332590653949928   0.726803768436609
+   2.177375300770910   0.333675009914873   0.740364253592691
+   2.125333870619463   0.330857624626525   0.703750112206580
+   2.166601866570710   0.333192210611845   0.732859178568121
+   2.108843923653465   0.330052027456209   0.692243810014626
+   2.170141182101418   0.333505871231270   0.735409067431057
+   2.254451075620278   0.338167643418567   0.794516594921980
+   2.446506792318999   0.348291161505242   0.929849297341202
+   2.420231514001146   0.346916032088861   0.911318264635804
+   2.181800682169253   0.334237425269950   0.743319742477540
+   2.099742314313267   0.329709128744430   0.685953130712018
+   2.253483605428042   0.338209143902201   0.794027010792921
+   2.139849820112224   0.332063175615470   0.714018808416182
+   2.250143469020041   0.338136253085361   0.791600043424550
+   2.264735780708348   0.338979274263224   0.801680191863518
+   2.425121660100526   0.347436401511180   0.914625338218002
+   2.206590644219017   0.335830510968584   0.760892479739662
+   2.189826738892797   0.334948331690477   0.749202347672420
+   2.069051029835663   0.328235256714593   0.664845519474291
+   2.391186717627713   0.345755663706005   0.891100361136644
+   2.478723828708481   0.350304667654797   0.952470631759343
+   2.633589418757750   0.357943374909926   1.062259709272963
+   2.501720459872961   0.351218582106388   0.969405568955396
+   2.438825464623843   0.348074452736294   0.924486170126454
+   2.402956953910124   0.346226899680829   0.899047137304136
+   2.524642865536631   0.352419486777799   0.985020882838327
+   2.486592708507011   0.350410839822111   0.958347818799192
+   2.561198294838873   0.354135408220830   1.011115336262727
+   2.320611782924737   0.341730318797737   0.841256200313256
+   2.279686641907904   0.339623952830723   0.812097446193594
+   2.192677970879956   0.334934939278205   0.750983611681066
+   2.034253696137675   0.326074943710870   0.640293522184461
+   2.100411653364924   0.329874859982984   0.687004183670506
+   2.136363142365890   0.331978934678318   0.712025267361496
+   2.145765618417357   0.332571647651874   0.718576738965439
+   2.015355353786295   0.325223748826715   0.627682513187217
+   2.144497911280442   0.332597163880719   0.718235199174144
+   2.184419901142909   0.334907791330299   0.745855884353715
+   2.156941988546521   0.333440304455754   0.726637490761326
+   2.164896092557094   0.333922888423381   0.732317236030551
+   2.142495889557134   0.332723978543999   0.716747302318746
+   1.972335146672318   0.323009944472129   0.598611382636265
+   1.960032978731420   0.322337700909600   0.590822458953444
+   1.892736021185325   0.318399928224863   0.544712037197812
+   1.817727518077365   0.313890597043592   0.493800641801013
+   1.732818354432900   0.308638151751227   0.436587334970866
+   1.709712053275818   0.307294092052731   0.421979569450315
+   1.560777278572816   0.297457158767192   0.322157189475494
+   1.678355925543266   0.305618851041591   0.403484108249424] ;
 
 set_dynare_seed('default');
 
diff --git a/tests/printMakeCheckMatlabErrMsg.m b/tests/printMakeCheckMatlabErrMsg.m
index ef9895d85332a5a0f6735db0f04d6871fc26e62b..a72b55401be47b9e76475d9c69f66f18d809dfb2 100644
--- a/tests/printMakeCheckMatlabErrMsg.m
+++ b/tests/printMakeCheckMatlabErrMsg.m
@@ -1,9 +1,9 @@
 function printMakeCheckMatlabErrMsg(modfilename, exception)
-fprintf('\n********************************************\n');
-disp('*** DYNARE-TEST-MATLAB ERROR ENCOUNTERED ***');
-disp('********************************************');
-disp(['  WHILE RUNNING MODFILE: ' modfilename]);
-fprintf('\n');
-disp(getReport(exception));
-fprintf('*************************************\n\n\n');
+    fprintf('\n********************************************\n');
+    disp('*** DYNARE-TEST-MATLAB ERROR ENCOUNTERED ***');
+    disp('********************************************');
+    disp(['  WHILE RUNNING MODFILE: ' modfilename]);
+    fprintf('\n');
+    disp(getReport(exception));
+    fprintf('*************************************\n\n\n');
 end
diff --git a/tests/printMakeCheckOctaveErrMsg.m b/tests/printMakeCheckOctaveErrMsg.m
index b64bb4bb0e224cb787c347bff5ba61fd892cc18f..84e19d00edf1827559ee954ca16bc9eda6875e3e 100644
--- a/tests/printMakeCheckOctaveErrMsg.m
+++ b/tests/printMakeCheckOctaveErrMsg.m
@@ -1,14 +1,14 @@
 function printMakeCheckOctaveErrMsg(modfilename, err)
-printf("\n");
-printf("********************************************\n");
-printf("*** DYNARE-TEST-OCTAVE ERROR ENCOUNTERED ***\n");
-printf("********************************************\n");
-printf("  WHILE RUNNING MODFILE: %s\n", modfilename);
-printf("                    MSG: %s\n", err.message);
-if (isfield(err, 'stack'))
-    printf("                IN FILE: %s\n", err.stack(1).file);
-    printf("            IN FUNCTION: %s\n", err.stack(1).name);
-    printf("     ON LINE and COLUMN: %d and %d\n",err.stack(1).line,err.stack(1).column);
-end
-printf("*************************************\n\n\n");
+    printf("\n");
+    printf("********************************************\n");
+    printf("*** DYNARE-TEST-OCTAVE ERROR ENCOUNTERED ***\n");
+    printf("********************************************\n");
+    printf("  WHILE RUNNING MODFILE: %s\n", modfilename);
+    printf("                    MSG: %s\n", err.message);
+    if (isfield(err, 'stack'))
+        printf("                IN FILE: %s\n", err.stack(1).file);
+        printf("            IN FUNCTION: %s\n", err.stack(1).name);
+        printf("     ON LINE and COLUMN: %d and %d\n",err.stack(1).line,err.stack(1).column);
+    end
+    printf("*************************************\n\n\n");
 end
diff --git a/tests/recursive/data_ca1.m b/tests/recursive/data_ca1.m
index ca003056bded971e9bf00232802e453a096e9cdf..c28fae1a2800e83eda0e6343196e8aeafad2935f 100644
--- a/tests/recursive/data_ca1.m
+++ b/tests/recursive/data_ca1.m
@@ -1,98 +1,98 @@
 data = [0.928467646476  11.8716889412   20  0.418037507392  0.227382377518 ...
-        -0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
-        -0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
-        -0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
-        -0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
-        -0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
-        -0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
-        1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
-        2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
-        1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
-        1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
-        1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
-        1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
-        0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
-        1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
-        1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
-        0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
-        1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
-        1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
-        -0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
-        0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
-        0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
-        -0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
-        2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
-        1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
-        1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
-        1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
-        1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
-        1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
-        0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
-        0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
-        1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
-        0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
-        0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
-        0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
-        0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
-        -0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
-        -0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
-        -0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
-        -1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
-        0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
-        0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
-        0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
-        -0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
-        0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
-        0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
-        0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
-        0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
-        0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
-        0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
-        0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
-        1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
-        1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
-        1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
-        0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
-        0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
-        -0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
-        0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
-        0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
-        0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
-        0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
-        1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
-        0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
-        0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
-        1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
-        1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
-        0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
-        1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
-        0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
-        1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
-        1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
-        1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
-        1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
-        1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
-        1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
-        1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
-        0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
-        1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
-        0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
-        0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
-        0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
-        -0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
-        0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
-        1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
-        1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
-        0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
-       ]; 
-
+-0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
+-0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
+-0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
+-0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
+-0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
+-0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
+1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
+2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
+1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
+1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
+1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
+1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
+0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
+1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
+1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
+0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
+1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
+1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
+-0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
+0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
+0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
+-0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
+2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
+1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
+1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
+1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
+1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
+1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
+0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
+0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
+1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
+0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
+0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
+0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
+0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
+-0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
+-0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
+-0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
+-1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
+0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
+0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
+0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
+-0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
+0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
+0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
+0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
+0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
+0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
+0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
+0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
+1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
+1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
+1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
+0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
+0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
+-0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
+0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
+0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
+0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
+0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
+1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
+0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
+0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
+1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
+1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
+0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
+1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
+0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
+1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
+1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
+1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
+1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
+1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
+1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
+1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
+0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
+1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
+0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
+0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
+0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
+-0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
+0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
+1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
+1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
+0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
+]; 
+ 
 data = reshape(data,5,86)'; 
 y_obs = data(:,1); 
 pie_obs = data(:,2); 
 R_obs = data(:,3); 
 de = data(:,4); 
 dq = data(:,5); 
-
+ 
 %Country: Canada 
 %Sample Range: 1981:2 to 2002:3 
 %Observations: 86 
diff --git a/tests/reporting/ResidTablePage.m b/tests/reporting/ResidTablePage.m
index c4e25e3051db45828fdc9c55987b7456f7be883d..c283429a0db649ba90ed408de7ce11cfffccdc5d 100644
--- a/tests/reporting/ResidTablePage.m
+++ b/tests/reporting/ResidTablePage.m
@@ -50,7 +50,7 @@ rep = rep.addTable('title', countryName, ...
 
 for i=1:length(seriesNames)
     if (any(strcmp(countryAbbr, otherThree)) && ...
-        any(strcmp(seriesNames{i}{1}, notForOtherThree))) || ...
+            any(strcmp(seriesNames{i}{1}, notForOtherThree))) || ...
             (any(strcmp(countryAbbr, 'US')) && any(strcmp(seriesNames{i}{1}, notForUS))) || ...
             (any(strcmp(countryAbbr, firstThree)) && any(strcmp(seriesNames{i}{1}, notForFirstThree)))
         continue
diff --git a/tests/reporting/runDynareReport.m b/tests/reporting/runDynareReport.m
index c54691fa2c4e64eea53fbe09453fdda74c1b54c7..fe07d3d1c04f85f93b66fbeb0a9cdfc57cad9789 100644
--- a/tests/reporting/runDynareReport.m
+++ b/tests/reporting/runDynareReport.m
@@ -202,13 +202,13 @@ rep = rep.addPage('title', {'Jan1 vs Jan2', 'World Oil and Food Prices'}, ...
                   'titleFormat', {'\large\bfseries', '\large'});
 rep = rep.addSection('cols', 1);
 rep = rep.addParagraph('text', 'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.', ...
-                       'cols', 2, ...
-                       'heading', '\textbf{My First Paragraph Has Two Columns}');
+    'cols', 2, ...
+    'heading', '\textbf{My First Paragraph Has Two Columns}');
 
 rep = rep.addSection('cols', 1);
 rep = rep.addParagraph('text', 'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.\newline', ...
-                       'heading', '\textbf{My Next Paragraphs Only Have One}', ...
-                       'indent', false);
+    'heading', '\textbf{My Next Paragraphs Only Have One}', ...
+    'indent', false);
 rep = rep.addParagraph('text', 'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.\newline');
 
 rep = rep.addSection('cols', 2);
diff --git a/tests/run_all_unitary_tests.m b/tests/run_all_unitary_tests.m
index e01aa29502413fe648a24b35c572d6c5c45e6029..49ddb307cde2390f8680765e55c4d16088f66709 100644
--- a/tests/run_all_unitary_tests.m
+++ b/tests/run_all_unitary_tests.m
@@ -73,14 +73,14 @@ else
     fid = fopen('run_all_unitary_tests.m.trs', 'w+');
 end
 if length(failedtests) > 0
-    fprintf(fid,':test-result: FAIL\n');
-    fprintf(fid,':number-tests: %d\n', counter);
-    fprintf(fid,':number-failed-tests: %d\n', length(failedtests));
-    fprintf(fid,':list-of-failed-tests: %s\n', failedtests{:});
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: %d\n', counter);
+  fprintf(fid,':number-failed-tests: %d\n', length(failedtests));
+  fprintf(fid,':list-of-failed-tests: %s\n', failedtests{:});
 else
-    fprintf(fid,':test-result: PASS\n');
-    fprintf(fid,':number-tests: %d\n', counter);
-    fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: %d\n', counter);
+  fprintf(fid,':number-failed-tests: 0\n');
 end
 fprintf(fid,':elapsed-time: %f\n',0.0);
 fclose(fid);
diff --git a/tests/run_block_byte_tests_matlab.m b/tests/run_block_byte_tests_matlab.m
index 8d6d1497400ce4b6ef5d442d0dff0f8c3a53130d..b3e017c56e48b43cfa9bcdeb2218f34e5bc71661 100644
--- a/tests/run_block_byte_tests_matlab.m
+++ b/tests/run_block_byte_tests_matlab.m
@@ -29,7 +29,7 @@ addpath([top_test_dir filesep '..' filesep 'matlab']);
 
 % Test Dynare Version
 if ~strcmp(dynare_version(), getenv('DYNARE_VERSION'))
-    error('Incorrect version of Dynare is being tested')
+  error('Incorrect version of Dynare is being tested')
 end
 
 % Test block_bytecode/ls2003.mod with various combinations of
@@ -134,14 +134,14 @@ delete('wsMat.mat')
 cd(getenv('TOP_TEST_DIR'));
 fid = fopen('run_block_byte_tests_matlab.m.trs', 'w+');
 if size(failedBlock,2) > 0
-    fprintf(fid,':test-result: FAIL\n');
-    fprintf(fid,':number-tests: %d\n', num_block_tests);
-    fprintf(fid,':number-failed-tests: %d\n', size(failedBlock,2));
-    fprintf(fid,':list-of-failed-tests: %s\n', failedBlock{:});
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: %d\n', num_block_tests);
+  fprintf(fid,':number-failed-tests: %d\n', size(failedBlock,2));
+  fprintf(fid,':list-of-failed-tests: %s\n', failedBlock{:});
 else
-    fprintf(fid,':test-result: PASS\n');
-    fprintf(fid,':number-tests: %d\n', num_block_tests);
-    fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: %d\n', num_block_tests);
+  fprintf(fid,':number-failed-tests: 0\n');
 end
 fprintf(fid,':elapsed-time: %f\n', ecput);
 fclose(fid);
diff --git a/tests/run_block_byte_tests_octave.m b/tests/run_block_byte_tests_octave.m
index 2b0890783f5eb812745bee4470e82edfa7294925..31f8c66b76799b085c703bc507c4ab210c9e2667 100644
--- a/tests/run_block_byte_tests_octave.m
+++ b/tests/run_block_byte_tests_octave.m
@@ -27,7 +27,7 @@ addpath([top_test_dir filesep '..' filesep 'matlab']);
 
 ## Test Dynare Version
 if !strcmp(dynare_version(), getenv("DYNARE_VERSION"))
-  error("Incorrect version of Dynare is being tested")
+    error("Incorrect version of Dynare is being tested")
 endif
 
 ## Ask gnuplot to create graphics in text mode
@@ -42,92 +42,92 @@ num_block_tests = 0;
 cd([top_test_dir filesep 'block_bytecode']);
 tic;
 for blockFlag = 0:1
-  for bytecodeFlag = 0:1
-    default_solve_algo = 2;
-    default_stack_solve_algo = 0;
-    if !blockFlag && !bytecodeFlag
-      solve_algos = 0:4;
-      stack_solve_algos = [0 6];
-    elseif blockFlag && !bytecodeFlag
-      solve_algos = [0:4 6:8];
-      stack_solve_algos = 0:4;
-    else
-      solve_algos = 0:8;
-      stack_solve_algos = 0:5;
-    endif
+    for bytecodeFlag = 0:1
+        default_solve_algo = 2;
+        default_stack_solve_algo = 0;
+        if !blockFlag && !bytecodeFlag
+            solve_algos = 0:4;
+            stack_solve_algos = [0 6];
+        elseif blockFlag && !bytecodeFlag
+            solve_algos = [0:4 6:8];
+            stack_solve_algos = 0:4;
+        else
+            solve_algos = 0:8;
+            stack_solve_algos = 0:5;
+        endif
 
-    sleep(1) # Workaround for strange race condition related to the _static.m file
+        sleep(1) # Workaround for strange race condition related to the _static.m file
 
-    for i = 1:length(solve_algos)
-      num_block_tests = num_block_tests + 1;
-      if !blockFlag && !bytecodeFlag && (i == 1)
-        ## This is the reference simulation path against which all
-        ## other simulations will be tested
-        try
-          old_path = path;
-          save wsOct
-          run_ls2003(blockFlag, bytecodeFlag, solve_algos(i), default_stack_solve_algo)
-          load wsOct
-          path(old_path);
-          y_ref = oo_.endo_simul;
-          save('test.mat','y_ref');
-        catch
-          load wsOct
-          path(old_path);
-          failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'];
-          printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'], lasterror);
-        end_try_catch
-      else
-        try
-          old_path = path;
-          save wsOct
-          run_ls2003(blockFlag, bytecodeFlag, solve_algos(i), default_stack_solve_algo)
-          load wsOct
-          path(old_path);
-          ## Test against the reference simulation path
-          load('test.mat','y_ref');
-          diff = oo_.endo_simul - y_ref;
-          if(abs(diff) > options_.dynatol.x)
-            failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'];
-            differr.message = ["ERROR: simulation path differs from the reference path" ];
-            printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'], differr);
-          endif
-        catch
-          load wsOct
-          e = lasterror(); # The path() command alters the lasterror, because of io package
-          path(old_path);
-          lasterror(e);
-          failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'];
-          printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'], lasterror);
-        end_try_catch
-      endif
-    endfor
-    for i = 1:length(stack_solve_algos)
-      num_block_tests = num_block_tests + 1;
-      try
-        old_path = path;
-        save wsOct
-        run_ls2003(blockFlag, bytecodeFlag, default_solve_algo, stack_solve_algos(i))
-        load wsOct
-        path(old_path);
-        ## Test against the reference simulation path
-        load('test.mat','y_ref');
-        diff = oo_.endo_simul - y_ref;
-        if(abs(diff) > options_.dynatol.x)
-          failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'];
-          differr.message = ["ERROR: simulation path differs from the reference path" ];
-          printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'], differr);
-        endif
-      catch
-        load wsOct
-        e = lasterror(); # The path() command alters the lasterror, because of io package
-        path(old_path);
-        lasterror(e);
-        failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'];
-        printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'], lasterror);
-      end_try_catch
+        for i = 1:length(solve_algos)
+            num_block_tests = num_block_tests + 1;
+            if !blockFlag && !bytecodeFlag && (i == 1)
+                ## This is the reference simulation path against which all
+                ## other simulations will be tested
+                try
+                    old_path = path;
+                    save wsOct
+                    run_ls2003(blockFlag, bytecodeFlag, solve_algos(i), default_stack_solve_algo)
+                    load wsOct
+                    path(old_path);
+                    y_ref = oo_.endo_simul;
+                    save('test.mat','y_ref');
+                catch
+                    load wsOct
+                    path(old_path);
+                    failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'];
+                    printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'], lasterror);
+                end_try_catch
+            else
+                try
+                    old_path = path;
+                    save wsOct
+                    run_ls2003(blockFlag, bytecodeFlag, solve_algos(i), default_stack_solve_algo)
+                    load wsOct
+                    path(old_path);
+                    ## Test against the reference simulation path
+                    load('test.mat','y_ref');
+                    diff = oo_.endo_simul - y_ref;
+                    if(abs(diff) > options_.dynatol.x)
+                        failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'];
+                        differr.message = ["ERROR: simulation path differs from the reference path" ];
+                        printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'], differr);
+                    endif
+                catch
+                    load wsOct
+                    e = lasterror(); # The path() command alters the lasterror, because of io package
+                    path(old_path);
+                    lasterror(e);
+                    failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'];
+                    printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'], lasterror);
+                end_try_catch
+            endif
+        endfor
+        for i = 1:length(stack_solve_algos)
+            num_block_tests = num_block_tests + 1;
+            try
+                old_path = path;
+                save wsOct
+                run_ls2003(blockFlag, bytecodeFlag, default_solve_algo, stack_solve_algos(i))
+                load wsOct
+                path(old_path);
+                ## Test against the reference simulation path
+                load('test.mat','y_ref');
+                diff = oo_.endo_simul - y_ref;
+                if(abs(diff) > options_.dynatol.x)
+                    failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'];
+                    differr.message = ["ERROR: simulation path differs from the reference path" ];
+                    printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'], differr);
+                endif
+            catch
+                load wsOct
+                e = lasterror(); # The path() command alters the lasterror, because of io package
+                path(old_path);
+                lasterror(e);
+                failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'];
+                printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'], lasterror);
+            end_try_catch
+        endfor
     endfor
-  endfor
 endfor
 ecput = toc;
 delete('wsOct');
diff --git a/tests/run_m_script.m b/tests/run_m_script.m
index 09840efcad0673f11573f629886b5745f95fe5d0..f40fc242c098cb1420fe5615862f4478c6752b53 100644
--- a/tests/run_m_script.m
+++ b/tests/run_m_script.m
@@ -22,31 +22,31 @@ top_test_dir = getenv('TOP_TEST_DIR');
 cd(directory);
 
 try
-    mscript;
-    testFailed = false;
+  mscript;
+  testFailed = false;
 catch exception
-    printMakeCheckMatlabErrMsg(strtok(getenv('FILESTEM')), exception);
-    testFailed = true;
+  printMakeCheckMatlabErrMsg(strtok(getenv('FILESTEM')), exception);
+  testFailed = true;
 end
 
 cd(top_test_dir);
 name = strtok(getenv('FILESTEM'));
 fid = fopen([name '.m.tls'], 'w');
 if fid < 0
-    wd = pwd
-    filestep = getenv('FILESTEM')
-    error(['ERROR: problem opening file ' name '.m.tls for writing....']);
+  wd = pwd
+  filestep = getenv('FILESTEM')
+  error(['ERROR: problem opening file ' name '.m.tls for writing....']);
 end
 if testFailed
-    fprintf(fid,':test-result: FAIL\n');
-    fprintf(fid,':number-tests: 1\n');
-    fprintf(fid,':number-failed-tests: 1\n');
-    fprintf(fid,':list-of-failed-tests: %s\n', [name '.m']);
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 1\n');
+  fprintf(fid,':list-of-failed-tests: %s\n', [name '.m']);
 else
-    fprintf(fid,':test-result: PASS\n');
-    fprintf(fid,':number-tests: 1\n');
-    fprintf(fid,':number-failed-tests: 0\n');
-    fprintf(fid,':list-of-passed-tests: %s\n', [name '.m']);
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':list-of-passed-tests: %s\n', [name '.m']);
 end
 fclose(fid);
 exit;
\ No newline at end of file
diff --git a/tests/run_o_script.m b/tests/run_o_script.m
index 723df2e1b16174b5c17f8ffea50dfa43b931cb6a..3edba058292e8cf02c4b4a6c89963a4cf6d770e7 100644
--- a/tests/run_o_script.m
+++ b/tests/run_o_script.m
@@ -11,42 +11,42 @@
 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 ## GNU General Public License for more details.
-    ##
-    ## You should have received a copy of the GNU General Public License
-    ## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
+##
+## You should have received a copy of the GNU General Public License
+## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 
-    load_octave_packages
+load_octave_packages
 
-    top_test_dir = getenv('TOP_TEST_DIR');
-    [mfile, name] = strtok(getenv('FILESTEM'));
+top_test_dir = getenv('TOP_TEST_DIR');
+[mfile, name] = strtok(getenv('FILESTEM'));
 
-    [directory, mscript, ext] = fileparts([top_test_dir '/' mfile]);
-    cd(directory);
+[directory, mscript, ext] = fileparts([top_test_dir '/' mfile]);
+cd(directory);
 
-    try
-        mscript;
-        testFailed = false;
-    catch
-        printMakeCheckOctaveErrMsg(getenv('FILESTEM'), lasterror);
-        testFailed = true;
-        end_try_catch
+try
+  mscript;
+  testFailed = false;
+catch
+  printMakeCheckOctaveErrMsg(getenv('FILESTEM'), lasterror);
+  testFailed = true;
+end_try_catch
 
-        cd(top_test_dir);
-        name = strtok(getenv('FILESTEM'));
-        fid = fopen([name '.o.tls'], 'w+');
-        if testFailed
-            fprintf(fid,':test-result: FAIL\n');
-            fprintf(fid,':number-tests: 1\n');
-            fprintf(fid,':number-failed-tests: 1\n');
-            fprintf(fid,':list-of-failed-tests: %s\n', [name '.m']);
-        else
-            fprintf(fid,':test-result: PASS\n');
-            fprintf(fid,':number-tests: 1\n');
-            fprintf(fid,':number-failed-tests: 0\n');
-            fprintf(fid,':list-of-passed-tests: %s\n', [name '.m']);
-        end
-        fclose(fid);
+cd(top_test_dir);
+name = strtok(getenv('FILESTEM'));
+fid = fopen([name '.o.tls'], 'w+');
+if testFailed
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 1\n');
+  fprintf(fid,':list-of-failed-tests: %s\n', [name '.m']);
+else
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':list-of-passed-tests: %s\n', [name '.m']);
+end
+fclose(fid);
 
-        ## Local variables:
-        ## mode: Octave
-        ## End:
+## Local variables:
+## mode: Octave
+## End:
diff --git a/tests/run_reporting_test_matlab.m b/tests/run_reporting_test_matlab.m
index c716aa41400f033645a5085070868cd15d74cfca..00b3356e77f79d83031534c3fa43bf5e091a8f94 100644
--- a/tests/run_reporting_test_matlab.m
+++ b/tests/run_reporting_test_matlab.m
@@ -21,7 +21,7 @@ addpath([top_test_dir filesep '..' filesep 'matlab']);
 
 % Test Dynare Version
 if ~strcmp(dynare_version(), getenv('DYNARE_VERSION'))
-    error('Incorrect version of Dynare is being tested')
+  error('Incorrect version of Dynare is being tested')
 end
 
 % To add default directories, empty dseries objects
@@ -44,15 +44,15 @@ end
 cd(getenv('TOP_TEST_DIR'));
 fid = fopen('run_reporting_test_matlab.m.trs', 'w+');
 if testFailed
-    fprintf(fid,':test-result: FAIL\n');
-    fprintf(fid,':number-tests: 1\n');
-    fprintf(fid,':number-failed-tests: 1\n');
-    fprintf(fid,':list-of-failed-tests: run_reporting_test_matlab.m\n');
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 1\n');
+  fprintf(fid,':list-of-failed-tests: run_reporting_test_matlab.m\n');
 else
-    fprintf(fid,':test-result: PASS\n');
-    fprintf(fid,':number-tests: 1\n');
-    fprintf(fid,':number-failed-tests: 0\n');
-    fprintf(fid,':list-of-passed-tests: run_reporting_test_matlab.m\n');
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':list-of-passed-tests: run_reporting_test_matlab.m\n');
 end
 fprintf(fid,':elapsed-time: %f\n',0.0);
 fclose(fid);
diff --git a/tests/run_reporting_test_octave.m b/tests/run_reporting_test_octave.m
index abcee07a339ca990821d370ba9a01112f8bdbfd5..a992b9a4689fb6f0c85db77563ff1868d1baf60c 100644
--- a/tests/run_reporting_test_octave.m
+++ b/tests/run_reporting_test_octave.m
@@ -11,58 +11,58 @@
 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 ## GNU General Public License for more details.
-    ##
-    ## You should have received a copy of the GNU General Public License
-    ## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
+##
+## You should have received a copy of the GNU General Public License
+## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 
-    load_octave_packages
+load_octave_packages
 
-    top_test_dir = getenv('TOP_TEST_DIR');
-    addpath(top_test_dir);
-    addpath([top_test_dir filesep '..' filesep 'matlab']);
+top_test_dir = getenv('TOP_TEST_DIR');
+addpath(top_test_dir);
+addpath([top_test_dir filesep '..' filesep 'matlab']);
 
-    ## Test Dynare Version
-    if !strcmp(dynare_version(), getenv("DYNARE_VERSION"))
-        error("Incorrect version of Dynare is being tested")
-        endif
+## Test Dynare Version
+if !strcmp(dynare_version(), getenv("DYNARE_VERSION"))
+    error("Incorrect version of Dynare is being tested")
+endif
 
-        ## Ask gnuplot to create graphics in text mode
-        ## Note that setenv() was introduced in Octave 3.0.2, for compatibility
-            ## with MATLAB
-            putenv("GNUTERM", "dumb")
+## Ask gnuplot to create graphics in text mode
+## Note that setenv() was introduced in Octave 3.0.2, for compatibility
+## with MATLAB
+putenv("GNUTERM", "dumb")
 
-            ## To add default directories, empty dseries objects
-            dynare_config([], 0);
+## To add default directories, empty dseries objects
+dynare_config([], 0);
 
-            printf("\n***  TESTING:  run_reporting_test_octave.m ***\n");
-            try
-                cd([top_test_dir filesep 'reporting']);
-                db_a = dseries('db_a.csv');
-                db_q = dseries('db_q.csv');
-                dc_a = dseries('dc_a.csv');
-                dc_q = dseries('dc_q.csv');
-                runDynareReport(dc_a, dc_q, db_a, db_q);
-                testFailed = false;
-            catch
-                testFailed = true;
-            end
+printf("\n***  TESTING:  run_reporting_test_octave.m ***\n");
+try
+    cd([top_test_dir filesep 'reporting']);
+    db_a = dseries('db_a.csv');
+    db_q = dseries('db_q.csv');
+    dc_a = dseries('dc_a.csv');
+    dc_q = dseries('dc_q.csv');
+    runDynareReport(dc_a, dc_q, db_a, db_q);
+    testFailed = false;
+catch
+    testFailed = true;
+end
 
-            cd(getenv('TOP_TEST_DIR'));
-            fid = fopen('run_reporting_test_octave.o.trs', 'w+');
-            if testFailed
-                fprintf(fid,':test-result: FAIL\n');
-                fprintf(fid,':number-tests: 1\n');
-                fprintf(fid,':number-failed-tests: 1\n');
-                fprintf(fid,':list-of-failed-tests: run_reporting_test_octave.m\n');
-            else
-                fprintf(fid,':test-result: PASS\n');
-                fprintf(fid,':number-tests: 1\n');
-                fprintf(fid,':number-failed-tests: 0\n');
-                fprintf(fid,':list-of-passed-tests: run_reporting_test_octave.m\n');
-            end
-            fprintf(fid,':elapsed-time: %f\n',0.0);
-            fclose(fid);
+cd(getenv('TOP_TEST_DIR'));
+fid = fopen('run_reporting_test_octave.o.trs', 'w+');
+if testFailed
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 1\n');
+  fprintf(fid,':list-of-failed-tests: run_reporting_test_octave.m\n');
+else
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':list-of-passed-tests: run_reporting_test_octave.m\n');
+end
+fprintf(fid,':elapsed-time: %f\n',0.0);
+fclose(fid);
 
-            ## Local variables:
-            ## mode: Octave
-            ## End:
+## Local variables:
+## mode: Octave
+## End:
diff --git a/tests/run_test_matlab.m b/tests/run_test_matlab.m
index c1922d86eadb82c535ca1a78cc27fffacfe0da85..7727032f7e6cea54bd948223268876427e786bcf 100644
--- a/tests/run_test_matlab.m
+++ b/tests/run_test_matlab.m
@@ -21,7 +21,7 @@ addpath([top_test_dir filesep '..' filesep 'matlab']);
 
 % Test Dynare Version
 if ~strcmp(dynare_version(), getenv('DYNARE_VERSION'))
-    error('Incorrect version of Dynare is being tested')
+  error('Incorrect version of Dynare is being tested')
 end
 
 % Test MOD files listed in Makefile.am
@@ -35,11 +35,11 @@ disp(['***  TESTING: ' modfile ' ***']);
 tic;
 save(['wsMat' testfile '.mat']);
 try
-    dynare([testfile ext], 'console')
-    testFailed = false;
+  dynare([testfile ext], 'console')
+  testFailed = false;
 catch exception
-    printMakeCheckMatlabErrMsg(strtok(getenv('FILESTEM')), exception);
-    testFailed = true;
+  printMakeCheckMatlabErrMsg(strtok(getenv('FILESTEM')), exception);
+  testFailed = true;
 end
 top_test_dir = getenv('TOP_TEST_DIR');
 [modfile, name] = strtok(getenv('FILESTEM'));
@@ -52,20 +52,20 @@ cd(top_test_dir);
 name = strtok(getenv('FILESTEM'));
 fid = fopen([name '.m.trs'], 'w');
 if fid < 0
-    wd = pwd
-    filestep = getenv('FILESTEM')
-    error(['ERROR: problem opening file ' name '.m.trs for writing....']);
+  wd = pwd
+  filestep = getenv('FILESTEM')
+  error(['ERROR: problem opening file ' name '.m.trs for writing....']);
 end
 if testFailed
-    fprintf(fid,':test-result: FAIL\n');
-    fprintf(fid,':number-tests: 1\n');
-    fprintf(fid,':number-failed-tests: 1\n');
-    fprintf(fid,':list-of-failed-tests: %s\n', [name '.mod']);
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 1\n');
+  fprintf(fid,':list-of-failed-tests: %s\n', [name '.mod']);
 else
-    fprintf(fid,':test-result: PASS\n');
-    fprintf(fid,':number-tests: 1\n');
-    fprintf(fid,':number-failed-tests: 0\n');
-    fprintf(fid,':list-of-passed-tests: %s\n', [name '.mod']);
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':list-of-passed-tests: %s\n', [name '.mod']);
 end
 fprintf(fid,':elapsed-time: %f\n', ecput);
 fclose(fid);
diff --git a/tests/run_test_octave.m b/tests/run_test_octave.m
index 21987f11e2771b1f6f7e6b69c93727f85d6b5cda..4a7854dda29d628ae4f9d9bbcd3686744220d6e3 100644
--- a/tests/run_test_octave.m
+++ b/tests/run_test_octave.m
@@ -11,70 +11,70 @@
 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 ## GNU General Public License for more details.
-    ##
-    ## You should have received a copy of the GNU General Public License
-    ## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
+##
+## You should have received a copy of the GNU General Public License
+## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 
-    ## Implementation notes:
-    ##
-    ## Before every call to Dynare, the contents of the workspace is saved in
-    ## 'wsOct', and reloaded after Dynare has finished (this is necessary since
-    ## Dynare does a 'clear -all').
+## Implementation notes:
+##
+## Before every call to Dynare, the contents of the workspace is saved in
+## 'wsOct', and reloaded after Dynare has finished (this is necessary since
+## Dynare does a 'clear -all').
 
-    load_octave_packages
+load_octave_packages
 
-    top_test_dir = getenv('TOP_TEST_DIR');
-    addpath(top_test_dir);
-    addpath([top_test_dir filesep '..' filesep 'matlab']);
+top_test_dir = getenv('TOP_TEST_DIR');
+addpath(top_test_dir);
+addpath([top_test_dir filesep '..' filesep 'matlab']);
 
-    ## Test Dynare Version
-    if !strcmp(dynare_version(), getenv("DYNARE_VERSION"))
-        error("Incorrect version of Dynare is being tested")
-        endif
+## Test Dynare Version
+if !strcmp(dynare_version(), getenv("DYNARE_VERSION"))
+    error("Incorrect version of Dynare is being tested")
+endif
 
-        ## Ask gnuplot to create graphics in text mode
-        graphics_toolkit gnuplot;
-        setenv("GNUTERM", "dumb");
+## Ask gnuplot to create graphics in text mode
+graphics_toolkit gnuplot;
+setenv("GNUTERM", "dumb");
 
-        ## Test MOD files listed in Makefile.am
-        name = getenv("FILESTEM");
-        [directory, testfile, ext] = fileparts([top_test_dir '/' name]);
-        cd(directory);
+## Test MOD files listed in Makefile.am
+name = getenv("FILESTEM");
+[directory, testfile, ext] = fileparts([top_test_dir '/' name]);
+cd(directory);
 
-        printf("\n***  TESTING: %s ***\n", name);
+printf("\n***  TESTING: %s ***\n", name);
 
-        tic;
-        save(['wsOct' testfile '.mat']);
-        try
-            dynare([testfile ext])
-            testFailed = false;
-        catch
-            printMakeCheckOctaveErrMsg(getenv("FILESTEM"), lasterror);
-            testFailed = true;
-            end_try_catch
-            top_test_dir = getenv('TOP_TEST_DIR');
-            name = getenv("FILESTEM");
-            [directory, testfile, ext] = fileparts([top_test_dir '/' name]);
-            load(['wsOct' testfile '.mat']);
-            ecput = toc;
-            delete(['wsOct' testfile '.mat']);
+tic;
+save(['wsOct' testfile '.mat']);
+try
+  dynare([testfile ext])
+  testFailed = false;
+catch
+  printMakeCheckOctaveErrMsg(getenv("FILESTEM"), lasterror);
+  testFailed = true;
+end_try_catch
+top_test_dir = getenv('TOP_TEST_DIR');
+name = getenv("FILESTEM");
+[directory, testfile, ext] = fileparts([top_test_dir '/' name]);
+load(['wsOct' testfile '.mat']);
+ecput = toc;
+delete(['wsOct' testfile '.mat']);
 
-            cd(top_test_dir);
-            fid = fopen([name '.o.trs'], 'w+');
-            if testFailed
-                fprintf(fid,':test-result: FAIL\n');
-                fprintf(fid,':number-tests: 1\n');
-                fprintf(fid,':number-failed-tests: 1\n');
-                fprintf(fid,':list-of-failed-tests: %s\n', [name '.mod']);
-            else
-                fprintf(fid,':test-result: PASS\n');
-                fprintf(fid,':number-tests: 1\n');
-                fprintf(fid,':number-failed-tests: 0\n');
-                fprintf(fid,':list-of-passed-tests: %s\n', [name '.mod']);
-            end
-            fprintf(fid,':elapsed-time: %f\n', ecput);
-            fclose(fid);
+cd(top_test_dir);
+fid = fopen([name '.o.trs'], 'w+');
+if testFailed
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 1\n');
+  fprintf(fid,':list-of-failed-tests: %s\n', [name '.mod']);
+else
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':list-of-passed-tests: %s\n', [name '.mod']);
+end
+fprintf(fid,':elapsed-time: %f\n', ecput);
+fclose(fid);
 
-            ## Local variables:
-            ## mode: Octave
-            ## End:
+## Local variables:
+## mode: Octave
+## End:
diff --git a/tests/shock_decomposition/fsdat_simul.m b/tests/shock_decomposition/fsdat_simul.m
index 159612e577c3b91d585970404c9cf576c0e8a8d6..d4f4a8066f17ba49faad004256693ebc1b9b01e9 100644
--- a/tests/shock_decomposition/fsdat_simul.m
+++ b/tests/shock_decomposition/fsdat_simul.m
@@ -1,828 +1,828 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/smoother2histval/fsdat_simul.m b/tests/smoother2histval/fsdat_simul.m
index ed7853c80b3eca4adae18e61cce7dfe0ea4a3aeb..face0f579b63c4363107e7403a3edf416f31e3f6 100644
--- a/tests/smoother2histval/fsdat_simul.m
+++ b/tests/smoother2histval/fsdat_simul.m
@@ -1,390 +1,390 @@
 gp_obs = [
-    1.0193403
-    1.0345762
-    1.0011701
-    1.0147224
-    1.008392
-    1.0488327
-    1.0153551
-    1.0099775
-    1.0260561
-    1.0172218
-    1.0014374
-    1.0184572
-    1.0179988
-    1.0060339
-    1.0019536
-    0.99179578
-    1.004346
-    1.0345153
-    1.0004432
-    0.98327074
-    1.0007585
-    1.0034378
-    1.010532
-    1.0121367
-    1.0097161
-    1.0166682
-    1.0089513
-    1.0194821
-    1.0192704
-    1.0220258
-    1.020915
-    1.0176156
-    1.0040708
-    1.0157694
-    1.0357484
-    1.0256259
-    1.0240583
-    1.0095152
-    1.0241605
-    1.0115295
-    1.003636
-    1.0222399
-    1.0250969
-    1.0068969
-    1.0009829
-    1.0166179
-    1.0252018
-    1.0211178
-    0.99867851
-    0.99594002
-    0.9908135
-    0.99762919
-    0.99616309
-    1.0058679
-    0.99323315
-    1.0132879
-    0.98718922
-    0.99739822
-    0.97858594
-    0.99128769
-    0.98624299
-    0.98447966
-    1.0013312
-    0.99189504
-    0.98032699
-    0.99332035
-    1.0129565
-    1.0007785
-    1.0218292
-    1.0030419
-    1.0044453
-    1.0156181
-    1.0040112
-    1.0081137
-    1.0261598
-    1.0053686
-    1.0024674
-    0.99883223
-    1.0224791
-    1.0074723
-    1.0037807
-    1.0348866
-    1.0053664
-    1.0140072
-    1.017359
-    1.0013916
-    1.017887
-    1.008987
-    1.011771
-    1.0201455
-    1.0249464
-    1.0159166
-    1.0162718
-    1.0312397
-    1.0108745
-    1.0132205
-    1.0142484
-    1.0178907
-    1.0065039
-    1.0190304
-    1.0034406
-    1.0053556
-    1.012823
-    1.0009983
-    1.0073148
-    1.0247254
-    1.0140215
-    1.0053603
-    1.006169
-    0.994725
-    1.026685
-    1.0012279
-    1.0160733
-    1.0119851
-    1.0148392
-    0.99760076
-    1.0070377
-    1.0066215
-    0.98130614
-    1.0127043
-    1.0203824
-    1.0067477
-    0.99510728
-    1.0188472
-    1.0100108
-    1.0146874
-    1.0118012
-    1.0111904
-    0.97759194
-    0.99081872
-    0.98425915
-    1.0026496
-    0.98587189
-    0.98648329
-    1.0035766
-    1.0094743
-    0.99460644
-    0.9953724
-    1.0194433
-    1.0065039
-    1.0056522
-    1.0160367
-    1.006524
-    1.0092492
-    0.9864426
-    0.98723638
-    0.9994522
-    1.0026778
-    1.0255529
-    1.0030477
-    0.99411719
-    1.0045087
-    0.99375289
-    1.0017609
-    1.0039766
-    0.99976299
-    1.0155671
-    1.0192975
-    1.0135507
-    1.0099869
-    1.0125994
-    1.0050808
-    1.0088531
-    1.0135256
-    1.0322097
-    1.0065808
-    0.99857526
-    1.0008792
-    0.9997691
-    1.02875
-    1.0177818
-    1.0150152
-    1.026416
-    1.0209804
-    1.010633
-    1.009636
-    1.0028257
-    0.9896666
-    1.0094002
-    0.99958414
-    1.0077797
-    0.98933606
-    1.0014885
-    0.99875283
-    1.005051
-    1.016385
-    1.0116282
-    0.99774103
-    1.0101802
-    1.0281101
-    1.0024654
-    1.0174549
-         ];
+      1.0193403
+      1.0345762
+      1.0011701
+      1.0147224
+       1.008392
+      1.0488327
+      1.0153551
+      1.0099775
+      1.0260561
+      1.0172218
+      1.0014374
+      1.0184572
+      1.0179988
+      1.0060339
+      1.0019536
+     0.99179578
+       1.004346
+      1.0345153
+      1.0004432
+     0.98327074
+      1.0007585
+      1.0034378
+       1.010532
+      1.0121367
+      1.0097161
+      1.0166682
+      1.0089513
+      1.0194821
+      1.0192704
+      1.0220258
+       1.020915
+      1.0176156
+      1.0040708
+      1.0157694
+      1.0357484
+      1.0256259
+      1.0240583
+      1.0095152
+      1.0241605
+      1.0115295
+       1.003636
+      1.0222399
+      1.0250969
+      1.0068969
+      1.0009829
+      1.0166179
+      1.0252018
+      1.0211178
+     0.99867851
+     0.99594002
+      0.9908135
+     0.99762919
+     0.99616309
+      1.0058679
+     0.99323315
+      1.0132879
+     0.98718922
+     0.99739822
+     0.97858594
+     0.99128769
+     0.98624299
+     0.98447966
+      1.0013312
+     0.99189504
+     0.98032699
+     0.99332035
+      1.0129565
+      1.0007785
+      1.0218292
+      1.0030419
+      1.0044453
+      1.0156181
+      1.0040112
+      1.0081137
+      1.0261598
+      1.0053686
+      1.0024674
+     0.99883223
+      1.0224791
+      1.0074723
+      1.0037807
+      1.0348866
+      1.0053664
+      1.0140072
+       1.017359
+      1.0013916
+       1.017887
+       1.008987
+       1.011771
+      1.0201455
+      1.0249464
+      1.0159166
+      1.0162718
+      1.0312397
+      1.0108745
+      1.0132205
+      1.0142484
+      1.0178907
+      1.0065039
+      1.0190304
+      1.0034406
+      1.0053556
+       1.012823
+      1.0009983
+      1.0073148
+      1.0247254
+      1.0140215
+      1.0053603
+       1.006169
+       0.994725
+       1.026685
+      1.0012279
+      1.0160733
+      1.0119851
+      1.0148392
+     0.99760076
+      1.0070377
+      1.0066215
+     0.98130614
+      1.0127043
+      1.0203824
+      1.0067477
+     0.99510728
+      1.0188472
+      1.0100108
+      1.0146874
+      1.0118012
+      1.0111904
+     0.97759194
+     0.99081872
+     0.98425915
+      1.0026496
+     0.98587189
+     0.98648329
+      1.0035766
+      1.0094743
+     0.99460644
+      0.9953724
+      1.0194433
+      1.0065039
+      1.0056522
+      1.0160367
+       1.006524
+      1.0092492
+      0.9864426
+     0.98723638
+      0.9994522
+      1.0026778
+      1.0255529
+      1.0030477
+     0.99411719
+      1.0045087
+     0.99375289
+      1.0017609
+      1.0039766
+     0.99976299
+      1.0155671
+      1.0192975
+      1.0135507
+      1.0099869
+      1.0125994
+      1.0050808
+      1.0088531
+      1.0135256
+      1.0322097
+      1.0065808
+     0.99857526
+      1.0008792
+      0.9997691
+        1.02875
+      1.0177818
+      1.0150152
+       1.026416
+      1.0209804
+       1.010633
+       1.009636
+      1.0028257
+      0.9896666
+      1.0094002
+     0.99958414
+      1.0077797
+     0.98933606
+      1.0014885
+     0.99875283
+       1.005051
+       1.016385
+      1.0116282
+     0.99774103
+      1.0101802
+      1.0281101
+      1.0024654
+      1.0174549
+];
 
 gy_obs = [
-    1.0114349
-    0.95979862
-    1.0203958
-    1.0071401
-    1.0539221
-    0.95944922
-    1.0051974
-    1.0354593
-    0.98747321
-    1.02788
-    1.0112772
-    1.0052673
-    1.0104239
-    1.013491
-    1.0066127
-    1.0173802
-    0.98273662
-    0.95581791
-    1.0353011
-    1.0346887
-    0.9785853
-    1.0039954
-    0.99275146
-    1.0031733
-    1.0276747
-    0.978159
-    0.98248359
-    1.0192328
-    0.99057865
-    0.99776689
-    0.98890201
-    1.0163644
-    1.0300873
-    0.96109456
-    0.98850646
-    1.0115635
-    1.0010548
-    0.98951687
-    0.98151347
-    1.0106021
-    1.0310697
-    0.990769
-    0.97940286
-    1.0279158
-    1.0070844
-    0.97456591
-    1.0235486
-    0.99211813
-    0.99808011
-    1.0038972
-    1.0178385
-    1.0008656
-    1.0012176
-    1.0120603
-    1.0277974
-    0.95512181
-    1.0341867
-    1.0291133
-    1.0062875
-    0.99385308
-    1.0518127
-    1.0167908
-    0.97311489
-    1.0324251
-    1.0185255
-    0.98698556
-    0.97985038
-    1.0220522
-    0.98358428
-    1.0085008
-    1.0095106
-    0.96544852
-    1.0014508
-    0.99673838
-    0.9703847
-    1.0245765
-    1.0031506
-    1.009074
-    0.98601129
-    0.99799441
-    1.0078514
-    0.98192982
-    1.0371426
-    0.97563731
-    0.99473616
-    0.99510009
-    0.98135322
-    1.0224481
-    0.99779603
-    0.98590478
-    0.98366338
-    0.99767204
-    1.0208174
-    0.97633411
-    1.0138123
-    1.0032682
-    0.99039426
-    1.0087413
-    1.0285208
-    0.98783907
-    1.0007856
-    1.0265034
-    0.99713746
-    1.0032946
-    1.0027628
-    0.99316893
-    0.99241067
-    0.99845423
-    1.0057718
-    1.029354
-    0.9717329
-    1.0218727
-    0.98185255
-    0.99861261
-    1.0114349
-    1.0052126
-    0.9852852
-    0.99669175
-    1.0131849
-    0.99253202
-    0.98255644
-    1.0164264
-    1.0070027
-    0.99306997
-    1.004557
-    0.99064231
-    1.0100364
-    0.99857545
-    1.0365648
-    1.0323947
-    0.99584546
-    0.98641189
-    1.0200377
-    1.0167671
-    0.99615647
-    1.0067481
-    1.0201624
-    1.0012265
-    0.97564063
-    1.0141995
-    1.0260671
-    0.99697599
-    1.0127951
-    0.98922525
-    1.0268872
-    1.0048837
-    1.0124301
-    1.0020776
-    0.95526625
-    0.98592847
-    1.0303405
-    1.007508
-    1.0041718
-    1.0039668
-    1.0119603
-    1.0153073
-    0.99318888
-    0.96711969
-    0.99946578
-    1.0307262
-    0.97737468
-    1.0029169
-    1.0148043
-    0.97950296
-    0.97038701
-    1.010492
-    1.0087364
-    0.99717614
-    1.0375848
-    0.94419511
-    0.98325812
-    1.0350878
-    0.99049883
-    0.98795832
-    1.0191223
-    1.0148155
-    0.97941641
-    1.0395356
-    1.0005804
-    0.99178697
-    1.0024326
-    1.0312638
-    1.0100942
-    0.98526311
-    1.0029873
-    0.9836127
-    0.99747718
-    1.0193064
-    0.99270511
-    0.96646656
-    1.0575586
-    0.98945919
-         ];
+      1.0114349
+     0.95979862
+      1.0203958
+      1.0071401
+      1.0539221
+     0.95944922
+      1.0051974
+      1.0354593
+     0.98747321
+        1.02788
+      1.0112772
+      1.0052673
+      1.0104239
+       1.013491
+      1.0066127
+      1.0173802
+     0.98273662
+     0.95581791
+      1.0353011
+      1.0346887
+      0.9785853
+      1.0039954
+     0.99275146
+      1.0031733
+      1.0276747
+       0.978159
+     0.98248359
+      1.0192328
+     0.99057865
+     0.99776689
+     0.98890201
+      1.0163644
+      1.0300873
+     0.96109456
+     0.98850646
+      1.0115635
+      1.0010548
+     0.98951687
+     0.98151347
+      1.0106021
+      1.0310697
+       0.990769
+     0.97940286
+      1.0279158
+      1.0070844
+     0.97456591
+      1.0235486
+     0.99211813
+     0.99808011
+      1.0038972
+      1.0178385
+      1.0008656
+      1.0012176
+      1.0120603
+      1.0277974
+     0.95512181
+      1.0341867
+      1.0291133
+      1.0062875
+     0.99385308
+      1.0518127
+      1.0167908
+     0.97311489
+      1.0324251
+      1.0185255
+     0.98698556
+     0.97985038
+      1.0220522
+     0.98358428
+      1.0085008
+      1.0095106
+     0.96544852
+      1.0014508
+     0.99673838
+      0.9703847
+      1.0245765
+      1.0031506
+       1.009074
+     0.98601129
+     0.99799441
+      1.0078514
+     0.98192982
+      1.0371426
+     0.97563731
+     0.99473616
+     0.99510009
+     0.98135322
+      1.0224481
+     0.99779603
+     0.98590478
+     0.98366338
+     0.99767204
+      1.0208174
+     0.97633411
+      1.0138123
+      1.0032682
+     0.99039426
+      1.0087413
+      1.0285208
+     0.98783907
+      1.0007856
+      1.0265034
+     0.99713746
+      1.0032946
+      1.0027628
+     0.99316893
+     0.99241067
+     0.99845423
+      1.0057718
+       1.029354
+      0.9717329
+      1.0218727
+     0.98185255
+     0.99861261
+      1.0114349
+      1.0052126
+      0.9852852
+     0.99669175
+      1.0131849
+     0.99253202
+     0.98255644
+      1.0164264
+      1.0070027
+     0.99306997
+       1.004557
+     0.99064231
+      1.0100364
+     0.99857545
+      1.0365648
+      1.0323947
+     0.99584546
+     0.98641189
+      1.0200377
+      1.0167671
+     0.99615647
+      1.0067481
+      1.0201624
+      1.0012265
+     0.97564063
+      1.0141995
+      1.0260671
+     0.99697599
+      1.0127951
+     0.98922525
+      1.0268872
+      1.0048837
+      1.0124301
+      1.0020776
+     0.95526625
+     0.98592847
+      1.0303405
+       1.007508
+      1.0041718
+      1.0039668
+      1.0119603
+      1.0153073
+     0.99318888
+     0.96711969
+     0.99946578
+      1.0307262
+     0.97737468
+      1.0029169
+      1.0148043
+     0.97950296
+     0.97038701
+       1.010492
+      1.0087364
+     0.99717614
+      1.0375848
+     0.94419511
+     0.98325812
+      1.0350878
+     0.99049883
+     0.98795832
+      1.0191223
+      1.0148155
+     0.97941641
+      1.0395356
+      1.0005804
+     0.99178697
+      1.0024326
+      1.0312638
+      1.0100942
+     0.98526311
+      1.0029873
+      0.9836127
+     0.99747718
+      1.0193064
+     0.99270511
+     0.96646656
+      1.0575586
+     0.98945919
+];
 
diff --git a/tests/steady_state/walsh1_old_ss_steadystate.m b/tests/steady_state/walsh1_old_ss_steadystate.m
index 380a4737b0ee118f58798df25971e7e0f6b9c36b..cc09a2d2f0d62cfae26f891d4565caf1629f5582 100644
--- a/tests/steady_state/walsh1_old_ss_steadystate.m
+++ b/tests/steady_state/walsh1_old_ss_steadystate.m
@@ -12,26 +12,26 @@ check = 0;
 
 
 %% Enter model equations here
-
-pi = thetass-1;
-en = 1/3;
-eR = 1/betta;
-y_k = (1/alphha)*(1/betta-1+delta);
-ek = en*y_k^(-1/(1-alphha));
-ec = ek*(y_k-delta);
-em = ec*(a/(1-a))^(-1/b)*((thetass-betta)/thetass)^(-1/b);
-ey = ek*y_k;
-Xss = a*ec^(1-b)*(1+(a/(1-a))^(-1/b)*((thetass-betta)/thetass)^((b-1)/b));
-Psi = (1-alphha)*(ey/en)*Xss^((b-phi1)/(1-b))*a*ec^(-b)*(1-en)^eta;
-n = log(en);
-k = log(ek);
-m = log(em);
-c = log(ec);
-y = log(ey);
-R = log(eR);
-z = 0;
-u = 0;
-
+ 
+    pi = thetass-1;
+    en = 1/3;
+    eR = 1/betta;
+    y_k = (1/alphha)*(1/betta-1+delta);
+    ek = en*y_k^(-1/(1-alphha));
+    ec = ek*(y_k-delta);
+    em = ec*(a/(1-a))^(-1/b)*((thetass-betta)/thetass)^(-1/b);
+    ey = ek*y_k;
+    Xss = a*ec^(1-b)*(1+(a/(1-a))^(-1/b)*((thetass-betta)/thetass)^((b-1)/b));
+    Psi = (1-alphha)*(ey/en)*Xss^((b-phi1)/(1-b))*a*ec^(-b)*(1-en)^eta;
+    n = log(en);
+    k = log(ek);
+    m = log(em);
+    c = log(ec);
+    y = log(ey);
+    R = log(eR);
+    z = 0;
+    u = 0;
+    
 %% end own model equations
 
 for iter = 1:length(M_.params) %update parameters set in the file