From f665117879b793d66b8cb6087ff46661f4c1624e Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?S=C3=A9bastien=20Villemot?= <sebastien@dynare.org>
Date: Thu, 26 Sep 2019 15:17:54 +0200
Subject: [PATCH] Remove spurious indentation changes

This commits reverts various spurious indentation changes that were on the
ecb-master but not on the master branch.
---
 doc/dynare.texi                               |    1 +
 dynare++/extern/matlab/dynare_simul.m         |   82 +-
 dynare++/sylv/matlab/gensylv.m                |   15 +-
 examples/NK_baseline_steadystate.m            |    8 +-
 examples/fsdat_simul.m                        |  816 +++----
 matlab/AHessian.m                             |    4 +-
 matlab/block_bytecode_mfs_steadystate.m       |    2 +-
 matlab/block_mfs_steadystate.m                |    2 +-
 matlab/bytecode_steadystate.m                 |    2 +-
 .../geweke_chi2_test.m                        |    1 +
 matlab/dr_block.m                             |    1 +
 matlab/endogenous_prior_restrictions.m        |    1 -
 matlab/flip_plan.m                            |    2 +-
 matlab/getH.m                                 |    4 +-
 matlab/gsa/pick.m                             |    2 +-
 matlab/gsa/prior_draw_gsa.m                   |    2 +-
 matlab/init_plan.m                            |    2 +-
 matlab/k_order_pert.m                         |    2 +-
 matlab/lmmcp/catstruct.m                      |    2 +-
 matlab/ms-sbvar/msstart_setup.m               |    2 +-
 matlab/occbin/map_regime.m                    |    2 +-
 matlab/occbin/solve_no_constraint.m           |    2 +-
 matlab/occbin/solve_two_constraints.m         |    2 +-
 matlab/occbin/tokenize.m                      |    2 +-
 .../perfect_foresight_mcp_problem.m           |    4 +-
 .../perfect_foresight_problem.m               |    4 +-
 .../private/initialize_stacked_problem.m      |    4 +-
 matlab/perfect-foresight-models/sim1.m        |    2 +-
 matlab/rotated_slice_sampler.m                |    2 +-
 matlab/score.m                                |    2 +-
 matlab/slice_sampler.m                        |    2 +-
 matlab/utilities/dataset/quarterly2annual.m   |    2 +-
 mex/sources/bytecode/testing/bytecode_debug.m |  150 +-
 mex/sources/bytecode/testing/simulate_debug.m |   18 +-
 .../k_order_perturbation/tests/first_order.m  |   58 +-
 tests/AIM/data_ca1.m                          |  176 +-
 tests/AIM/fsdat.m                             |  388 ++--
 tests/analytic_derivatives/fsdat_simul.m      | 1632 +++++++-------
 tests/block_bytecode/run_ls2003.m             |   16 +-
 tests/bvar_a_la_sims/bvar_sample.m            | 2004 ++++++++---------
 tests/conditional_forecasts/2/fsdat_simul.m   | 1632 +++++++-------
 tests/dates/fsdat_simul.m                     | 1632 +++++++-------
 ...ison_policy_functions_dynare_mathematica.m |   16 +-
 tests/ep/ar_steadystate.m                     |    4 +-
 tests/ep/exact_solution.m                     |   58 +-
 tests/ep/rbcii_steady_state.m                 |  148 +-
 tests/estimation/fsdat_simul.m                | 1632 +++++++-------
 .../expectation_ss_old_steadystate.m          |   20 +-
 tests/fataltest.m                             |    6 +-
 tests/fs2000/fsdat_simul.m                    | 1632 +++++++-------
 tests/fs2000/fsdat_simul_dseries.m            | 1624 ++++++-------
 tests/fs2000/fsdat_simul_missing_obs.m        |  816 +++----
 tests/fs2000_ssfile_aux.m                     |    4 +-
 tests/gsa/data_ca1.m                          |  176 +-
 .../likelihood/compare_kalman_routines.m      |    1 +
 .../likelihood/simul_state_space_model.m      |   46 +-
 .../fsdat_simul_logged.m                      | 1632 +++++++-------
 tests/kalman_filter_smoother/fsdat_simul.m    | 1632 +++++++-------
 tests/kalman_filter_smoother/testsmoother.m   |   22 +-
 tests/load_octave_packages.m                  |   14 +-
 tests/ls2003/data_ca1.m                       |  176 +-
 tests/measurement_errors/data_ca1.m           |  176 +-
 .../fs2000_corr_me_ml_mcmc/fsdat_simul.m      |  816 +++----
 .../ftd_2s_caseall_upperchol3v.m              |  262 +--
 .../ftd_2s_caseall_upperchol4v.m              |  354 +--
 .../ftd_2s_caseall_upperchol6v.m              |  570 ++---
 .../ftd_2s_caseall_upperchol7v.m              |  694 +++---
 .../ms-sbvar/archive-files/ftd_RSvensson_4v.m |   94 +-
 tests/ms-sbvar/archive-files/ftd_cholesky.m   |  286 +--
 tests/ms-sbvar/archive-files/ftd_non_rec_5v.m |   74 +-
 tests/ms-sbvar/archive-files/ftd_simszha5v.m  |   94 +-
 .../ms-sbvar/archive-files/ftd_upperchol3v.m  |   68 +-
 .../ms-sbvar/archive-files/ftd_upperchol4v.m  |   70 +-
 .../ms-sbvar/archive-files/ftd_upperchol5v.m  |   72 +-
 .../ms-sbvar/archive-files/ftd_upperchol6v.m  |   74 +-
 .../ms-sbvar/archive-files/ftd_upperchol7v.m  |   76 +-
 tests/ms-sbvar/data.m                         |  378 ++--
 tests/parallel/data_ca1.m                     |  176 +-
 tests/particle/benchmark.m                    |  298 +--
 tests/particle/extreme.m                      |  298 +--
 tests/particle/risky.m                        |  298 +--
 tests/printMakeCheckMatlabErrMsg.m            |   14 +-
 tests/printMakeCheckOctaveErrMsg.m            |   24 +-
 tests/recursive/data_ca1.m                    |  176 +-
 tests/reporting/ResidTablePage.m              |    2 +-
 tests/reporting/runDynareReport.m             |    8 +-
 tests/run_all_unitary_tests.m                 |   14 +-
 tests/run_block_byte_tests_matlab.m           |   16 +-
 tests/run_block_byte_tests_octave.m           |  168 +-
 tests/run_m_script.m                          |   30 +-
 tests/run_o_script.m                          |   66 +-
 tests/run_reporting_test_matlab.m             |   18 +-
 tests/run_reporting_test_octave.m             |   94 +-
 tests/run_test_matlab.m                       |   32 +-
 tests/run_test_octave.m                       |  114 +-
 tests/shock_decomposition/fsdat_simul.m       | 1632 +++++++-------
 tests/smoother2histval/fsdat_simul.m          |  772 +++----
 .../steady_state/walsh1_old_ss_steadystate.m  |   40 +-
 98 files changed, 13401 insertions(+), 13395 deletions(-)

diff --git a/doc/dynare.texi b/doc/dynare.texi
index 3473c1c1f5..943b9b7ff1 100644
--- a/doc/dynare.texi
+++ b/doc/dynare.texi
@@ -10746,6 +10746,7 @@ plotted in levels.
 
 @end deffn
 
+
 @deffn Command dynatype (@var{FILENAME}) [@var{VARIABLE_NAME}@dots{}];
 This command prints the listed variables in a text file named
 @var{FILENAME}. If no @var{VARIABLE_NAME} is listed, all endogenous
diff --git a/dynare++/extern/matlab/dynare_simul.m b/dynare++/extern/matlab/dynare_simul.m
index a77fc458bd..32ac8dc57e 100644
--- a/dynare++/extern/matlab/dynare_simul.m
+++ b/dynare++/extern/matlab/dynare_simul.m
@@ -80,71 +80,71 @@ eval(['load ' fname]);
 
 % set prefix, shocks, ystart
 if ischar(varargin{2})
-    prefix = varargin{2};
-    if length(varargin) == 3
-        shocks = varargin{3};
-        ystart = NaN;
-    elseif length(varargin) == 4
-        shocks = varargin{3};
-        ystart = varargin{4};
-    else
-        error('Wrong number of parameters.');
-    end
+  prefix = varargin{2};
+  if length(varargin) == 3
+    shocks = varargin{3};
+    ystart = NaN;
+  elseif length(varargin) == 4
+    shocks = varargin{3};
+    ystart = varargin{4};
+  else
+    error('Wrong number of parameters.');
+  end
 else
-    prefix = 'dyn';
-    if length(varargin) == 2
-        shocks = varargin{2};
-        ystart = NaN;
-    elseif length(varargin) == 3
-        shocks = varargin{2};
-        ystart = varargin{3};
-    else
-        error('Wrong number of parameters.');
-    end
+  prefix = 'dyn';
+  if length(varargin) == 2
+    shocks = varargin{2};
+    ystart = NaN;
+  elseif length(varargin) == 3
+    shocks = varargin{2};
+    ystart = varargin{3};
+  else
+    error('Wrong number of parameters.');
+  end
 end
 
 % load all needed variables but prefix_g_*
 if (exist([prefix '_nstat']))
-    nstat = eval([prefix '_nstat']);
+  nstat = eval([prefix '_nstat']);
 else
-    error(['Could not find variable ' prefix '_nstat in workspace']);
+  error(['Could not find variable ' prefix '_nstat in workspace']);
 end
 if (exist([prefix '_npred']))
-    npred = eval([prefix '_npred']);
+  npred = eval([prefix '_npred']);
 else
-    error(['Could not find variable ' prefix '_npred in workspace']);
+  error(['Could not find variable ' prefix '_npred in workspace']);
 end
 if (exist([prefix '_nboth']))
-    nboth = eval([prefix '_nboth']);
+  nboth = eval([prefix '_nboth']);
 else
-    error(['Could not find variable ' prefix '_nboth in workspace']);
+  error(['Could not find variable ' prefix '_nboth in workspace']);
 end
 if (exist([prefix '_nforw']))
-    nforw = eval([prefix '_nforw']);
+  nforw = eval([prefix '_nforw']);
 else
-    error(['Could not find variable ' prefix '_nforw in workspace']);
+  error(['Could not find variable ' prefix '_nforw in workspace']);
 end
 if (exist([prefix '_ss']))
-    ss = eval([prefix '_ss']);
+  ss = eval([prefix '_ss']);
 else
-    error(['Could not find variable ' prefix '_ss in workspace']);
+  error(['Could not find variable ' prefix '_ss in workspace']);
 end
 if (exist([prefix '_vcov_exo']))
-    vcov_exo = eval([prefix '_vcov_exo']);
+  vcov_exo = eval([prefix '_vcov_exo']);
 else
-    error(['Could not find variable ' prefix '_vcov_exo in workspace']);
+  error(['Could not find variable ' prefix '_vcov_exo in workspace']);
 end
 nexog = size(vcov_exo,1);
 
 if isnan(ystart)
-    ystart = ss;
+  ystart = ss;
 end
 
 % newer version of dynare++ doesn't return prefix_g_0, we make it here if
 % it does not exist in workspace
 g_zero = [prefix '_g_0'];
 if (~ exist(g_zero))
-    eval([ g_zero '= zeros(nstat+npred+nboth+nforw,1);']);
+  eval([ g_zero '= zeros(nstat+npred+nboth+nforw,1);']);
 end
 
 % make derstr a string of comma seperated existing prefix_g_*
@@ -152,13 +152,13 @@ derstr = [',' g_zero];
 order = 1;
 cont = 1;
 while cont == 1
-    g_ord = [prefix '_g_' num2str(order)];
-    if (exist(g_ord))
-        derstr = [derstr ',' g_ord];
-        order = order + 1;
-    else
-        cont = 0;
-    end
+  g_ord = [prefix '_g_' num2str(order)];
+  if (exist(g_ord))
+    derstr = [derstr ',' g_ord];
+    order = order + 1;
+  else
+    cont = 0;
+  end
 end
 
 % set seed
diff --git a/dynare++/sylv/matlab/gensylv.m b/dynare++/sylv/matlab/gensylv.m
index d16bde3640..56f5f0e73b 100644
--- a/dynare++/sylv/matlab/gensylv.m
+++ b/dynare++/sylv/matlab/gensylv.m
@@ -58,18 +58,19 @@ function [err, X, varargout] = gensylv(order, A, B, C, D)
 % in Windows, ensure that aa_gensylv.dll is loaded, this prevents
 % clearing the function and a successive Matlab crash
 if strcmp('PCWIN', computer)
-    if ~ libisloaded('aa_gensylv') 
-        loadlibrary('aa_gensylv', 'dummy');
-    end
+  if ~ libisloaded('aa_gensylv') 
+    loadlibrary('aa_gensylv', 'dummy');
+  end
 end
 
 % launch aa_gensylv
 if nargout == 2
-    X = aa_gensylv(order, A, B, C, D);
+  X = aa_gensylv(order, A, B, C, D);
 elseif nargout == 3
-    [X, par] = aa_gensylv(order, A, B, C, D);
-    varargout(1) = {par};
+  [X, par] = aa_gensylv(order, A, B, C, D);
+  varargout(1) = {par};
 else
-    error('Must have 2 or 3 output arguments.');
+  error('Must have 2 or 3 output arguments.');
 end
 err = 0;
+  
\ No newline at end of file
diff --git a/examples/NK_baseline_steadystate.m b/examples/NK_baseline_steadystate.m
index d554229216..7398303d75 100644
--- a/examples/NK_baseline_steadystate.m
+++ b/examples/NK_baseline_steadystate.m
@@ -17,8 +17,8 @@ global M_
 % read out parameters to access them with their name
 NumberOfParameters = M_.param_nbr;
 for ii = 1:NumberOfParameters
-    paramname = M_.param_names{ii};
-    eval([ paramname ' = M_.params(' int2str(ii) ');']);
+  paramname = M_.param_names{ii};
+  eval([ paramname ' = M_.params(' int2str(ii) ');']);
 end
 % initialize indicator
 check = 0;
@@ -69,8 +69,8 @@ vw=(1-thetaw)/(1-thetaw*PI^((1-chiw)*eta)*mu_z^eta)*PIstarw^(-eta);
 tempvaromega=alppha/(1-alppha)*w/r*mu_z*mu_I;
 
 [ld,fval,exitflag]=fzero(@(ld)(1-betta*thetaw*mu_z^(eta-1)*PI^(-(1-chiw)*(1-eta)))/(1-betta*thetaw*mu_z^(eta*(1+gammma))*PI^(eta*(1-chiw)*(1+gammma)))...
-                         -(eta-1)/eta*wstar/(varpsi*PIstarw^(-eta*gammma)*ld^gammma)*((1-h*mu_z^(-1))^(-1)-betta*h*(mu_z-h)^(-1))*...
-                         ((mu_A*mu_z^(-1)*vp^(-1)*tempvaromega^alppha-tempvaromega*(1-(1-delta)*(mu_z*mu_I)^(-1)))*ld-vp^(-1)*Phi)^(-1),0.25,options);
+-(eta-1)/eta*wstar/(varpsi*PIstarw^(-eta*gammma)*ld^gammma)*((1-h*mu_z^(-1))^(-1)-betta*h*(mu_z-h)^(-1))*...
+((mu_A*mu_z^(-1)*vp^(-1)*tempvaromega^alppha-tempvaromega*(1-(1-delta)*(mu_z*mu_I)^(-1)))*ld-vp^(-1)*Phi)^(-1),0.25,options);
 if exitflag <1
     %indicate the SS computation was not sucessful; this would also be detected by Dynare
     %setting the indicator here shows how to use this functionality to
diff --git a/examples/fsdat_simul.m b/examples/fsdat_simul.m
index f6ad30c85b..56c0e4cd56 100644
--- a/examples/fsdat_simul.m
+++ b/examples/fsdat_simul.m
@@ -1,416 +1,416 @@
 % Generated data, used by fs2000.mod
 
 gy_obs          =[
-    1.0030045
-    1.0002599
-    0.99104664
-    1.0321162
-    1.0223545
-    1.0043614
-    0.98626929
-    1.0092127
-    1.0357197
-    1.0150827
-    1.0051548
-    0.98465775
-    0.99132132
-    0.99904153
-    1.0044641
-    1.0179198
-    1.0113462
-    0.99409421
-    0.99904293
-    1.0448336
-    0.99932433
-    1.0057004
-    0.99619787
-    1.0267504
-    1.0077645
-    1.0058026
-    1.0025891
-    0.9939097
-    0.99604693
-    0.99908569
-    1.0151094
-    0.99348134
-    1.0039124
-    1.0145805
-    0.99800868
-    0.98578138
-    1.0065771
-    0.99843919
-    0.97979062
-    0.98413351
-    0.96468174
-    1.0273857
-    1.0225211
-    0.99958667
-    1.0111157
-    1.0099585
-    0.99480311
-    1.0079265
-    0.98924573
-    1.0070613
-    1.0075706
-    0.9937151
-    1.0224711
-    1.0018891
-    0.99051863
-    1.0042944
-    1.0184055
-    0.99419508
-    0.99756624
-    1.0015983
-    0.9845772
-    1.0004407
-    1.0116237
-    0.9861885
-    1.0073094
-    0.99273355
-    1.0013224
-    0.99777979
-    1.0301686
-    0.96809556
-    0.99917088
-    0.99949253
-    0.96590004
-    1.0083938
-    0.96662298
-    1.0221454
-    1.0069792
-    1.0343996
-    1.0066531
-    1.0072525
-    0.99743563
-    0.99723703
-    1.000372
-    0.99013917
-    1.0095223
-    0.98864268
-    0.98092242
-    0.98886488
-    1.0030341
-    1.01894
-    0.99155059
-    0.99533235
-    0.99734316
-    1.0047356
-    1.0082737
-    0.98425116
-    0.99949212
-    1.0055899
-    1.0065075
-    0.99385069
-    0.98867975
-    0.99804843
-    1.0184038
-    0.99301902
-    1.0177222
-    1.0051924
-    1.0187852
-    1.0098985
-    1.0097172
-    1.0145811
-    0.98721038
-    1.0361722
-    1.0105821
-    0.99469309
-    0.98626785
-    1.013871
-    0.99858924
-    0.99302637
-    1.0042186
-    0.99623745
-    0.98545708
-    1.0225435
-    1.0011861
-    1.0130321
-    0.97861347
-    1.0228193
-    0.99627435
-    1.0272779
-    1.0075172
-    1.0096762
-    1.0129306
-    0.99966549
-    1.0262882
-    1.0026914
-    1.0061475
-    1.009523
-    1.0036127
-    0.99762992
-    0.99092634
-    1.0058469
-    0.99887292
-    1.0060653
-    0.98673557
-    0.98895709
-    0.99111967
-    0.990118
-    0.99788054
-    0.97054709
-    1.0099157
-    1.0107431
-    0.99518695
-    1.0114048
-    0.99376019
-    1.0023369
-    0.98783327
-    1.0051727
-    1.0100462
-    0.98607387
-    1.0000064
-    0.99692442
-    1.012225
-    0.99574078
-    0.98642833
-    0.99008207
-    1.0197359
-    1.0112849
-    0.98711069
-    0.99402748
-    1.0242141
-    1.0135349
-    0.99842505
-    1.0130714
-    0.99887044
-    1.0059058
-    1.0185998
-    1.0073314
-    0.98687706
-    1.0084551
-    0.97698964
-    0.99482714
-    1.0015302
-    1.0105331
-    1.0261767
-    1.0232822
-    1.0084176
-    0.99785167
-    0.99619733
-    1.0055223
-    1.0076326
-    0.99205461
-    1.0030587
-    1.0137012
-    1.0145878
-    1.0190297
-    1.0000681
-    1.0153894
-    1.0140649
-    1.0007236
-    0.97961463
-    1.0125257
-    1.0169503
-    1.0197363
-    1.0221185
+      1.0030045
+      1.0002599
+     0.99104664
+      1.0321162
+      1.0223545
+      1.0043614
+     0.98626929
+      1.0092127
+      1.0357197
+      1.0150827
+      1.0051548
+     0.98465775
+     0.99132132
+     0.99904153
+      1.0044641
+      1.0179198
+      1.0113462
+     0.99409421
+     0.99904293
+      1.0448336
+     0.99932433
+      1.0057004
+     0.99619787
+      1.0267504
+      1.0077645
+      1.0058026
+      1.0025891
+      0.9939097
+     0.99604693
+     0.99908569
+      1.0151094
+     0.99348134
+      1.0039124
+      1.0145805
+     0.99800868
+     0.98578138
+      1.0065771
+     0.99843919
+     0.97979062
+     0.98413351
+     0.96468174
+      1.0273857
+      1.0225211
+     0.99958667
+      1.0111157
+      1.0099585
+     0.99480311
+      1.0079265
+     0.98924573
+      1.0070613
+      1.0075706
+      0.9937151
+      1.0224711
+      1.0018891
+     0.99051863
+      1.0042944
+      1.0184055
+     0.99419508
+     0.99756624
+      1.0015983
+      0.9845772
+      1.0004407
+      1.0116237
+      0.9861885
+      1.0073094
+     0.99273355
+      1.0013224
+     0.99777979
+      1.0301686
+     0.96809556
+     0.99917088
+     0.99949253
+     0.96590004
+      1.0083938
+     0.96662298
+      1.0221454
+      1.0069792
+      1.0343996
+      1.0066531
+      1.0072525
+     0.99743563
+     0.99723703
+       1.000372
+     0.99013917
+      1.0095223
+     0.98864268
+     0.98092242
+     0.98886488
+      1.0030341
+        1.01894
+     0.99155059
+     0.99533235
+     0.99734316
+      1.0047356
+      1.0082737
+     0.98425116
+     0.99949212
+      1.0055899
+      1.0065075
+     0.99385069
+     0.98867975
+     0.99804843
+      1.0184038
+     0.99301902
+      1.0177222
+      1.0051924
+      1.0187852
+      1.0098985
+      1.0097172
+      1.0145811
+     0.98721038
+      1.0361722
+      1.0105821
+     0.99469309
+     0.98626785
+       1.013871
+     0.99858924
+     0.99302637
+      1.0042186
+     0.99623745
+     0.98545708
+      1.0225435
+      1.0011861
+      1.0130321
+     0.97861347
+      1.0228193
+     0.99627435
+      1.0272779
+      1.0075172
+      1.0096762
+      1.0129306
+     0.99966549
+      1.0262882
+      1.0026914
+      1.0061475
+       1.009523
+      1.0036127
+     0.99762992
+     0.99092634
+      1.0058469
+     0.99887292
+      1.0060653
+     0.98673557
+     0.98895709
+     0.99111967
+       0.990118
+     0.99788054
+     0.97054709
+      1.0099157
+      1.0107431
+     0.99518695
+      1.0114048
+     0.99376019
+      1.0023369
+     0.98783327
+      1.0051727
+      1.0100462
+     0.98607387
+      1.0000064
+     0.99692442
+       1.012225
+     0.99574078
+     0.98642833
+     0.99008207
+      1.0197359
+      1.0112849
+     0.98711069
+     0.99402748
+      1.0242141
+      1.0135349
+     0.99842505
+      1.0130714
+     0.99887044
+      1.0059058
+      1.0185998
+      1.0073314
+     0.98687706
+      1.0084551
+     0.97698964
+     0.99482714
+      1.0015302
+      1.0105331
+      1.0261767
+      1.0232822
+      1.0084176
+     0.99785167
+     0.99619733
+      1.0055223
+      1.0076326
+     0.99205461
+      1.0030587
+      1.0137012
+      1.0145878
+      1.0190297
+      1.0000681
+      1.0153894
+      1.0140649
+      1.0007236
+     0.97961463
+      1.0125257
+      1.0169503
+      1.0197363
+      1.0221185
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0115853
-    1.0167502
-    1.0068957
-    1.0138189
-    1.0258364
-    1.0243817
-    1.017373
-    1.0020171
-    1.0003742
-    1.0008974
-    1.0104804
-    1.0116393
-    1.0114294
-    0.99932124
-    0.99461459
-    1.0170349
-    1.0051446
-    1.020639
-    1.0051964
-    1.0093042
-    1.007068
-    1.01086
-    0.99590086
-    1.0014883
-    1.0117332
-    0.9990095
-    1.0108284
-    1.0103672
-    1.0036722
-    1.0005124
-    1.0190331
-    1.0130978
-    1.007842
-    1.0285436
-    1.0322054
-    1.0213403
-    1.0246486
-    1.0419306
-    1.0258867
-    1.0156316
-    0.99818589
-    0.9894107
-    1.0127584
-    1.0146882
-    1.0136529
-    1.0340107
-    1.0343652
-    1.02971
-    1.0077932
-    1.0198114
-    1.013971
-    1.0061083
-    1.0089573
-    1.0037926
-    1.0082071
-    0.99498155
-    0.99735772
-    0.98765026
-    1.006465
-    1.0196088
-    1.0053233
-    1.0119974
-    1.0188066
-    1.0029302
-    1.0183459
-    1.0034218
-    1.0158799
-    0.98824798
-    1.0274357
-    1.0168832
-    1.0180641
-    1.0294657
-    0.98864091
-    1.0358326
-    0.99889969
-    1.0178322
-    0.99813566
-    1.0073549
-    1.0215985
-    1.0084245
-    1.0080939
-    1.0157021
-    1.0075815
-    1.0032633
-    1.0117871
-    1.0209276
-    1.0077569
-    0.99680958
-    1.0120266
-    1.0017625
-    1.0138811
-    1.0198358
-    1.0059629
-    1.0115416
-    1.0319473
-    1.0167074
-    1.0116111
-    1.0048627
-    1.0217622
-    1.0125221
-    1.0142045
-    0.99792469
-    0.99823971
-    0.99561547
-    0.99850373
-    0.9898464
-    1.0030963
-    1.0051373
-    1.0004213
-    1.0144117
-    0.97185592
-    0.9959518
-    1.0073529
-    1.0051603
-    0.98642572
-    0.99433423
-    1.0112131
-    1.0007695
-    1.0176867
-    1.0134363
-    0.99926191
-    0.99879835
-    0.99878754
-    1.0331374
-    1.0077797
-    1.0127221
-    1.0047393
-    1.0074106
-    0.99784213
-    1.0056495
-    1.0057708
-    0.98817494
-    0.98742176
-    0.99930555
-    1.0000687
-    1.0129754
-    1.009529
-    1.0226731
-    1.0149534
-    1.0164295
-    1.0239469
-    1.0293458
-    1.026199
-    1.0197525
-    1.0126818
-    1.0054473
-    1.0254423
-    1.0069461
-    1.0153135
-    1.0337515
-    1.0178187
-    1.0240469
-    1.0079489
-    1.0186953
-    1.0008628
-    1.0113799
-    1.0140118
-    1.0168007
-    1.011441
-    0.98422774
-    0.98909729
-    1.0157859
-    1.0151586
-    0.99756232
-    0.99497777
-    1.0102841
-    1.0221659
-    0.9937759
-    0.99877193
-    1.0079433
-    0.99667692
-    1.0095959
-    1.0128804
-    1.0156949
-    1.0111951
-    1.0228887
-    1.0122083
-    1.0190197
-    1.0074927
-    1.0268096
-    0.99689352
-    0.98948474
-    1.0024938
-    1.0105543
-    1.014116
-    1.0141217
-    1.0056504
-    1.0101026
-    1.0105069
-    0.99619053
-    1.0059439
-    0.99449473
-    0.99482458
-    1.0037702
-    1.0068087
-    0.99575975
-    1.0030815
-    1.0334014
-    0.99879386
-    0.99625634
-    1.0171195
-    0.99233844
+      1.0079715
+      1.0115853
+      1.0167502
+      1.0068957
+      1.0138189
+      1.0258364
+      1.0243817
+       1.017373
+      1.0020171
+      1.0003742
+      1.0008974
+      1.0104804
+      1.0116393
+      1.0114294
+     0.99932124
+     0.99461459
+      1.0170349
+      1.0051446
+       1.020639
+      1.0051964
+      1.0093042
+       1.007068
+        1.01086
+     0.99590086
+      1.0014883
+      1.0117332
+      0.9990095
+      1.0108284
+      1.0103672
+      1.0036722
+      1.0005124
+      1.0190331
+      1.0130978
+       1.007842
+      1.0285436
+      1.0322054
+      1.0213403
+      1.0246486
+      1.0419306
+      1.0258867
+      1.0156316
+     0.99818589
+      0.9894107
+      1.0127584
+      1.0146882
+      1.0136529
+      1.0340107
+      1.0343652
+        1.02971
+      1.0077932
+      1.0198114
+       1.013971
+      1.0061083
+      1.0089573
+      1.0037926
+      1.0082071
+     0.99498155
+     0.99735772
+     0.98765026
+       1.006465
+      1.0196088
+      1.0053233
+      1.0119974
+      1.0188066
+      1.0029302
+      1.0183459
+      1.0034218
+      1.0158799
+     0.98824798
+      1.0274357
+      1.0168832
+      1.0180641
+      1.0294657
+     0.98864091
+      1.0358326
+     0.99889969
+      1.0178322
+     0.99813566
+      1.0073549
+      1.0215985
+      1.0084245
+      1.0080939
+      1.0157021
+      1.0075815
+      1.0032633
+      1.0117871
+      1.0209276
+      1.0077569
+     0.99680958
+      1.0120266
+      1.0017625
+      1.0138811
+      1.0198358
+      1.0059629
+      1.0115416
+      1.0319473
+      1.0167074
+      1.0116111
+      1.0048627
+      1.0217622
+      1.0125221
+      1.0142045
+     0.99792469
+     0.99823971
+     0.99561547
+     0.99850373
+      0.9898464
+      1.0030963
+      1.0051373
+      1.0004213
+      1.0144117
+     0.97185592
+      0.9959518
+      1.0073529
+      1.0051603
+     0.98642572
+     0.99433423
+      1.0112131
+      1.0007695
+      1.0176867
+      1.0134363
+     0.99926191
+     0.99879835
+     0.99878754
+      1.0331374
+      1.0077797
+      1.0127221
+      1.0047393
+      1.0074106
+     0.99784213
+      1.0056495
+      1.0057708
+     0.98817494
+     0.98742176
+     0.99930555
+      1.0000687
+      1.0129754
+       1.009529
+      1.0226731
+      1.0149534
+      1.0164295
+      1.0239469
+      1.0293458
+       1.026199
+      1.0197525
+      1.0126818
+      1.0054473
+      1.0254423
+      1.0069461
+      1.0153135
+      1.0337515
+      1.0178187
+      1.0240469
+      1.0079489
+      1.0186953
+      1.0008628
+      1.0113799
+      1.0140118
+      1.0168007
+       1.011441
+     0.98422774
+     0.98909729
+      1.0157859
+      1.0151586
+     0.99756232
+     0.99497777
+      1.0102841
+      1.0221659
+      0.9937759
+     0.99877193
+      1.0079433
+     0.99667692
+      1.0095959
+      1.0128804
+      1.0156949
+      1.0111951
+      1.0228887
+      1.0122083
+      1.0190197
+      1.0074927
+      1.0268096
+     0.99689352
+     0.98948474
+      1.0024938
+      1.0105543
+       1.014116
+      1.0141217
+      1.0056504
+      1.0101026
+      1.0105069
+     0.99619053
+      1.0059439
+     0.99449473
+     0.99482458
+      1.0037702
+      1.0068087
+     0.99575975
+      1.0030815
+      1.0334014
+     0.99879386
+     0.99625634
+      1.0171195
+     0.99233844
 
-                 ];
+];
 
diff --git a/matlab/AHessian.m b/matlab/AHessian.m
index 890dc92d77..f9d9db6e0c 100644
--- a/matlab/AHessian.m
+++ b/matlab/AHessian.m
@@ -66,7 +66,9 @@ while notsteady && t<smpl
         iF     = inv(F);
         K      = P(:,mf)*iF;
         lik(t) = log(det(F))+transpose(v)*iF*v;
+
         [DK,DF,DP1] = computeDKalman(T,DT,DOm,P,DP,DH,mf,iF,K);
+
         for ii = 1:k
             Dv(:,ii)   = -Da(mf,ii) - DYss(mf,ii);
             Da(:,ii)   = DT(:,:,ii)*(a+K*v) + T*(Da(:,ii)+DK(:,:,ii)*v + K*Dv(:,ii));
@@ -147,4 +149,4 @@ for ii = 1:k
     DP1(:,:,ii) = DT(:,:,ii)*tmp*T' + T*Dtmp*T' + T*tmp*DT(:,:,ii)' + DOm(:,:,ii);
 end
 
-% end of computeDKalman
\ No newline at end of file
+% end of computeDKalman
diff --git a/matlab/block_bytecode_mfs_steadystate.m b/matlab/block_bytecode_mfs_steadystate.m
index 26bd0fac57..a34b15c197 100644
--- a/matlab/block_bytecode_mfs_steadystate.m
+++ b/matlab/block_bytecode_mfs_steadystate.m
@@ -1,5 +1,5 @@
 function [r, g1] = block_bytecode_mfs_steadystate(y, b, y_all, exo, params, M)
-% Wrapper around the static.m file, for use with dynare_solve,
+% Wrapper around the *_static.m file, for use with dynare_solve,
 % when block_mfs option is given to steady.
 
 % Copyright (C) 2009-2012 Dynare Team
diff --git a/matlab/block_mfs_steadystate.m b/matlab/block_mfs_steadystate.m
index 4ba49ef39b..a0793e674d 100644
--- a/matlab/block_mfs_steadystate.m
+++ b/matlab/block_mfs_steadystate.m
@@ -1,5 +1,5 @@
 function [r, g1] = block_mfs_steadystate(y, b, y_all, exo, params, M)
-% Wrapper around the static.m file, for use with dynare_solve,
+% Wrapper around the *_static.m file, for use with dynare_solve,
 % when block_mfs option is given to steady.
 
 % Copyright (C) 2009-2012 Dynare Team
diff --git a/matlab/bytecode_steadystate.m b/matlab/bytecode_steadystate.m
index 49c619fe8a..4c3e2f46f9 100644
--- a/matlab/bytecode_steadystate.m
+++ b/matlab/bytecode_steadystate.m
@@ -1,5 +1,5 @@
 function [r, g1] = bytecode_steadystate(y, exo, params)
-% Wrapper around the static.m file, for use with dynare_solve,
+% Wrapper around the *_static.m file, for use with dynare_solve,
 % when block_mfs option is given to steady.
 
 % Copyright (C) 2009-2011 Dynare Team
diff --git a/matlab/convergence_diagnostics/geweke_chi2_test.m b/matlab/convergence_diagnostics/geweke_chi2_test.m
index 6c543a8ca9..8acf673993 100644
--- a/matlab/convergence_diagnostics/geweke_chi2_test.m
+++ b/matlab/convergence_diagnostics/geweke_chi2_test.m
@@ -64,6 +64,7 @@ for k=1:length(options.convergence.geweke.taper_steps)+1
     sum_of_weights=sum(1./(NSE.^2),2);
     pooled_mean=sum(means./(NSE.^2),2)./sum_of_weights;
     pooled_NSE=1./sqrt(sum_of_weights);
+
     test_stat=diff_Means.^2./sum(NSE.^2,2);
     p = 1-chi2cdf(test_stat,1);
     results_struct.pooled_mean(:,k) = pooled_mean;
diff --git a/matlab/dr_block.m b/matlab/dr_block.m
index a37169a109..c0209d527f 100644
--- a/matlab/dr_block.m
+++ b/matlab/dr_block.m
@@ -685,6 +685,7 @@ for i = 1:Size
         dr.ghu(endo, exo) = ghu;
         data(i).pol.i_ghu = exo;
     end
+
     if (verbose)
         disp('dr.ghx');
         dr.ghx
diff --git a/matlab/endogenous_prior_restrictions.m b/matlab/endogenous_prior_restrictions.m
index b738ab0918..63db7b0be7 100644
--- a/matlab/endogenous_prior_restrictions.m
+++ b/matlab/endogenous_prior_restrictions.m
@@ -1,5 +1,4 @@
 function [info, info_irf, info_moment, data_irf, data_moment] = endogenous_prior_restrictions(T,R,Model,DynareOptions,DynareResults)
-
 % Check for prior (sign) restrictions on irf's and theoretical moments
 %
 % INPUTS
diff --git a/matlab/flip_plan.m b/matlab/flip_plan.m
index 14b470ab44..5daf19fc7d 100644
--- a/matlab/flip_plan.m
+++ b/matlab/flip_plan.m
@@ -98,4 +98,4 @@ plan.constrained_int_date_{i_ix} = [date(i1) - plan.date(1) + 1; plan.constraine
 plan.constrained_paths_{i_ix} = [value(i1)'; plan.constrained_paths_{i_ix}(i2)];
 else
     error(['impossible case you have two conditional forecasts:\n - one involving ' plan.endo_names{plan.options_cond_fcst_.controlled_varexo(i_ix),:} ' as control and ' plan_exo_names{plan.constrained_vars_(ix_)} ' as constrined endogenous\n - the other involving  ' plan.endo_names{plan.options_cond_fcst_.controlled_varexo(iy),:} ' as control and ' plan_exo_names{plan.constrained_vars_(ix)} ' as constrined endogenous\n']);
-end
\ No newline at end of file
+end
diff --git a/matlab/getH.m b/matlab/getH.m
index 359e061320..895c9dcc4a 100644
--- a/matlab/getH.m
+++ b/matlab/getH.m
@@ -194,8 +194,8 @@ else
         [U,T] = ordschur(U,T,e1);
         T = T(k+1:end,k+1:end);
         dyssdtheta = -U(:,k+1:end)*(T\U(:,k+1:end)')*df;
-        if nargout>5,
-            for j=1:length(indx),
+        if nargout>5
+            for j=1:length(indx)
                 d2yssdtheta(:,:,j) = -U(:,k+1:end)*(T\U(:,k+1:end)')*d2f(:,:,j);
             end
         end
diff --git a/matlab/gsa/pick.m b/matlab/gsa/pick.m
index fb5ccbfe56..ed50f60cfe 100644
--- a/matlab/gsa/pick.m
+++ b/matlab/gsa/pick.m
@@ -2,7 +2,7 @@ function pick
 %
 % Copyright (C) 2001-2017 European Commission
 % Copyright (C) 2017 DynareTeam
-%
+    
 % This file is part of GLUEWIN
 % GLUEWIN is a MATLAB code designed for analysing the output
 % of Monte Carlo runs when empirical observations of the model output are available
diff --git a/matlab/gsa/prior_draw_gsa.m b/matlab/gsa/prior_draw_gsa.m
index 1c3a187a8a..d772ae22a8 100644
--- a/matlab/gsa/prior_draw_gsa.m
+++ b/matlab/gsa/prior_draw_gsa.m
@@ -117,4 +117,4 @@ for i = 1:npar
       otherwise
         % Nothing to do here.
     end
-end
\ No newline at end of file
+end
diff --git a/matlab/init_plan.m b/matlab/init_plan.m
index 2759dc9f16..2ae8017847 100644
--- a/matlab/init_plan.m
+++ b/matlab/init_plan.m
@@ -46,4 +46,4 @@ plan.shock_perfect_foresight_ = [];
 plan.options_cond_fcst_ = struct();
 plan.options_cond_fcst_.parameter_set = 'calibration';
 plan.options_cond_fcst_.simulation_type = 'deterministic';
-plan.options_cond_fcst_.controlled_varexo = [];
\ No newline at end of file
+plan.options_cond_fcst_.controlled_varexo = [];
diff --git a/matlab/k_order_pert.m b/matlab/k_order_pert.m
index 86763b9b3e..596dc100fd 100644
--- a/matlab/k_order_pert.m
+++ b/matlab/k_order_pert.m
@@ -207,4 +207,4 @@ for i=1:n1
             m = m + 1;
         end
     end
-end
\ No newline at end of file
+end
diff --git a/matlab/lmmcp/catstruct.m b/matlab/lmmcp/catstruct.m
index 3f1784367b..df4a9c05b5 100644
--- a/matlab/lmmcp/catstruct.m
+++ b/matlab/lmmcp/catstruct.m
@@ -168,4 +168,4 @@ else
 
     A = cell2struct(VAL, FN);
     A = reshape(A, sz0) ; % reshape into original format
-end
\ No newline at end of file
+end
diff --git a/matlab/ms-sbvar/msstart_setup.m b/matlab/ms-sbvar/msstart_setup.m
index 08d502a683..b32b92da41 100644
--- a/matlab/ms-sbvar/msstart_setup.m
+++ b/matlab/ms-sbvar/msstart_setup.m
@@ -153,4 +153,4 @@ ndraws2=10*ndraws1;        % 2nd part of Monte Carlo draws
                            % end
                            %  nstarts=1         % number of starting points
                            %  imndraws = nstarts*ndraws2;   % total draws for impulse responses or forecasts
-                           %<<<<<<<<<<<<<<<<<<<
\ No newline at end of file
+                           %<<<<<<<<<<<<<<<<<<<
diff --git a/matlab/occbin/map_regime.m b/matlab/occbin/map_regime.m
index 1a8b8e796d..702b011f9f 100755
--- a/matlab/occbin/map_regime.m
+++ b/matlab/occbin/map_regime.m
@@ -21,4 +21,4 @@ end
 
 if (regime(end)==1)
     warning('Increase nperiods');
-endx
\ No newline at end of file
+end
diff --git a/matlab/occbin/solve_no_constraint.m b/matlab/occbin/solve_no_constraint.m
index f86d2c597f..db3d457455 100755
--- a/matlab/occbin/solve_no_constraint.m
+++ b/matlab/occbin/solve_no_constraint.m
@@ -46,4 +46,4 @@ wishlist = endog_;
 nwishes = length(wishlist);
 
 
-zdata_ = mkdata(nperiods,decrulea,decruleb,endog_,exog_,wishlist,irfshock,shockssequence);
\ No newline at end of file
+zdata_ = mkdata(nperiods,decrulea,decruleb,endog_,exog_,wishlist,irfshock,shockssequence);
diff --git a/matlab/occbin/solve_two_constraints.m b/matlab/occbin/solve_two_constraints.m
index 06de6d46a8..33fea1c728 100755
--- a/matlab/occbin/solve_two_constraints.m
+++ b/matlab/occbin/solve_two_constraints.m
@@ -301,4 +301,4 @@ end
 
 zdatapiecewise_(ishock_+1:end,:)=zdatalinear_(2:nperiods_-ishock_+1,:);
 
-zdatalinear_ = mkdata(nperiods_,decrulea,decruleb,endog_,exog_,wishlist_,irfshock_,shockssequence_,init_orig_);
\ No newline at end of file
+zdatalinear_ = mkdata(nperiods_,decrulea,decruleb,endog_,exog_,wishlist_,irfshock_,shockssequence_,init_orig_);
diff --git a/matlab/occbin/tokenize.m b/matlab/occbin/tokenize.m
index 1789d095a5..2cd8fb4103 100755
--- a/matlab/occbin/tokenize.m
+++ b/matlab/occbin/tokenize.m
@@ -51,4 +51,4 @@ else
         end
     end
 
-end
\ No newline at end of file
+end
diff --git a/matlab/perfect-foresight-models/perfect_foresight_mcp_problem.m b/matlab/perfect-foresight-models/perfect_foresight_mcp_problem.m
index 8679a26272..000fff50f3 100644
--- a/matlab/perfect-foresight-models/perfect_foresight_mcp_problem.m
+++ b/matlab/perfect-foresight-models/perfect_foresight_mcp_problem.m
@@ -13,7 +13,7 @@ function [residuals,JJacobian] = perfect_foresight_mcp_problem(y, dynamic_functi
 %
 % INPUTS
 %   y                   [double] N*1 array, terminal conditions for the endogenous variables
-%   dynamic_function    [handle] function handle to the dynamic routine
+%   dynamic_function    [handle] function handle to _dynamic-file
 %   Y0                  [double] N*1 array, initial conditions for the endogenous variables
 %   YT                  [double] N*1 array, terminal conditions for the endogenous variables
 %   exo_simul           [double] nperiods*M_.exo_nbr matrix of exogenous variables (in declaration order)
@@ -24,7 +24,7 @@ function [residuals,JJacobian] = perfect_foresight_mcp_problem(y, dynamic_functi
 %   T                   [scalar] number of simulation periods
 %   ny                  [scalar] number of endogenous variables
 %   i_cols              [double] indices of variables appearing in M.lead_lag_incidence
-%                                and that need to be passed to the dynamic routine
+%                                and that need to be passed to _dynamic-file
 %   i_cols_J1           [double] indices of contemporaneous and forward looking variables
 %                                appearing in M.lead_lag_incidence
 %   i_cols_1            [double] indices of contemporaneous and forward looking variables in
diff --git a/matlab/perfect-foresight-models/perfect_foresight_problem.m b/matlab/perfect-foresight-models/perfect_foresight_problem.m
index 00f7820384..c6c6f77a71 100644
--- a/matlab/perfect-foresight-models/perfect_foresight_problem.m
+++ b/matlab/perfect-foresight-models/perfect_foresight_problem.m
@@ -12,7 +12,7 @@ function [residuals,JJacobian] = perfect_foresight_problem(y, dynamic_function,
 %
 % INPUTS
 %   y                   [double] N*1 array, terminal conditions for the endogenous variables
-%   dynamic_function    [handle] function handle to the dynamic routine
+%   dynamic_function    [handle] function handle to _dynamic-file
 %   Y0                  [double] N*1 array, initial conditions for the endogenous variables
 %   YT                  [double] N*1 array, terminal conditions for the endogenous variables
 %   exo_simul           [double] nperiods*M_.exo_nbr matrix of exogenous variables (in declaration order)
@@ -23,7 +23,7 @@ function [residuals,JJacobian] = perfect_foresight_problem(y, dynamic_function,
 %   T                   [scalar] number of simulation periods
 %   ny                  [scalar] number of endogenous variables
 %   i_cols              [double] indices of variables appearing in M.lead_lag_incidence
-%                                and that need to be passed to the dynamic routine
+%                                and that need to be passed to _dynamic-file
 %   i_cols_J1           [double] indices of contemporaneous and forward looking variables
 %                                appearing in M.lead_lag_incidence
 %   i_cols_1            [double] indices of contemporaneous and forward looking variables in
diff --git a/matlab/perfect-foresight-models/private/initialize_stacked_problem.m b/matlab/perfect-foresight-models/private/initialize_stacked_problem.m
index 4ef51c3ba9..f019805dc9 100644
--- a/matlab/perfect-foresight-models/private/initialize_stacked_problem.m
+++ b/matlab/perfect-foresight-models/private/initialize_stacked_problem.m
@@ -15,7 +15,7 @@ function [options, y0, yT, z, i_cols, i_cols_J1, i_cols_T, i_cols_j, i_cols_1, .
 % - yT                  [double] N*1 array, terminal conditions for the endogenous variables
 % - z                   [double] T*M array, paths for the exogenous variables.
 % - i_cols              [double] indices of variables appearing in M.lead_lag_incidence
-%                                and that need to be passed to the dynamic routine
+%                                and that need to be passed to _dynamic-file
 % - i_cols_J1           [double] indices of contemporaneous and forward looking variables
 %                                appearing in M.lead_lag_incidence
 % - i_cols_T            [double] columns of dynamic Jacobian related to
@@ -25,7 +25,7 @@ function [options, y0, yT, z, i_cols, i_cols_J1, i_cols_T, i_cols_j, i_cols_1, .
 %                                in dynamic Jacobian (relevant in intermediate periods)
 % - i_cols_1            [double] indices of contemporaneous and forward looking variables in
 %                                M.lead_lag_incidence in dynamic Jacobian (relevant in first period)
-% - dynamicmodel        [handle] function handle to the dynamic routine
+% - dynamicmodel        [handle] function handle to _dynamic-file
 
 % Copyright (C) 2015-2017 Dynare Team
 %
diff --git a/matlab/perfect-foresight-models/sim1.m b/matlab/perfect-foresight-models/sim1.m
index 243f076fc8..f43d6df0d0 100644
--- a/matlab/perfect-foresight-models/sim1.m
+++ b/matlab/perfect-foresight-models/sim1.m
@@ -330,4 +330,4 @@ if any(~isreal(dyy))
     disp('Last iteration provided complex number for the following variables:')
     fprintf('%s, ', endo_names{:}),
     fprintf('\n'),
-end
\ No newline at end of file
+end
diff --git a/matlab/rotated_slice_sampler.m b/matlab/rotated_slice_sampler.m
index 79f4b267fb..6dbfded0f4 100644
--- a/matlab/rotated_slice_sampler.m
+++ b/matlab/rotated_slice_sampler.m
@@ -180,4 +180,4 @@ end
 %         fxsim=[];
 %     end
 % end
-end
\ No newline at end of file
+end
diff --git a/matlab/score.m b/matlab/score.m
index 89d4b512b9..06c01cc0d7 100644
--- a/matlab/score.m
+++ b/matlab/score.m
@@ -120,4 +120,4 @@ for ii = 1:k
     DP1(:,:,ii) = DT(:,:,ii)*tmp*T' + T*Dtmp*T' + T*tmp*DT(:,:,ii)' + DOm(:,:,ii);
 end
 
-% end of computeDKalman
\ No newline at end of file
+% end of computeDKalman
diff --git a/matlab/slice_sampler.m b/matlab/slice_sampler.m
index 84ee4a6ded..8aa18fb1d4 100644
--- a/matlab/slice_sampler.m
+++ b/matlab/slice_sampler.m
@@ -66,7 +66,7 @@ for it=1:npar
 
 
     % -------------------------------------------------------
-   % 1. DRAW Z = ln[f(X0)] - EXP(1) where EXP(1)=-ln(U(0,1))
+    % 1. DRAW Z = ln[f(X0)] - EXP(1) where EXP(1)=-ln(U(0,1))
     %    THIS DEFINES THE SLICE S={x: z < ln(f(x))}
     % -------------------------------------------------------
     fxold = -feval(objective_function,theta,varargin{:});
diff --git a/matlab/utilities/dataset/quarterly2annual.m b/matlab/utilities/dataset/quarterly2annual.m
index f5d8bd7c8f..13c6bafd94 100644
--- a/matlab/utilities/dataset/quarterly2annual.m
+++ b/matlab/utilities/dataset/quarterly2annual.m
@@ -146,4 +146,4 @@ if islog
     ya=log(ya+yass);
     yass=log(yass);
     ya=ya-yass;
-end
\ No newline at end of file
+end
diff --git a/mex/sources/bytecode/testing/bytecode_debug.m b/mex/sources/bytecode/testing/bytecode_debug.m
index e13535841b..7f2e8f9e59 100644
--- a/mex/sources/bytecode/testing/bytecode_debug.m
+++ b/mex/sources/bytecode/testing/bytecode_debug.m
@@ -4,18 +4,18 @@ fid = fopen([M_.fname '_options.txt'],'wt');
 nfields = fieldnames(options_);
 fprintf(fid, '%d %d %d\n',size(nfields,1), size(options_,1), size(options_,2));
 for i=1:size(nfields, 1)
-    disp(nfields(i));
-    if iscell(nfields(i))
-        AA = cell2mat(nfields(i));
-    else
-        AA = nfields(i);
-    end;
-    if iscell(AA)
-        AA = cell2mat(AA);
-    end;
-    fprintf(fid, '%s\n', AA);
-    Z = getfield(options_, AA);
-    print_object(fid, Z);
+  disp(nfields(i));
+  if iscell(nfields(i))
+    AA = cell2mat(nfields(i));
+  else
+    AA = nfields(i);
+  end;
+  if iscell(AA)
+    AA = cell2mat(AA);
+  end;
+  fprintf(fid, '%s\n', AA);
+  Z = getfield(options_, AA);
+  print_object(fid, Z);
 end;
 fclose(fid);
 
@@ -23,14 +23,14 @@ fid = fopen([M_.fname '_M.txt'],'wt');
 nfields = fields(M_);
 fprintf(fid, '%d %d %d\n',size(nfields,1), size(M_,1), size(M_,2));
 for i=1:size(nfields, 1)
-    disp(nfields(i));
-    if iscell(nfields(i))
-        AA = cell2mat(nfields(i));
-    else
-        AA = nfields(i);
-    end;
-    fprintf(fid, '%s\n', AA);
-    print_object(fid, getfield(M_, AA));
+  disp(nfields(i));
+  if iscell(nfields(i))
+    AA = cell2mat(nfields(i));
+  else
+    AA = nfields(i);
+  end;
+  fprintf(fid, '%s\n', AA);
+  print_object(fid, getfield(M_, AA));
 end;
 fclose(fid);
 
@@ -39,65 +39,65 @@ fid = fopen([M_.fname '_oo.txt'],'wt');
 nfields = fields(oo_);
 fprintf(fid, '%d %d %d\n',size(nfields,1), size(oo_,1), size(oo_,2));
 for i=1:size(nfields, 1)
-    disp(nfields(i));
-    if iscell(nfields(i))
-        AA = cell2mat(nfields(i));
-    else
-        AA = nfields(i);
-    end;
-    if iscell(AA)
-        AA = cell2mat(AA);
-    end;
-    fprintf(fid, '%s\n', AA);
-    print_object(fid, getfield(oo_, AA));
+  disp(nfields(i));
+  if iscell(nfields(i))
+    AA = cell2mat(nfields(i));
+  else
+    AA = nfields(i);
+  end;
+  if iscell(AA)
+    AA = cell2mat(AA);
+  end;
+  fprintf(fid, '%s\n', AA);
+  print_object(fid, getfield(oo_, AA));
 end;
 fclose(fid);
 
 function print_object(fid, object_arg)
-if iscell(object_arg)
-    object = cell2mat(object_arg);
-else
-    object = object_arg;
-end;
-if isa(object,'float') == 1
-    fprintf(fid, '%d ', 0);
-    fprintf(fid, '%d %d\n',size(object,1), size(object,2));
-    fprintf(fid, '%f\n', object);
-    %for i=1:size(object, 2) 
-    %for j=1:size(object, 1)
-    %fprintf(fid, '%f\n', object(i,j));
-    %end;
-    %end;
-elseif isa(object,'char') == 1
-    fprintf(fid, '%d ', 3);
-    fprintf(fid, '%d %d\n',size(object,1), size(object,2));
-    %object
-    for i=1:size(object, 1)
-        %for i=1:size(object, 2)
-        fprintf(fid, '%s ', object(i,:));
-        %end;
-        %fprintf(fid, '\n');
-    end;
-    fprintf(fid, '\n');
-elseif isa(object,'struct') == 1
-    fprintf(fid, '%d ', 5);
-    nfields = fields(object);
-    fprintf(fid, '%d %d %d\n',size(nfields,1), size(object,1), size(object,2));
-    for j=1:size(object, 1) * size(object, 2)
-        nfields = fields(object(j));
-        for i=1:size(nfields, 1)
-            if iscell(nfields(i))
-                AA = cell2mat(nfields(i));
-            else
-                AA = nfields(i);
-            end;
-            fprintf(fid, '%s\n', AA);
-            print_object(fid, getfield(object, AA));
-        end;
-    end;
-else
-    disp(['type ' object  'note handle']);
-end;
+ if iscell(object_arg)
+   object = cell2mat(object_arg);
+ else
+   object = object_arg;
+ end;
+ if isa(object,'float') == 1
+   fprintf(fid, '%d ', 0);
+   fprintf(fid, '%d %d\n',size(object,1), size(object,2));
+   fprintf(fid, '%f\n', object);
+   %for i=1:size(object, 2) 
+     %for j=1:size(object, 1)
+       %fprintf(fid, '%f\n', object(i,j));
+     %end;
+   %end;
+ elseif isa(object,'char') == 1
+   fprintf(fid, '%d ', 3);
+   fprintf(fid, '%d %d\n',size(object,1), size(object,2));
+   %object
+   for i=1:size(object, 1)
+     %for i=1:size(object, 2)
+       fprintf(fid, '%s ', object(i,:));
+     %end;
+     %fprintf(fid, '\n');
+   end;
+   fprintf(fid, '\n');
+ elseif isa(object,'struct') == 1
+   fprintf(fid, '%d ', 5);
+   nfields = fields(object);
+   fprintf(fid, '%d %d %d\n',size(nfields,1), size(object,1), size(object,2));
+   for j=1:size(object, 1) * size(object, 2)
+     nfields = fields(object(j));
+     for i=1:size(nfields, 1)
+       if iscell(nfields(i))
+         AA = cell2mat(nfields(i));
+       else
+         AA = nfields(i);
+       end;
+       fprintf(fid, '%s\n', AA);
+       print_object(fid, getfield(object, AA));
+     end;
+   end;
+ else
+   disp(['type ' object  'note handle']);
+ end;
 
 
 
diff --git a/mex/sources/bytecode/testing/simulate_debug.m b/mex/sources/bytecode/testing/simulate_debug.m
index 4c3e818f14..9384eb7fe9 100644
--- a/mex/sources/bytecode/testing/simulate_debug.m
+++ b/mex/sources/bytecode/testing/simulate_debug.m
@@ -2,7 +2,7 @@ function simulate_debug(steady_state)
 global M_ oo_ options_;
 fid = fopen([M_.fname '_options.txt'],'wt');
 if steady_state~=1
-    fprintf(fid,'%d\n',options_.periods);
+  fprintf(fid,'%d\n',options_.periods);
 end;
 fprintf(fid,'%d\n',options_.simul.maxit);
 fprintf(fid,'%6.20f\n',options_.slowc);
@@ -17,11 +17,11 @@ fprintf(fid,'%d\n',M_.maximum_lead);
 fprintf(fid,'%d\n',M_.maximum_endo_lag);
 fprintf(fid,'%d\n',M_.param_nbr);
 if steady_state==1
-    fprintf(fid,'%d\n',size(oo_.exo_steady_state, 1));
-    fprintf(fid,'%d\n',size(oo_.exo_steady_state, 2));
+  fprintf(fid,'%d\n',size(oo_.exo_steady_state, 1));
+  fprintf(fid,'%d\n',size(oo_.exo_steady_state, 2));
 else
-    fprintf(fid,'%d\n',size(oo_.exo_simul, 1));
-    fprintf(fid,'%d\n',size(oo_.exo_simul, 2));
+  fprintf(fid,'%d\n',size(oo_.exo_simul, 1));
+  fprintf(fid,'%d\n',size(oo_.exo_simul, 2));
 end;
 fprintf(fid,'%d\n',M_.endo_nbr);
 if steady_state==1
@@ -41,11 +41,11 @@ fprintf(fid,'%6.20f\n',M_.params);
 fclose(fid);
 fid = fopen([M_.fname '_oo.txt'],'wt');
 if steady_state==1
-    fprintf(fid,'%6.20f\n',oo_.steady_state);
-    fprintf(fid,'%6.20f\n',oo_.exo_steady_state);
+  fprintf(fid,'%6.20f\n',oo_.steady_state);
+  fprintf(fid,'%6.20f\n',oo_.exo_steady_state);
 else
-    fprintf(fid,'%6.20f\n',oo_.endo_simul);
-    fprintf(fid,'%6.20f\n',oo_.exo_simul);
+  fprintf(fid,'%6.20f\n',oo_.endo_simul);
+  fprintf(fid,'%6.20f\n',oo_.exo_simul);
 end;
 fprintf(fid,'%6.20f\n',oo_.steady_state);
 fprintf(fid,'%6.20f\n',oo_.exo_steady_state);
diff --git a/mex/sources/k_order_perturbation/tests/first_order.m b/mex/sources/k_order_perturbation/tests/first_order.m
index a282ae3c3b..f46631c220 100644
--- a/mex/sources/k_order_perturbation/tests/first_order.m
+++ b/mex/sources/k_order_perturbation/tests/first_order.m
@@ -51,20 +51,20 @@ off=off+ nu;
 n= ypart.ny+ypart.nboth;
 %TwoDMatrix 
 matD=zeros(n,n);
-%       matD.place(fypzero,0,0);
+%	matD.place(fypzero,0,0);
 matD(1:n-ypart.nboth,1:ypart.npred)= fypzero;
-%       matD.place(fybzero,0,ypart.npred);
+%	matD.place(fybzero,0,ypart.npred);
 matD(1:n-ypart.nboth,ypart.npred+1:ypart.npred+ypart.nboth)=fybzero;
-%       matD.place(fyplus,0,ypart.nys()+ypart.nstat);
+%	matD.place(fyplus,0,ypart.nys()+ypart.nstat);
 matD(1:n-ypart.nboth,ypart.nys+ypart.nstat+1:ypart.nys+ypart.nstat+ypart.nyss)=fyplus;
 for i=1:ypart.nboth
     matD(ypart.ny()+i,ypart.npred+i)= 1.0;
 end
 
 matE=[fymins, fyszero, zeros(n-ypart.nboth,ypart.nboth), fyfzero; zeros(ypart.nboth,n)];
-%       matE.place(fymins;
-%       matE.place(fyszero,0,ypart.nys());
-%       matE.place(fyfzero,0,ypart.nys()+ypart.nstat+ypart.nboth);
+%	matE.place(fymins;
+%	matE.place(fyszero,0,ypart.nys());
+%	matE.place(fyfzero,0,ypart.nys()+ypart.nstat+ypart.nboth);
 
 for i= 1:ypart.nboth
     matE(ypart.ny()+i,ypart.nys()+ypart.nstat+i)= -1.0;
@@ -72,39 +72,39 @@ end
 matE=-matE; %matE.mult(-1.0);
 
 %    vsl=zeros(n,n);
-%       vsr=zeros(n,n);
-%       lwork= 100*n+16;
-%       work=zeros(1,lwork);
-%       bwork=zeros(1,n);
+%	vsr=zeros(n,n);
+%	lwork= 100*n+16;
+%	work=zeros(1,lwork);
+%	bwork=zeros(1,n);
 %int info;
 
-%       LAPACK_dgges("N","V","S",order_eigs,&n,matE.getData().base(),&n,
-%               matD.getData().base(),&n,&sdim,alphar.base(),alphai.base(),
-%               beta.base(),vsl.getData().base(),&n,vsr.getData().base(),&n,
-%               work.base(),&lwork,&(bwork[0]),&info);
+%    	LAPACK_dgges("N","V","S",order_eigs,&n,matE.getData().base(),&n,
+%		matD.getData().base(),&n,&sdim,alphar.base(),alphai.base(),
+%		beta.base(),vsl.getData().base(),&n,vsr.getData().base(),&n,
+%		work.base(),&lwork,&(bwork[0]),&info);
 
 [matE1,matD1,vsr,sdim,dr.eigval,info] = mjdgges(matE,matD,1);
 
 bk_cond= (sdim==ypart.nys);
 
-%       ConstGeneralMatrix z11(vsr,0,0,ypart.nys(),ypart.nys());
+%  	ConstGeneralMatrix z11(vsr,0,0,ypart.nys(),ypart.nys());
 z11=vsr(1:ypart.nys,1:ypart.nys);
-%       ConstGeneralMatrix z12(vsr,0,ypart.nys(),ypart.nys(),n-ypart.nys());
+%	ConstGeneralMatrix z12(vsr,0,ypart.nys(),ypart.nys(),n-ypart.nys());
 z12=vsr(1:ypart.nys(),ypart.nys+1:end);%, n-ypart.nys);
-                                       %        ConstGeneralMatrix z21(vsr,ypart.nys(),0,n-ypart.nys(),ypart.nys());
+                                       %	ConstGeneralMatrix z21(vsr,ypart.nys(),0,n-ypart.nys(),ypart.nys());
 z21=vsr(ypart.nys+1:end,1:ypart.nys);
-%       ConstGeneralMatrix z22(vsr,ypart.nys(),ypart.nys(),n-ypart.nys(),n-ypart.nys());
+%	ConstGeneralMatrix z22(vsr,ypart.nys(),ypart.nys(),n-ypart.nys(),n-ypart.nys());
 z22=vsr(ypart.nys+1:end,ypart.nys+1:end);
 
-%       GeneralMatrix sfder(z12,"transpose");
+% 	GeneralMatrix sfder(z12,"transpose");
 sfder=z12';%,"transpose");
-           %    z22.multInvLeftTrans(sfder);
+           %	z22.multInvLeftTrans(sfder);
 sfder=z22'\sfder;
 sfder=-sfder;% .mult(-1);
 
 %s11(matE,0,0,ypart.nys(),ypart.nys());
 s11=matE1(1:ypart.nys,1:ypart.nys);
-%        t11=(matD1,0,0,ypart.nys(),ypart.nys());
+%	 t11=(matD1,0,0,ypart.nys(),ypart.nys());
 t11=matD1(1:ypart.nys,1:ypart.nys);
 dumm=(s11');%,"transpose");
             %z11.multInvLeftTrans(dumm);
@@ -115,15 +115,15 @@ preder=t11\preder;
 %preder.multLeft(z11);
 preder= z11*preder;
 
-%       gy.place(preder,ypart.nstat,0);
-%       gy=(zeros(ypart.nstat,size(preder,2)) ;preder);
-%        sder(sfder,0,0,ypart.nstat,ypart.nys());
+%	gy.place(preder,ypart.nstat,0);
+%	gy=(zeros(ypart.nstat,size(preder,2)) ;preder);
+%	 sder(sfder,0,0,ypart.nstat,ypart.nys());
 sder=sfder(1:ypart.nstat,1:ypart.nys);
-%       gy.place(sder,0,0);
-%       gy(1:ypart.nstat, 1:ypart.nys)=sder;
+%	gy.place(sder,0,0);
+%	gy(1:ypart.nstat, 1:ypart.nys)=sder;
 %    gy=[sder;preder];
-%        fder(sfder,ypart.nstat+ypart.nboth,0,ypart.nforw,ypart.nys());
+%	 fder(sfder,ypart.nstat+ypart.nboth,0,ypart.nforw,ypart.nys());
 fder=sfder(ypart.nstat+ypart.nboth+1:ypart.nstat+ypart.nboth+ypart.nforw,1:ypart.nys);
-%       gy.place(fder,ypart.nstat+ypart.nys(),0);
-%       gy(ypart.nstat+ypart.nys,1)=fder;
+%	gy.place(fder,ypart.nstat+ypart.nys(),0);
+%	gy(ypart.nstat+ypart.nys,1)=fder;
 gy=[sder;preder;fder];
diff --git a/tests/AIM/data_ca1.m b/tests/AIM/data_ca1.m
index ca003056bd..c28fae1a28 100644
--- a/tests/AIM/data_ca1.m
+++ b/tests/AIM/data_ca1.m
@@ -1,98 +1,98 @@
 data = [0.928467646476  11.8716889412   20  0.418037507392  0.227382377518 ...
-        -0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
-        -0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
-        -0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
-        -0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
-        -0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
-        -0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
-        1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
-        2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
-        1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
-        1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
-        1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
-        1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
-        0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
-        1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
-        1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
-        0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
-        1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
-        1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
-        -0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
-        0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
-        0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
-        -0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
-        2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
-        1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
-        1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
-        1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
-        1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
-        1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
-        0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
-        0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
-        1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
-        0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
-        0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
-        0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
-        0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
-        -0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
-        -0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
-        -0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
-        -1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
-        0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
-        0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
-        0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
-        -0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
-        0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
-        0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
-        0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
-        0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
-        0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
-        0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
-        0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
-        1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
-        1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
-        1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
-        0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
-        0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
-        -0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
-        0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
-        0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
-        0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
-        0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
-        1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
-        0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
-        0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
-        1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
-        1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
-        0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
-        1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
-        0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
-        1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
-        1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
-        1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
-        1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
-        1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
-        1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
-        1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
-        0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
-        1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
-        0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
-        0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
-        0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
-        -0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
-        0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
-        1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
-        1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
-        0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
-       ]; 
-
+-0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
+-0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
+-0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
+-0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
+-0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
+-0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
+1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
+2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
+1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
+1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
+1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
+1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
+0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
+1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
+1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
+0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
+1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
+1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
+-0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
+0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
+0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
+-0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
+2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
+1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
+1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
+1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
+1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
+1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
+0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
+0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
+1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
+0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
+0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
+0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
+0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
+-0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
+-0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
+-0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
+-1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
+0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
+0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
+0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
+-0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
+0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
+0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
+0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
+0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
+0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
+0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
+0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
+1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
+1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
+1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
+0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
+0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
+-0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
+0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
+0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
+0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
+0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
+1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
+0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
+0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
+1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
+1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
+0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
+1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
+0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
+1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
+1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
+1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
+1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
+1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
+1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
+1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
+0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
+1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
+0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
+0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
+0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
+-0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
+0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
+1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
+1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
+0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
+]; 
+ 
 data = reshape(data,5,86)'; 
 y_obs = data(:,1); 
 pie_obs = data(:,2); 
 R_obs = data(:,3); 
 de = data(:,4); 
 dq = data(:,5); 
-
+ 
 %Country: Canada 
 %Sample Range: 1981:2 to 2002:3 
 %Observations: 86 
diff --git a/tests/AIM/fsdat.m b/tests/AIM/fsdat.m
index ef1279c0b3..aba209b908 100644
--- a/tests/AIM/fsdat.m
+++ b/tests/AIM/fsdat.m
@@ -1,198 +1,198 @@
 data_q = [
-    18.02 1474.5 150.2
-    17.94 1538.2 150.9
-    18.01 1584.5 151.4
-    18.42 1644.1 152
-    18.73 1678.6 152.7
-    19.46 1693.1 153.3
-    19.55 1724   153.9
-    19.56 1758.2 154.7
-    19.79 1760.6 155.4
-    19.77 1779.2 156
-    19.82 1778.8 156.6
-    20.03 1790.9 157.3
-    20.12 1846   158
-    20.1  1882.6 158.6
-    20.14 1897.3 159.2
-    20.22 1887.4 160
-    20.27 1858.2 160.7
-    20.34 1849.9 161.4
-    20.39 1848.5 162
-    20.42 1868.9 162.8
-    20.47 1905.6 163.6
-    20.56 1959.6 164.3
-    20.62 1994.4 164.9
-    20.78 2020.1 165.7
-    21    2030.5 166.5
-    21.2  2023.6 167.2
-    21.33 2037.7 167.9
-    21.62 2033.4 168.7
-    21.71 2066.2 169.5
-    22.01 2077.5 170.2
-    22.15 2071.9 170.9
-    22.27 2094   171.7
-    22.29 2070.8 172.5
-    22.56 2012.6 173.1
-    22.64 2024.7 173.8
-    22.77 2072.3 174.5
-    22.88 2120.6 175.3
-    22.92 2165   176.045
-    22.91 2223.3  176.727
-    22.94 2221.4  177.481
-    23.03 2230.95 178.268
-    23.13 2279.22 179.694
-    23.22 2265.48 180.335
-    23.32 2268.29 181.094
-    23.4  2238.57 181.915
-    23.45 2251.68 182.634
-    23.51 2292.02 183.337
-    23.56 2332.61 184.103
-    23.63 2381.01 184.894
-    23.75 2422.59 185.553
-    23.81 2448.01 186.203
-    23.87 2471.86 186.926
-    23.94 2476.67 187.68
-    24    2508.7  188.299
-    24.07 2538.05 188.906
-    24.12 2586.26 189.631
-    24.29 2604.62 190.362
-    24.35 2666.69 190.954
-    24.41 2697.54 191.56
-    24.52 2729.63 192.256
-    24.64 2739.75 192.938
-    24.77 2808.88 193.467
-    24.88 2846.34 193.994
-    25.01 2898.79 194.647
-    25.17 2970.48 195.279
-    25.32 3042.35 195.763
-    25.53 3055.53 196.277
-    25.79 3076.51 196.877
-    26.02 3102.36 197.481
-    26.14 3127.15 197.967
-    26.31 3129.53 198.455
-    26.6  3154.19 199.012
-    26.9  3177.98 199.572
-    27.21 3236.18 199.995
-    27.49 3292.07 200.452
-    27.75 3316.11 200.997
-    28.12 3331.22 201.538
-    28.39 3381.86 201.955
-    28.73 3390.23 202.419
-    29.14 3409.65 202.986
-    29.51 3392.6  203.584
-    29.94 3386.49 204.086
-    30.36 3391.61 204.721
-    30.61 3422.95 205.419
-    31.02 3389.36 206.13
-    31.5  3481.4  206.763
-    31.93 3500.95 207.362
-    32.27 3523.8  208
-    32.54 3533.79 208.642
-    33.02 3604.73 209.142
-    33.2  3687.9  209.637
-    33.49 3726.18 210.181
-    33.95 3790.44 210.737
-    34.36 3892.22 211.192
-    34.94 3919.01 211.663
-    35.61 3907.08 212.191
-    36.29 3947.11 212.708
-    37.01 3908.15 213.144
-    37.79 3922.57 213.602
-    38.96 3879.98 214.147
-    40.13 3854.13 214.7
-    41.05 3800.93 215.135
-    41.66 3835.21 215.652
-    42.41 3907.02 216.289
-    43.19 3952.48 216.848
-    43.69 4044.59 217.314
-    44.15 4072.19 217.776
-    44.77 4088.49 218.338
-    45.57 4126.39 218.917
-    46.32 4176.28 219.427
-    47.07 4260.08 219.956
-    47.66 4329.46 220.573
-    48.63 4328.33 221.201
-    49.42 4345.51 221.719
-    50.41 4510.73 222.281
-    51.27 4552.14 222.933
-    52.35 4603.65 223.583
-    53.51 4605.65 224.152
-    54.65 4615.64 224.737
-    55.82 4644.93 225.418
-    56.92 4656.23 226.117
-    58.18 4678.96 226.754
-    59.55 4566.62 227.389
-    61.01 4562.25 228.07
-    62.59 4651.86 228.689
-    64.15 4739.16 229.155
-    65.37 4696.82 229.674
-    66.65 4753.02 230.301
-    67.87 4693.76 230.903
-    68.86 4615.89 231.395
-    69.72 4634.88 231.906
-    70.66 4612.08 232.498
-    71.44 4618.26 233.074
-    72.08 4662.97 233.546
-    72.83 4763.57 234.028
-    73.48 4849    234.603
-    74.19 4939.23 235.153
-    75.02 5053.56 235.605
-    75.58 5132.87 236.082
-    76.25 5170.34 236.657
-    76.81 5203.68 237.232
-    77.63 5257.26 237.673
-    78.25 5283.73 238.176
-    78.76 5359.6  238.789
-    79.45 5393.57 239.387
-    79.81 5460.83 239.861
-    80.22 5466.95 240.368
-    80.84 5496.29 240.962
-    81.45 5526.77 241.539
-    82.09 5561.8  242.009
-    82.68 5618    242.52
-    83.33 5667.39 243.12
-    84.09 5750.57 243.721
-    84.67 5785.29 244.208
-    85.56 5844.05 244.716
-    86.66 5878.7  245.354
-    87.44 5952.83 245.966
-    88.45 6010.96 246.46
-    89.39 6055.61 247.017
-    90.13 6087.96 247.698
-    90.88 6093.51 248.374
-    92    6152.59 248.928
-    93.18 6171.57 249.564
-    94.14 6142.1  250.299
-    95.11 6078.96 251.031
-    96.27 6047.49 251.65
-    97    6074.66 252.295
-    97.7  6090.14 253.033
-    98.31 6105.25 253.743
-    99.13 6175.69 254.338
-    99.79 6214.22 255.032
-    100.17 6260.74 255.815
-    100.88 6327.12 256.543
-    101.84 6327.93 257.151
-    102.35 6359.9  257.785
-    102.83 6393.5  258.516
-    103.51 6476.86 259.191
-    104.13 6524.5  259.738
-    104.71 6600.31 260.351
-    105.39 6629.47 261.04
-    106.09 6688.61 261.692
-    106.75 6717.46 262.236
-    107.24 6724.2  262.847
-    107.75 6779.53 263.527
-    108.29 6825.8  264.169
-    108.91 6882    264.681
-    109.24 6983.91 265.258
-    109.74 7020    265.887
-    110.23 7093.12 266.491
-    111    7166.68 266.987
-    111.43 7236.5  267.545
-    111.76 7311.24 268.171
-    112.08 7364.63 268.815
-         ];
+18.02 1474.5 150.2
+17.94 1538.2 150.9
+18.01 1584.5 151.4
+18.42 1644.1 152
+18.73 1678.6 152.7
+19.46 1693.1 153.3
+19.55 1724   153.9
+19.56 1758.2 154.7
+19.79 1760.6 155.4
+19.77 1779.2 156
+19.82 1778.8 156.6
+20.03 1790.9 157.3
+20.12 1846   158
+20.1  1882.6 158.6
+20.14 1897.3 159.2
+20.22 1887.4 160
+20.27 1858.2 160.7
+20.34 1849.9 161.4
+20.39 1848.5 162
+20.42 1868.9 162.8
+20.47 1905.6 163.6
+20.56 1959.6 164.3
+20.62 1994.4 164.9
+20.78 2020.1 165.7
+21    2030.5 166.5
+21.2  2023.6 167.2
+21.33 2037.7 167.9
+21.62 2033.4 168.7
+21.71 2066.2 169.5
+22.01 2077.5 170.2
+22.15 2071.9 170.9
+22.27 2094   171.7
+22.29 2070.8 172.5
+22.56 2012.6 173.1
+22.64 2024.7 173.8
+22.77 2072.3 174.5
+22.88 2120.6 175.3
+22.92 2165   176.045
+22.91 2223.3  176.727
+22.94 2221.4  177.481
+23.03 2230.95 178.268
+23.13 2279.22 179.694
+23.22 2265.48 180.335
+23.32 2268.29 181.094
+23.4  2238.57 181.915
+23.45 2251.68 182.634
+23.51 2292.02 183.337
+23.56 2332.61 184.103
+23.63 2381.01 184.894
+23.75 2422.59 185.553
+23.81 2448.01 186.203
+23.87 2471.86 186.926
+23.94 2476.67 187.68
+24    2508.7  188.299
+24.07 2538.05 188.906
+24.12 2586.26 189.631
+24.29 2604.62 190.362
+24.35 2666.69 190.954
+24.41 2697.54 191.56
+24.52 2729.63 192.256
+24.64 2739.75 192.938
+24.77 2808.88 193.467
+24.88 2846.34 193.994
+25.01 2898.79 194.647
+25.17 2970.48 195.279
+25.32 3042.35 195.763
+25.53 3055.53 196.277
+25.79 3076.51 196.877
+26.02 3102.36 197.481
+26.14 3127.15 197.967
+26.31 3129.53 198.455
+26.6  3154.19 199.012
+26.9  3177.98 199.572
+27.21 3236.18 199.995
+27.49 3292.07 200.452
+27.75 3316.11 200.997
+28.12 3331.22 201.538
+28.39 3381.86 201.955
+28.73 3390.23 202.419
+29.14 3409.65 202.986
+29.51 3392.6  203.584
+29.94 3386.49 204.086
+30.36 3391.61 204.721
+30.61 3422.95 205.419
+31.02 3389.36 206.13
+31.5  3481.4  206.763
+31.93 3500.95 207.362
+32.27 3523.8  208
+32.54 3533.79 208.642
+33.02 3604.73 209.142
+33.2  3687.9  209.637
+33.49 3726.18 210.181
+33.95 3790.44 210.737
+34.36 3892.22 211.192
+34.94 3919.01 211.663
+35.61 3907.08 212.191
+36.29 3947.11 212.708
+37.01 3908.15 213.144
+37.79 3922.57 213.602
+38.96 3879.98 214.147
+40.13 3854.13 214.7
+41.05 3800.93 215.135
+41.66 3835.21 215.652
+42.41 3907.02 216.289
+43.19 3952.48 216.848
+43.69 4044.59 217.314
+44.15 4072.19 217.776
+44.77 4088.49 218.338
+45.57 4126.39 218.917
+46.32 4176.28 219.427
+47.07 4260.08 219.956
+47.66 4329.46 220.573
+48.63 4328.33 221.201
+49.42 4345.51 221.719
+50.41 4510.73 222.281
+51.27 4552.14 222.933
+52.35 4603.65 223.583
+53.51 4605.65 224.152
+54.65 4615.64 224.737
+55.82 4644.93 225.418
+56.92 4656.23 226.117
+58.18 4678.96 226.754
+59.55 4566.62 227.389
+61.01 4562.25 228.07
+62.59 4651.86 228.689
+64.15 4739.16 229.155
+65.37 4696.82 229.674
+66.65 4753.02 230.301
+67.87 4693.76 230.903
+68.86 4615.89 231.395
+69.72 4634.88 231.906
+70.66 4612.08 232.498
+71.44 4618.26 233.074
+72.08 4662.97 233.546
+72.83 4763.57 234.028
+73.48 4849    234.603
+74.19 4939.23 235.153
+75.02 5053.56 235.605
+75.58 5132.87 236.082
+76.25 5170.34 236.657
+76.81 5203.68 237.232
+77.63 5257.26 237.673
+78.25 5283.73 238.176
+78.76 5359.6  238.789
+79.45 5393.57 239.387
+79.81 5460.83 239.861
+80.22 5466.95 240.368
+80.84 5496.29 240.962
+81.45 5526.77 241.539
+82.09 5561.8  242.009
+82.68 5618    242.52
+83.33 5667.39 243.12
+84.09 5750.57 243.721
+84.67 5785.29 244.208
+85.56 5844.05 244.716
+86.66 5878.7  245.354
+87.44 5952.83 245.966
+88.45 6010.96 246.46
+89.39 6055.61 247.017
+90.13 6087.96 247.698
+90.88 6093.51 248.374
+92    6152.59 248.928
+93.18 6171.57 249.564
+94.14 6142.1  250.299
+95.11 6078.96 251.031
+96.27 6047.49 251.65
+97    6074.66 252.295
+97.7  6090.14 253.033
+98.31 6105.25 253.743
+99.13 6175.69 254.338
+99.79 6214.22 255.032
+100.17 6260.74 255.815
+100.88 6327.12 256.543
+101.84 6327.93 257.151
+102.35 6359.9  257.785
+102.83 6393.5  258.516
+103.51 6476.86 259.191
+104.13 6524.5  259.738
+104.71 6600.31 260.351
+105.39 6629.47 261.04
+106.09 6688.61 261.692
+106.75 6717.46 262.236
+107.24 6724.2  262.847
+107.75 6779.53 263.527
+108.29 6825.8  264.169
+108.91 6882    264.681
+109.24 6983.91 265.258
+109.74 7020    265.887
+110.23 7093.12 266.491
+111    7166.68 266.987
+111.43 7236.5  267.545
+111.76 7311.24 268.171
+112.08 7364.63 268.815
+];
 %GDPD  GDPQ   GPOP
 
 series = zeros(193,2);
diff --git a/tests/analytic_derivatives/fsdat_simul.m b/tests/analytic_derivatives/fsdat_simul.m
index 159612e577..d4f4a8066f 100644
--- a/tests/analytic_derivatives/fsdat_simul.m
+++ b/tests/analytic_derivatives/fsdat_simul.m
@@ -1,828 +1,828 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/block_bytecode/run_ls2003.m b/tests/block_bytecode/run_ls2003.m
index d59d64cd2e..892f842290 100644
--- a/tests/block_bytecode/run_ls2003.m
+++ b/tests/block_bytecode/run_ls2003.m
@@ -20,12 +20,12 @@ function run_ls2003(block, bytecode, solve_algo, stack_solve_algo)
   disp(['TEST: ls2003 (block=' num2str(block) ', bytecode=' ...
       num2str(bytecode) ', solve_algo=' num2str(solve_algo) ...
       ', stack_solve_algo=' num2str(stack_solve_algo) ')...']);
-fid = fopen('ls2003_tmp.mod', 'w');
-assert(fid > 0);
-fprintf(fid, ['@#define block = %d\n@#define bytecode = %d\n' ...
-              '@#define solve_algo = %d\n@#define stack_solve_algo = %d\n' ...
-              '@#include \"ls2003.mod\"\n'], block, bytecode, ...
-        solve_algo, stack_solve_algo);
-fclose(fid);
-dynare('ls2003_tmp.mod','console')
+  fid = fopen('ls2003_tmp.mod', 'w');
+  assert(fid > 0);
+  fprintf(fid, ['@#define block = %d\n@#define bytecode = %d\n' ...
+      '@#define solve_algo = %d\n@#define stack_solve_algo = %d\n' ...
+      '@#include \"ls2003.mod\"\n'], block, bytecode, ...
+      solve_algo, stack_solve_algo);
+  fclose(fid);
+  dynare('ls2003_tmp.mod','console')
 end
diff --git a/tests/bvar_a_la_sims/bvar_sample.m b/tests/bvar_a_la_sims/bvar_sample.m
index 3dd002e3b8..8093afe18f 100644
--- a/tests/bvar_a_la_sims/bvar_sample.m
+++ b/tests/bvar_a_la_sims/bvar_sample.m
@@ -1,1006 +1,1006 @@
 bvar_data = [
-    0.00000000000, 0.00000000000;
-    -0.00485199480, -0.00034195121;
-    -0.00369702440, -0.01212953600;
-    0.01577573000, -0.00131845390;
-    -0.01132415000, -0.00364839770;
-    0.01158109800, -0.00262917340;
-    -0.00385969150, -0.00374515890;
-    -0.00605244640, 0.00760215990;
-    -0.00027881367, -0.01014485600;
-    0.00328156560, -0.00358791610;
-    -0.01152432500, -0.00064990774;
-    -0.00417541420, -0.02726543200;
-    0.01165937200, -0.01565713900;
-    0.00327415420, -0.01403374100;
-    -0.00262015080, -0.01667459700;
-    -0.01146453600, -0.01088215300;
-    0.00521521470, -0.02177149300;
-    0.00767451980, -0.01671285200;
-    0.01259883800, 0.00306304710;
-    -0.01790411600, -0.01240549400;
-    0.00451096210, 0.00713706070;
-    0.02171339100, -0.00405944740;
-    -0.00984485920, -0.00280935440;
-    0.00303833090, -0.00658279110;
-    0.00496516950, -0.00329239970;
-    0.01425115100, -0.01417161800;
-    -0.00848068480, -0.01036798700;
-    0.01384593500, 0.00307931740;
-    -0.00911261030, -0.00409005360;
-    0.00104231040, -0.00503950650;
-    -0.01669998300, -0.00919063320;
-    0.02192734300, -0.00900963420;
-    0.00895830410, 0.00889444930;
-    -0.00078210473, 0.00303194750;
-    -0.00369206110, 0.00307427120;
-    0.01569838000, -0.00494547550;
-    -0.00518999260, -0.02284842300;
-    0.01668021700, -0.02845341900;
-    -0.02568046200, -0.03263100900;
-    0.00662056690, -0.00759856640;
-    -0.00051553622, -0.00266545800;
-    0.00588163920, 0.00553735730;
-    0.00496782960, -0.00439611810;
-    -0.00917153500, -0.02059437900;
-    0.01824072100, -0.01633834000;
-    0.01007005900, -0.02248933700;
-    -0.00560011310, -0.02417716500;
-    -0.00769812730, -0.00017818698;
-    0.00133784330, -0.00149211110;
-    -0.01435760300, 0.00692602660;
-    0.00404759460, -0.01017014800;
-    -0.00663831950, -0.00315748290;
-    -0.00085548858, -0.02827386400;
-    0.00421366420, -0.02999430500;
-    0.00228340080, 0.00351766350;
-    0.00067972662, 0.00394969830;
-    0.00010249414, -0.00227112120;
-    0.01352092200, 0.00054581385;
-    -0.01119695100, 0.01346546700;
-    0.03037738600, 0.01926781500;
-    -0.00648092580, 0.03341492100;
-    0.00742909040, 0.03054532700;
-    0.00348382550, 0.01877144600;
-    0.00246629280, 0.00970566090;
-    0.01095858000, 0.01093582600;
-    -0.01513041900, 0.02512391700;
-    0.00903471840, 0.03498919400;
-    -0.00618408790, 0.02227141800;
-    0.01096205900, -0.00920153520;
-    0.00262835580, -0.00765528570;
-    0.01114218200, 0.00619863290;
-    -0.00919430790, 0.01755913200;
-    0.01006375400, 0.01441648800;
-    -0.01990465700, 0.00916741770;
-    0.00855497720, -0.00323036000;
-    -0.01369815600, 0.00361482240;
-    -0.00712474120, 0.01056456100;
-    -0.01264778000, 0.00232601930;
-    -0.01423405400, -0.00320915910;
-    -0.00016743283, 0.00840220560;
-    0.00285416310, 0.01212758900;
-    -0.00345522980, -0.01240091400;
-    -0.01061054000, -0.00392867620;
-    -0.01603832900, 0.00257474180;
-    0.00324895860, 0.01867151600;
-    -0.00291754020, 0.01065674500;
-    0.02361004800, 0.01609781500;
-    -0.00318450010, 0.00712827010;
-    0.02139297300, 0.01445064800;
-    0.01460282300, -0.00449260470;
-    0.00647488450, 0.02045964500;
-    0.00854365700, -0.00148195210;
-    -0.02251529400, -0.00256425170;
-    0.00222816500, -0.01526768300;
-    0.02185776000, -0.00714712190;
-    -0.00455624340, -0.00160773030;
-    -0.01246960000, 0.00150635870;
-    0.00924045130, -0.00910181770;
-    0.00343446870, 0.01052361000;
-    0.01349456500, -0.01018272900;
-    -0.00740446960, -0.00215583630;
-    0.00813427010, 0.00314027880;
-    -0.00739251150, -0.01104516400;
-    -0.00135688900, -0.00758587260;
-    0.01004834800, 0.00714729720;
-    0.00071365274, 0.00981284720;
-    0.00354068790, -0.01254811000;
-    -0.02248783700, 0.00397571800;
-    -0.00865090470, 0.00869799720;
-    0.00755320970, -0.00274643140;
-    0.00718197010, -0.01057977500;
-    -0.00890055570, -0.01187215200;
-    -0.00221861280, -0.00737277380;
-    -0.00176862730, -0.00544962520;
-    -0.01488865900, -0.00755715830;
-    -0.01003201200, -0.01536865400;
-    -0.00885387310, 0.00157814460;
-    -0.01057416100, -0.00872661580;
-    0.00529372600, -0.02309533000;
-    -0.00129770280, 0.00439926800;
-    -0.00471011830, 0.00686916260;
-    0.00221095220, -0.00075376512;
-    0.00396970840, -0.00307360450;
-    -0.00949946950, -0.00932127890;
-    -0.01425166300, -0.00887158980;
-    -0.00839041170, -0.00739858640;
-    0.01094292700, -0.00463808010;
-    -0.01503297800, -0.00486242570;
-    -0.00780511670, -0.00013977193;
-    0.00295906390, -0.00244925080;
-    0.00888417030, -0.00027793976;
-    -0.00264289810, -0.00356239480;
-    -0.00233235380, 0.00853562660;
-    0.00999011710, -0.01266408700;
-    0.00615571440, -0.01048649200;
-    0.00129589980, -0.02057649900;
-    -0.00167519580, -0.00756073410;
-    0.00573725950, -0.00893045730;
-    -0.01489402600, 0.00410294180;
-    0.02847956800, -0.00493285520;
-    -0.01474864500, -0.00667757730;
-    0.01322265000, -0.01081593400;
-    -0.01326839900, -0.01371889900;
-    0.01640160600, -0.01247788100;
-    -0.00374336080, 0.00492074290;
-    0.00615137690, 0.01806502100;
-    0.01356203500, 0.01259282000;
-    -0.01542659000, 0.00767045720;
-    0.00642653950, -0.00537146090;
-    0.00310662030, 0.00506285650;
-    -0.00504839670, 0.00859490920;
-    0.00355458360, -0.00183994500;
-    -0.02023486200, 0.00574867890;
-    0.00454694680, 0.01137622400;
-    -0.00387160520, 0.01413229400;
-    -0.01348735800, 0.00439081620;
-    0.01672376100, 0.00070763533;
-    -0.00455330340, -0.00686520060;
-    0.00822146830, -0.01299495800;
-    -0.00426795680, 0.00457871690;
-    0.00550981790, 0.00756567730;
-    -0.01690307400, -0.00726203990;
-    0.01440696000, -0.01560053400;
-    0.00957262890, -0.01337257400;
-    -0.00220497700, -0.00441573200;
-    -0.00056364617, -0.00045505510;
-    -0.00194646630, 0.00321663400;
-    0.01391187800, -0.01801557100;
-    0.00082409925, -0.01950009600;
-    -0.01465276400, -0.00260673980;
-    -0.00650069260, -0.01902260000;
-    0.00029876759, -0.01215615700;
-    0.01261499800, -0.01651988700;
-    0.00063004297, -0.02457780800;
-    0.00169295250, 0.00033544910;
-    -0.00976376420, 0.00505643970;
-    -0.00711589770, -0.00639119460;
-    0.01025748200, -0.00422405210;
-    -0.00945158550, 0.00792116440;
-    -0.01345565600, -0.00015260044;
-    0.00347003790, -0.00603041040;
-    -0.01301538300, -0.01133294300;
-    -0.00750695770, -0.00933159140;
-    -0.00440517780, -0.02171622400;
-    -0.00147922330, -0.02082012000;
-    -0.00906688280, -0.02642304400;
-    0.00194159560, -0.02100981100;
-    -0.00420262710, -0.00838592350;
-    0.01891564200, 0.01082611100;
-    0.00182342580, -0.00240049780;
-    -0.01810654000, 0.01711595900;
-    -0.00212834600, 0.00352360610;
-    0.00178391370, -0.00108616550;
-    -0.00043459404, 0.00088082942;
-    -0.00412604630, 0.01755816600;
-    -0.00064959885, 0.01457685600;
-    0.01347751700, 0.00931501890;
-    0.00352526210, 0.00083007064;
-    -0.01322128800, -0.00201091000;
-    0.00009614403, -0.00995798470;
-    0.00444349320, -0.01249145900;
-    0.00425595950, -0.00116484430;
-    -0.01175602700, 0.00285725700;
-    0.00657894370, 0.00180430300;
-    -0.00704443210, -0.00289686610;
-    -0.00639969420, 0.00144511130;
-    -0.01682459800, -0.01084454800;
-    0.00046732062, -0.01183596800;
-    -0.00265618720, -0.00617053630;
-    -0.00627824550, -0.01772563100;
-    -0.01435354300, -0.00991358750;
-    0.00428677970, 0.01192595200;
-    0.00863044650, 0.00914107900;
-    -0.00273840730, -0.00467048220;
-    0.01769520800, -0.01364493500;
-    -0.00860223420, -0.00593776970;
-    0.00834198560, -0.00768299240;
-    -0.01394435200, -0.01339647000;
-    -0.00251396410, -0.02358333200;
-    0.00252897310, 0.00127176740;
-    0.00229634080, 0.01985044500;
-    -0.01441004500, 0.00210260990;
-    0.00994943720, 0.01327428000;
-    -0.02038994400, 0.01331653800;
-    0.01941131500, 0.00250981050;
-    -0.02126588500, 0.00117877630;
-    0.01703305400, -0.00767290020;
-    -0.01349053100, -0.00602226180;
-    -0.01591448200, -0.00589764240;
-    0.00843590470, 0.01499918200;
-    -0.00014857487, 0.00860687000;
-    -0.02363695800, -0.00112907670;
-    -0.00706394760, -0.00303277220;
-    -0.01303618000, 0.01329845500;
-    -0.00483198940, -0.02019482500;
-    0.00339302700, 0.00572997660;
-    -0.00551248650, 0.00769795860;
-    0.00419796130, 0.00406189010;
-    -0.00370703540, 0.00782197680;
-    0.00867027450, 0.00822771140;
-    0.00596786670, 0.02899416200;
-    0.00681206890, 0.02001652400;
-    0.00165106500, 0.00849942220;
-    0.01299251700, 0.00086235046;
-    -0.00748960250, 0.00782463780;
-    0.00209973650, 0.00815596800;
-    -0.00850592120, 0.02334669100;
-    0.01134628100, 0.01134613400;
-    -0.01352224100, -0.00836556270;
-    0.00671531310, -0.01956063600;
-    -0.00242272570, -0.00033519061;
-    0.01284221800, -0.00689856370;
-    -0.01145770400, -0.01209985200;
-    0.00424026140, -0.00680320230;
-    0.00499683310, -0.00186745700;
-    -0.00379175090, -0.00973519550;
-    -0.00284374760, -0.00534973380;
-    0.00751068230, -0.00172811330;
-    -0.00973646530, -0.01550932400;
-    0.01166327400, -0.01425923100;
-    0.00160914390, -0.00604851180;
-    -0.00663530550, -0.00054579530;
-    0.00060567236, 0.02071117500;
-    -0.00036915903, 0.01075306500;
-    -0.02211141600, 0.01878292800;
-    0.00686511410, 0.00102341950;
-    -0.00340655980, 0.00238579960;
-    -0.00067203259, 0.00114114460;
-    -0.00102357060, 0.00753831560;
-    -0.00768802670, -0.00839238920;
-    0.01638687000, 0.00724520850;
-    -0.00347730340, 0.00605236490;
-    0.00269696720, 0.02358320200;
-    -0.01185299400, -0.00448258220;
-    -0.00641221420, 0.00183018270;
-    0.02135322200, 0.00817785940;
-    0.00869419570, -0.00233532870;
-    -0.00769650030, -0.00544744100;
-    0.00878221650, -0.00288025810;
-    -0.00427262690, -0.00458403970;
-    0.01034842700, -0.00944620050;
-    0.00019401874, -0.02223294900;
-    -0.00148483690, -0.00943247910;
-    -0.00436740400, -0.01781865300;
-    0.00173273960, -0.00608950980;
-    -0.01099621500, -0.00400127680;
-    0.02741524200, -0.01422095500;
-    -0.00882605320, -0.00466699960;
-    0.01370161600, -0.01526308600;
-    0.00054116472, -0.00448123640;
-    0.00621596090, 0.00724029820;
-    -0.01069932100, -0.00560117420;
-    -0.01421629600, 0.00928500080;
-    0.01192448400, 0.02028709800;
-    -0.01069542700, 0.01139402200;
-    0.01009124900, 0.00256825410;
-    0.00127767120, 0.00434814080;
-    0.00499351370, -0.00928891760;
-    -0.00473548910, -0.00480540750;
-    0.00740867780, 0.00620164840;
-    -0.00569582270, -0.00336372610;
-    0.02118048300, 0.00751171350;
-    -0.02275689800, 0.00448348720;
-    -0.00180431540, 0.00477640310;
-    -0.00343045450, 0.02132982500;
-    -0.00110349160, 0.01799333500;
-    0.00566623340, 0.00824425200;
-    0.01008643600, -0.01564701600;
-    0.01109274800, -0.01687864900;
-    -0.01099148700, -0.01485227600;
-    0.02434629100, -0.02618405000;
-    0.00145410160, -0.01696036900;
-    -0.02344772100, 0.00088506469;
-    0.01081117400, 0.01607764500;
-    -0.01274696100, 0.01073171700;
-    -0.02814399500, -0.01204674900;
-    0.01467717300, 0.01001183700;
-    -0.01282640100, 0.00785533930;
-    -0.00039151466, -0.00158353920;
-    0.00506089730, 0.01103509500;
-    0.00520334890, 0.00764525420;
-    -0.00791932050, 0.01578666600;
-    -0.02282695200, 0.02060965800;
-    -0.00477700370, 0.00444865870;
-    -0.00001976087, 0.00925757550;
-    0.00031481039, -0.01739030000;
-    0.01023393500, -0.00412322340;
-    -0.00657133560, 0.01098436400;
-    0.01332517600, 0.01175247000;
-    0.00853561840, 0.01257092400;
-    -0.00990227900, 0.00971206290;
-    0.00601343650, 0.01676401700;
-    0.02034657200, 0.00380624610;
-    -0.01610970400, -0.00382222490;
-    -0.00784886630, -0.01541948200;
-    -0.01486246300, 0.00046089183;
-    0.00059140790, 0.00977498470;
-    0.00131100280, 0.01144934500;
-    -0.00249520130, 0.00763555490;
-    -0.00995953580, 0.00947764900;
-    0.00515067260, -0.00447725650;
-    -0.00628485890, -0.00625777520;
-    -0.00055236814, -0.00045996980;
-    0.00907149900, 0.00550255670;
-    -0.02189032300, 0.00647248100;
-    0.02009786100, 0.00745576110;
-    -0.00891947350, -0.01155851100;
-    0.00125060520, -0.01440449400;
-    -0.00331509880, -0.01211877600;
-    0.00176437740, 0.00308533290;
-    -0.00423796010, 0.00764018890;
-    0.00502629330, -0.00524800480;
-    -0.01859839300, -0.01602257900;
-    0.00760957450, -0.00063382743;
-    0.01352106500, -0.02070491800;
-    -0.01484082600, -0.01837788900;
-    -0.00180805220, 0.00180058220;
-    0.00646895960, -0.01067731900;
-    -0.00319460360, 0.00204543950;
-    0.01283819000, 0.00788961100;
-    0.00897728170, 0.01235817300;
-    -0.00911367310, 0.00216576220;
-    0.00247233850, 0.00197748290;
-    0.01385073000, -0.00628759110;
-    -0.00244131680, -0.00549276880;
-    0.00247377740, 0.00010081507;
-    0.00223374800, 0.00167638370;
-    0.00622179480, 0.00636981950;
-    -0.01451075100, 0.00349200990;
-    0.01701029100, 0.01655859500;
-    0.00540505380, 0.00805163880;
-    -0.01032426300, 0.00545309340;
-    0.01498743600, 0.00845128410;
-    0.02407752900, 0.00198533570;
-    -0.00960939560, 0.00853352640;
-    -0.01023723300, 0.01335469200;
-    -0.00270911950, 0.00849549120;
-    -0.00369286780, -0.00121018950;
-    0.00826982030, 0.00814966480;
-    -0.00479820070, -0.00430578830;
-    0.01720646400, 0.01156837700;
-    0.01664923600, -0.00173370660;
-    -0.00369501470, 0.02465627800;
-    -0.01376969800, 0.01146760700;
-    0.00789807890, 0.00927350640;
-    -0.02031981900, 0.00182745860;
-    0.00893684220, -0.00310349950;
-    -0.00058117960, -0.01036477300;
-    0.00398354320, 0.00524400960;
-    -0.01072630400, 0.00893152600;
-    -0.01281647700, 0.00198587250;
-    0.00527370920, -0.00790188520;
-    -0.00006975255, 0.02076850400;
-    -0.00795713420, 0.01823942500;
-    0.00709618300, 0.00210983490;
-    0.00385266830, 0.00600135910;
-    -0.01078681200, -0.02391983000;
-    0.02052245600, -0.01704146200;
-    -0.00944289330, -0.01192082800;
-    -0.00394662410, -0.02925877900;
-    0.01354173000, -0.02406313000;
-    -0.00718647540, -0.01098199500;
-    0.02058008400, -0.00638229480;
-    -0.00854536810, -0.00450554770;
-    0.00866409980, -0.00330021160;
-    -0.00686748550, -0.02114934800;
-    0.00445321310, -0.00847144790;
-    0.00801991790, -0.00241975850;
-    -0.00120417690, -0.00393759540;
-    -0.00494995210, -0.02696714500;
-    -0.01267562000, -0.01038903900;
-    0.00353257720, -0.00908920320;
-    -0.00975382080, 0.01760238600;
-    -0.01260558500, 0.02760804400;
-    -0.00316022200, 0.02508482500;
-    0.00082647851, 0.01143638600;
-    0.00479109240, -0.00074145901;
-    0.00524306200, -0.00265805690;
-    -0.00578202170, 0.01897214300;
-    0.00893716350, -0.00482091210;
-    -0.01982108100, -0.01158432200;
-    0.03126658600, 0.00409586630;
-    -0.00273803110, -0.00161845770;
-    -0.01761996600, 0.01334919500;
-    0.00757518640, 0.01502052000;
-    -0.00292343760, 0.02766780900;
-    0.00547019230, 0.02912370300;
-    0.00907626300, 0.01593786700;
-    -0.00455934350, 0.00063507953;
-    0.00508186300, 0.02238021200;
-    0.01289502600, -0.00593488700;
-    0.00236970730, 0.00388511510;
-    0.00883958660, -0.00257234340;
-    0.01720261100, 0.01188001800;
-    -0.00006246719, -0.00203679550;
-    -0.01575553100, -0.00676416250;
-    0.00814828810, -0.00356291510;
-    0.00379630600, -0.00175582960;
-    0.01519689300, 0.01032388100;
-    0.00604297190, -0.01207842000;
-    0.00784725260, 0.00484980530;
-    0.00757792060, 0.00642184950;
-    0.00097163435, -0.01346602900;
-    -0.00080646536, -0.01005009400;
-    -0.00544594560, -0.01436795200;
-    -0.00170059540, 0.00889975570;
-    -0.00234754820, 0.01182947400;
-    0.01225048700, 0.01299069100;
-    -0.01026220700, 0.01595514900;
-    -0.00944973050, 0.00843166930;
-    0.00874279600, -0.01267545100;
-    -0.00362453400, 0.01054616000;
-    -0.00084828359, -0.00199187910;
-    0.01428511500, -0.00406989120;
-    -0.00882438660, -0.02808280200;
-    0.00704659960, -0.02179662700;
-    -0.00410832820, -0.00192698990;
-    -0.00147723550, -0.00896090550;
-    0.00459580110, 0.01065118700;
-    -0.00605537920, -0.00488607770;
-    -0.00027256522, -0.00401632280;
-    -0.01978864800, -0.00626533710;
-    0.00607277630, -0.01497391500;
-    -0.01143713900, -0.00323604060;
-    0.01228681400, -0.00172676930;
-    -0.00793191320, -0.00843394290;
-    0.00991768270, -0.00966059600;
-    0.00992587030, -0.00349087710;
-    0.00505795500, -0.00671022150;
-    0.00788954440, 0.00332091270;
-    0.01182401000, -0.00092086600;
-    -0.00660517190, -0.01039393600;
-    0.01134255700, -0.00751655470;
-    0.00038790604, -0.01755658800;
-    -0.00807366080, 0.00988425450;
-    -0.00088186225, 0.00561425140;
-    -0.00923030850, 0.00486096700;
-    0.02739705100, 0.01565417800;
-    -0.02436147600, -0.00475603930;
-    -0.00474490120, 0.01578322600;
-    0.00832453990, 0.00998216280;
-    -0.00713154110, -0.00411591940;
-    0.01586726000, -0.00728781440;
-    0.00901038060, 0.00388117450;
-    -0.01278363800, 0.00560553200;
-    -0.00341314840, -0.01414107100;
-    -0.01413398600, 0.02152507100;
-    -0.00084512439, 0.00416185940;
-    -0.00213784220, -0.00065205271;
-    0.00447733340, -0.01064756800;
-    0.01404655600, -0.00371620300;
-    0.02279766500, 0.00569317110;
-    -0.00682377560, -0.00308033630;
-    0.01124674300, -0.00598650510;
-    -0.01376857100, -0.00734424350;
-    0.00966640550, 0.00595518380;
-    -0.01042231400, -0.00339618560;
-    -0.00210584750, -0.01492290700;
-    0.00793225120, -0.01773942700;
-    -0.00746719420, -0.02023369900;
-    0.00320403030, -0.00425187160;
-    -0.01498758300, -0.00172616900;
-    -0.00125324900, -0.01646365100;
-    -0.02719981800, -0.00720045620;
-    0.00507847130, -0.00507992190;
-    0.00408332760, -0.00696923090;
-    0.00206618350, -0.01585097200;
-    -0.00266175350, -0.01324462400;
-    -0.00031912447, 0.00100260870;
-    -0.01038003300, 0.01981869200;
-    -0.01218511000, 0.02173349700;
-    0.01136888100, 0.02204497600;
-    -0.01202743900, 0.00829954090;
-    -0.00021401182, -0.00175504700;
-    -0.00596558870, 0.00380210670;
-    0.01569683000, 0.00347734000;
-    0.00801820710, -0.00144632600;
-    -0.02250001500, 0.00504014370;
-    0.01240035200, -0.00942954560;
-    0.00858523030, -0.00623408720;
-    -0.01626079300, 0.00397289760;
-    0.00723434090, 0.00783343600;
-    -0.00919603870, -0.00059345202;
-    0.01085680800, 0.00243835800;
-    -0.00888834510, 0.00445439110;
-    -0.00052505879, 0.03196236900;
-    0.00407476500, 0.02115388200;
-    0.01036235200, 0.00961476180;
-    0.00176157930, 0.00765388480;
-    -0.00053452369, -0.00819328090;
-    0.00703537300, 0.00742844800;
-    -0.00014851151, 0.02083584000;
-    0.00393808440, -0.00220486220;
-    0.00068062472, -0.01090794200;
-    0.00162973150, 0.01016291400;
-    0.00956508570, 0.00314153260;
-    0.00040965810, 0.00424568390;
-    -0.00342205330, 0.01575583500;
-    -0.00666487520, 0.03253912100;
-    0.00357257790, -0.00193096120;
-    -0.00479944880, 0.00276754820;
-    -0.02008366200, 0.01813183600;
-    0.01024278800, 0.00899311180;
-    0.00331510340, 0.00874296380;
-    -0.00367787790, 0.01032780200;
-    0.02355042500, 0.00879580860;
-    -0.02098926500, -0.00010779314;
-    0.02242707300, -0.00613259750;
-    -0.00708729650, -0.00601044260;
-    0.01401990900, 0.00501994170;
-    0.01116776500, 0.00055147171;
-    -0.00789437150, 0.00307380160;
-    -0.00079795363, 0.00071918763;
-    0.00024460379, -0.01076551400;
-    0.00413459290, -0.01001296500;
-    -0.02104470800, 0.00080366086;
-    0.01176522400, 0.01678986600;
-    -0.01816742200, 0.01265489200;
-    -0.01569319400, -0.00779392590;
-    -0.00283881540, -0.01456612300;
-    0.00040506759, 0.00058628945;
-    0.00945908740, 0.00075994717;
-    -0.00979130970, -0.00461547690;
-    0.00265457950, 0.00878213250;
-    -0.02489547100, -0.00853506250;
-    0.00102885490, 0.00684600140;
-    -0.00130745500, -0.00382792360;
-    0.00762038530, -0.00423731260;
-    -0.00147484510, 0.01924464600;
-    0.00727643910, 0.00989738330;
-    -0.00160290830, -0.00187813300;
-    0.00428527540, -0.00219760860;
-    -0.03317646800, 0.00116740200;
-    0.01658756800, 0.00518323290;
-    0.00785352990, -0.00838975030;
-    -0.00451492520, 0.00547096380;
-    -0.00320296040, -0.02426730500;
-    0.01417389300, -0.03256394100;
-    -0.00661515490, -0.00421165110;
-    0.01470659000, -0.00042946856;
-    -0.02350439700, 0.00348050750;
-    0.00366709700, 0.00938778820;
-    -0.00046899718, 0.00674591590;
-    0.01975974900, 0.00026316635;
-    -0.00441742910, -0.01386567100;
-    0.01032374900, -0.01708067200;
-    -0.00343647840, -0.00627385440;
-    0.01341498100, -0.00152079670;
-    -0.01328190700, 0.00750671680;
-    -0.00194644230, 0.01508688300;
-    -0.01114553600, 0.03635301900;
-    -0.00904033490, 0.00672707110;
-    0.00213535390, 0.01554549900;
-    -0.00147753730, 0.01329763200;
-    0.00116701690, -0.00008942344;
-    0.00341716790, -0.00317315000;
-    -0.01381591900, -0.00277583010;
-    0.01813890000, -0.01732665300;
-    -0.01199155600, -0.00610674530;
-    0.00444251760, 0.00143958250;
-    0.01005538100, -0.00644700780;
-    -0.00343175930, -0.00473816370;
-    0.00077039637, 0.00638741850;
-    0.01094944500, 0.02697045000;
-    -0.00052522484, 0.00372434700;
-    -0.01200624400, 0.01233773200;
-    -0.00631723760, -0.00616098400;
-    -0.00267661130, -0.00189383380;
-    0.01800845900, 0.00251762240;
-    -0.00070703292, -0.00777855150;
-    0.01011331300, 0.00476866670;
-    0.00535917660, -0.01284853600;
-    0.01971133300, -0.00711727660;
-    0.00471936570, -0.00527618130;
-    -0.01922986900, -0.01071921700;
-    0.01058494000, -0.01208949400;
-    0.00252107150, -0.01009809800;
-    -0.00635082770, -0.00325476460;
-    -0.00338369140, -0.00678190390;
-    -0.00560879390, 0.01429874600;
-    -0.00730724340, 0.00839658360;
-    0.01073289400, 0.01332610500;
-    0.01411626800, 0.01741862000;
-    -0.00578601340, 0.01236888600;
-    -0.00640703040, 0.00204314960;
-    -0.00277533020, 0.00809611970;
-    0.01131091600, 0.02231586400;
-    -0.00290565000, 0.01281723000;
-    -0.00466721850, 0.01066850100;
-    0.00003017692, -0.00045287596;
-    0.01184006400, 0.02096790900;
-    -0.01807510700, 0.00007107626;
-    0.01200216000, 0.01695265800;
-    -0.00233991190, -0.00762127830;
-    0.01731830300, -0.01470775300;
-    -0.00871332370, -0.00536830240;
-    0.01416221600, -0.00020614753;
-    -0.00720019210, -0.01392737100;
-    -0.01677725400, -0.00963694400;
-    0.00376816350, -0.01806841400;
-    -0.01168453900, -0.02520963700;
-    -0.00242508010, -0.01003563800;
-    -0.00398142050, -0.00574731140;
-    0.01750174900, -0.00421972000;
-    0.00585300950, -0.01083337500;
-    0.00418233240, -0.01247003500;
-    -0.00614589600, -0.00520667130;
-    0.01135575200, 0.00930381060;
-    0.00591022240, -0.01228150100;
-    -0.00330099160, -0.01714747100;
-    0.00461113550, 0.00279658620;
-    0.01844313500, -0.00381210120;
-    -0.00730330260, -0.01948227900;
-    0.00114113770, 0.00359516800;
-    -0.01340516800, 0.01142347700;
-    0.00242013210, 0.01479981600;
-    -0.01177683000, 0.00005024148;
-    -0.00140618160, 0.01536890200;
-    -0.00496745630, 0.03046414700;
-    0.01227024900, 0.01537145000;
-    0.00015891232, 0.02228270700;
-    -0.00275003980, 0.01807071800;
-    0.00213022040, 0.02195794900;
-    -0.00456855430, -0.00847451820;
-    0.00368394090, 0.00167170220;
-    0.00053423273, -0.00101325060;
-    0.01502387300, -0.00299957890;
-    -0.00364911970, 0.01043386100;
-    0.00292325880, 0.00369136530;
-    -0.01000623700, 0.01065743200;
-    -0.00737237320, 0.01173679900;
-    0.00470212590, -0.00172331660;
-    0.00064041836, -0.00112935140;
-    0.00801705600, 0.00908517860;
-    -0.01752767500, 0.01340269200;
-    -0.00167078620, 0.00984110940;
-    -0.00736765550, -0.00183892060;
-    0.00171112270, 0.00325198900;
-    -0.00459124470, 0.00333673000;
-    0.00090628466, -0.00136710980;
-    -0.00953744110, -0.00330812520;
-    0.01382525800, -0.00074019487;
-    0.00182379050, 0.00271536240;
-    -0.00144417870, -0.01965826300;
-    0.00262746520, -0.00738069840;
-    -0.00315157850, -0.00579473100;
-    -0.00149920540, -0.00471902850;
-    0.01724853900, -0.00444270650;
-    -0.00323729290, 0.01599976100;
-    0.00818759990, 0.00475884400;
-    -0.00670440270, 0.00662529590;
-    0.00761535810, -0.01531597000;
-    -0.00898965620, -0.01407707000;
-    -0.00095826091, 0.00110351110;
-    0.01922539900, 0.00976795960;
-    0.00107279500, -0.00201196850;
-    0.00184468230, -0.01900434900;
-    0.00206808720, -0.01044463400;
-    0.01012566700, -0.00995885900;
-    -0.00264965050, -0.00197648630;
-    0.01007788900, -0.01722402900;
-    0.00857747020, -0.00978182180;
-    -0.00390662100, -0.00260237180;
-    0.00692129190, -0.00378992080;
-    0.00029091915, -0.00259509570;
-    -0.00360680420, -0.00713074060;
-    -0.00860419840, -0.02057721600;
-    0.00044751379, -0.01449312400;
-    -0.00145591500, -0.01523862700;
-    0.01682939900, -0.01270554100;
-    0.00567881680, -0.01943714400;
-    0.00848238640, -0.00223198500;
-    0.00325092290, -0.00082652871;
-    0.01223402300, 0.00644947070;
-    0.00051464095, 0.00898356600;
-    0.01260583200, 0.00834137450;
-    0.01064180800, -0.00190874350;
-    0.01005380200, -0.00116214780;
-    -0.00116234090, -0.00675879300;
-    -0.02332964500, -0.01838281800;
-    -0.00696804150, -0.00944441820;
-    -0.01819834100, -0.01808908500;
-    0.02201795200, -0.00716774540;
-    -0.01672468800, -0.00826797040;
-    0.01170834800, -0.00949888840;
-    -0.00615648660, -0.00355936780;
-    0.00535839890, 0.00559401360;
-    -0.00703042400, -0.01059598600;
-    0.00318876840, 0.00011921905;
-    -0.01874264500, 0.00790409920;
-    0.00552417410, 0.00766524880;
-    -0.01497631100, -0.00238697410;
-    -0.00439945850, 0.00914147460;
-    0.01828331600, -0.00206804820;
-    0.00068550745, -0.00122205150;
-    -0.00759101970, -0.01153777900;
-    0.00648242600, -0.01640673600;
-    -0.00543452600, -0.02063951400;
-    0.00155147620, -0.02622296300;
-    -0.00564122550, -0.01103051900;
-    0.00341228520, 0.00583169540;
-    0.00646375290, 0.00936322370;
-    -0.00478098810, 0.01100696200;
-    0.00573895680, -0.00239250900;
-    -0.00970467940, 0.00871843140;
-    0.02038830400, 0.01480759600;
-    0.00026758833, 0.02045451100;
-    0.00791676330, 0.01696119900;
-    0.00151902060, 0.00369441970;
-    0.00695727800, -0.00513502650;
-    -0.01493114700, 0.00259436800;
-    0.01356549700, -0.00125019700;
-    0.01129927200, -0.01805236600;
-    -0.01605158000, -0.00110185760;
-    0.01796653700, -0.01000584500;
-    -0.01611534000, -0.00357616450;
-    0.00480241820, -0.01235228300;
-    0.00765884520, 0.00199081530;
-    -0.00445450970, 0.00373594290;
-    0.00836337530, 0.00844062310;
-    0.00000608640, 0.00814252730;
-    -0.00242506490, 0.00107690310;
-    -0.00655880720, -0.01044158000;
-    0.00959842540, -0.01282298400;
-    0.00710086670, -0.00628089330;
-    -0.01539525500, 0.00145629030;
-    -0.01019127500, 0.00506089250;
-    -0.00415539980, 0.00121860340;
-    -0.00222234300, -0.00235775530;
-    0.00145298240, 0.00074290054;
-    0.00383045620, 0.00499606180;
-    -0.01581364300, 0.00991048820;
-    -0.00505534040, 0.00362636340;
-    0.01275955400, -0.00852445050;
-    -0.00646790680, -0.00849281040;
-    0.00822635380, 0.00506450010;
-    -0.00999777920, 0.01192172300;
-    0.01259965900, -0.01267426000;
-    -0.00334331530, -0.01193505000;
-    0.00531845400, 0.00036486233;
-    0.00324434670, 0.01617751400;
-    -0.00182198070, 0.01450107800;
-    -0.01316162900, 0.00575151330;
-    -0.00245819090, -0.00185123220;
-    0.00716449280, 0.00787328720;
-    -0.00111474240, 0.00293388970;
-    -0.01296516800, -0.00225148550;
-    0.00284074300, -0.00331728310;
-    0.01133071500, 0.02057075900;
-    -0.00100379480, 0.01280891700;
-    0.00049387445, 0.00507951680;
-    0.00229614130, -0.00764568280;
-    -0.01313835900, -0.00525744170;
-    0.00966316020, -0.00556556230;
-    0.01118421300, -0.00490035560;
-    0.01672044300, -0.00988298390;
-    -0.01088174000, -0.00216302190;
-    -0.00920015300, 0.00190343440;
-    0.00027256857, -0.00606717780;
-    0.00745269630, 0.00488672340;
-    -0.00485878040, 0.00337006910;
-    -0.01014946800, 0.00628172350;
-    0.00133496050, -0.00095504333;
-    0.01278446800, 0.00344898280;
-    -0.00703416400, 0.00739247270;
-    0.01328898700, 0.00304838790;
-    -0.01491870500, 0.00633638140;
-    0.00873045630, 0.00319640990;
-    0.00254909610, 0.01211332200;
-    0.00232342310, 0.00470528570;
-    -0.00764997870, -0.00240813430;
-    -0.01090000900, -0.01170578800;
-    0.00843239100, -0.01170118700;
-    -0.02507916900, -0.01158650100;
-    0.04003462300, -0.01629908500;
-    -0.01222446500, -0.01477344200;
-    0.00521617900, -0.00968336430;
-    0.01952769300, -0.02338928900;
-    -0.00455805500, -0.01208632300;
-    -0.00421777900, -0.01515016500;
-    -0.02292950600, 0.00681974800;
-    0.02065804000, -0.01601951200;
-    -0.01175698600, -0.01763198100;
-    0.00847885710, -0.01709137000;
-    -0.00522204640, 0.00520781450;
-    0.01653303200, 0.01230743800;
-    0.01491689300, 0.02278097800;
-    -0.00390021000, -0.00599679960;
-    0.00987391320, -0.01527627300;
-    -0.01292332700, -0.01725711000;
-    -0.00611290270, -0.00008627481;
-    0.01173359600, 0.00525802720;
-    0.00023658130, 0.00219369170;
-    0.00527818840, -0.01008107600;
-    -0.00805139170, -0.01193710000;
-    -0.01872491200, 0.00860016370;
-    -0.01259698500, -0.01756964500;
-    -0.00088728350, -0.01512096000;
-    -0.01535824800, -0.01295353000;
-    0.02003583600, -0.00614556620;
-    -0.00662873120, 0.00258939970;
-    0.02039917600, -0.00012182475;
-    -0.00137236040, -0.00075700965;
-    -0.01450454300, -0.00207827570;
-    0.01535757000, 0.00707412260;
-    -0.01704817500, -0.00431544930;
-    0.00832049550, -0.01881308400;
-    0.00788077160, -0.01301967100;
-    -0.00535764100, -0.02307963700;
-    0.01684468900, -0.01761785700;
-    -0.00494331070, -0.02023850500;
-    -0.01844518300, -0.01120281300;
-    0.01030114100, -0.00246253960;
-    0.00737732820, 0.01367079900;
-    0.00930385080, -0.01638037700;
-    0.01184141400, -0.00128950800;
-    -0.02316092800, 0.00518400230;
-    0.01259350700, 0.01851841100;
-    0.00032334407, 0.00708510310;
-    -0.00380004070, 0.01466849000;
-    0.00572216670, 0.02763848700;
-    0.01450073300, 0.02130598400;
-    -0.00061716695, 0.01299269100;
-    0.00032716641, 0.02931071500;
-    0.00102466110, 0.01050204800;
-    -0.00339657480, -0.00413612190;
-    0.01311750600, -0.00235546960;
-    0.00609382540, 0.00646251750;
-    -0.00126880700, 0.01452674700;
-    -0.00768738760, 0.01051401500;
-    0.01058750900, 0.00661389120;
-    -0.00857671250, 0.00564091490;
-    0.00603614820, 0.00790147090;
-    -0.00383731350, 0.01219309200;
-    -0.00750234770, -0.00565016960;
-    -0.01197183700, -0.01579100100;
-    0.00940025550, 0.01919136600;
-    -0.00001261024, 0.02626728500;
-    -0.01119718500, 0.00144775010;
-    0.02249039100, 0.02039881000;
-    -0.00379732890, -0.01609038000;
-    0.01565908800, -0.00588713290;
-    0.00875294490, 0.00373467350;
-    0.00256396420, 0.01632317700;
-    -0.00451786920, -0.00480455360;
-    -0.00790291250, 0.00345569200;
-    -0.01455265100, -0.01382336400;
-    0.01350253300, 0.00019931557;
-    -0.00674284800, 0.00449999260;
-    0.02374096100, -0.00641924120;
-    -0.02211973900, -0.00053401624;
-    0.01207118500, -0.00983951590;
-    -0.00702998800, -0.02173194800;
-    0.00650176870, -0.03939793300;
-    0.01983586800, -0.01688164300;
-    -0.00523048000, -0.01586871000;
-    -0.00024937096, -0.00762047480;
-    0.01848711000, -0.02202737800;
-    0.00320481510, 0.00115403630;
-    -0.00339570830, -0.00416020450;
-    0.00292867830, -0.00800372950;
-    -0.00085958037, -0.00702345910;
-    -0.00661261130, -0.00240180080;
-    0.00915375200, -0.00072184277;
-    -0.02097610500, 0.00164769990;
-    0.00794447800, 0.00132242720;
-    0.00417510660, -0.00030181197;
-    -0.00634899330, -0.01677800600;
-    0.00999671400, -0.00762022470;
-    -0.01004270400, 0.00644466200;
-    0.00245296560, -0.00189053390;
-    -0.00558639080, -0.00629843410;
-    0.00063566426, 0.00748679840;
-    -0.00197196620, -0.01231472900;
-    -0.00858143530, -0.00982022010;
-    0.01118201300, -0.00005704770;
-    -0.01452712100, 0.00525489720;
-    0.00556580190, -0.00614996780;
-    0.00722027820, 0.00126887710;
-    -0.00106240920, 0.00248088000;
-    0.00266047030, 0.00506315460;
-    -0.01615042800, -0.00024735048;
-    0.00690899540, -0.02230154100;
-    0.00016806370, -0.00703005220;
-    0.01157961100, -0.00046847502;
-    -0.00569027140, -0.00074088147;
-    0.00279183700, -0.01112727400;
-    0.01159847500, -0.01397495400;
-    -0.01618859800, -0.03057030300;
-    0.00051325767, -0.00865006790;
-    0.00549707250, 0.00357878980;
-    -0.00970590920, -0.00253900500;
-    0.01545455300, 0.00679668570;
-    -0.01066617100, -0.00621207310;
-    0.00575491460, -0.00657640880;
-    -0.00605682630, 0.01005724800;
-    -0.00028086638, 0.01720437100;
-    0.00314218690, -0.00112510120;
-    -0.01232869600, 0.00529184200;
-    0.00156071380, 0.00332171610;
-    0.01586504900, -0.00687919610;
-    -0.00700561370, 0.00627937710;
-    0.00416313760, 0.01338622200;
-    -0.00469103860, -0.00207565840;
-    -0.00515967500, -0.02677465800;
-    -0.00329796470, -0.02347414900;
-    0.00458593860, -0.01994345300;
-    0.00449779160, -0.01500910700;
-    -0.01450006100, -0.02433756900;
-    -0.00982530810, 0.00515777190;
-    0.02169452900, 0.00395559630;
-    -0.02732960700, -0.01296309000;
-    -0.00943391470, 0.00970794530;
-    0.00883871190, -0.00847782470;
-    -0.00641242250, -0.00159739350;
-    -0.00622211610, -0.00023249961;
-    0.01103231400, 0.01345929400;
-    -0.01604871600, 0.01444581500;
-    0.00408581520, 0.00391976300;
-    -0.00585816760, -0.00136833520;
-    0.01285105500, -0.01355861400;
-    -0.01282979900, -0.02075753400;
-    0.00240514790, -0.00583408830;
-    -0.00821620830, -0.00917124260;
-    0.01161346900, 0.00589059210;
-    -0.00416354780, 0.01478035400;
-    0.00910147760, 0.00162353340;
-    0.00645020290, -0.00029596225;
-    0.00664065850, 0.00334591190;
-    -0.01628421500, -0.01667108200;
-    0.01017428900, -0.01182986900;
-    -0.01740919900, 0.00421845090;
-    0.01419528300, -0.00170271310;
-    -0.01832044100, -0.00271804760;
-    0.00478798390, 0.01451607600;
-    -0.01552720100, 0.00680642330;
-    0.00557794300, 0.01041172100;
-    0.00418925410, -0.00240398610;
-    -0.00542981940, -0.01092214200;
-    0.01256706900, -0.01379128400;
-    -0.01899332900, -0.00274706900;
-    0.00907149380, -0.00663018700;
-    0.01506829200, -0.00293179520;
-    -0.01827722500, -0.00283953570;
-    -0.00150598710, 0.00448947120;
-    0.00689968130, 0.01392841800;
-    0.00838313220, 0.00056270157;
-    -0.01889400800, 0.00445784700;
-    0.01083541500, -0.00433810380;
-    0.00975696280, -0.01959502400;
-    -0.00687770220, -0.01815605200;
-    -0.01112640300, -0.01494359600;
-    -0.00472052850, -0.01500657700;
-    -0.01367499100, -0.00267410440;
-    0.01489290400, -0.00432076310;
-    -0.00262017640, -0.00290406560;
-    -0.00261222360, 0.00098096246;
-    0.00452692100, -0.01865841900;
-    0.00118941740, 0.00323370830;
-    0.00029588303, 0.00675359970;
-    -0.01081920700, 0.02384338300;
-            ];
+0.00000000000, 0.00000000000;
+-0.00485199480, -0.00034195121;
+-0.00369702440, -0.01212953600;
+0.01577573000, -0.00131845390;
+-0.01132415000, -0.00364839770;
+0.01158109800, -0.00262917340;
+-0.00385969150, -0.00374515890;
+-0.00605244640, 0.00760215990;
+-0.00027881367, -0.01014485600;
+0.00328156560, -0.00358791610;
+-0.01152432500, -0.00064990774;
+-0.00417541420, -0.02726543200;
+0.01165937200, -0.01565713900;
+0.00327415420, -0.01403374100;
+-0.00262015080, -0.01667459700;
+-0.01146453600, -0.01088215300;
+0.00521521470, -0.02177149300;
+0.00767451980, -0.01671285200;
+0.01259883800, 0.00306304710;
+-0.01790411600, -0.01240549400;
+0.00451096210, 0.00713706070;
+0.02171339100, -0.00405944740;
+-0.00984485920, -0.00280935440;
+0.00303833090, -0.00658279110;
+0.00496516950, -0.00329239970;
+0.01425115100, -0.01417161800;
+-0.00848068480, -0.01036798700;
+0.01384593500, 0.00307931740;
+-0.00911261030, -0.00409005360;
+0.00104231040, -0.00503950650;
+-0.01669998300, -0.00919063320;
+0.02192734300, -0.00900963420;
+0.00895830410, 0.00889444930;
+-0.00078210473, 0.00303194750;
+-0.00369206110, 0.00307427120;
+0.01569838000, -0.00494547550;
+-0.00518999260, -0.02284842300;
+0.01668021700, -0.02845341900;
+-0.02568046200, -0.03263100900;
+0.00662056690, -0.00759856640;
+-0.00051553622, -0.00266545800;
+0.00588163920, 0.00553735730;
+0.00496782960, -0.00439611810;
+-0.00917153500, -0.02059437900;
+0.01824072100, -0.01633834000;
+0.01007005900, -0.02248933700;
+-0.00560011310, -0.02417716500;
+-0.00769812730, -0.00017818698;
+0.00133784330, -0.00149211110;
+-0.01435760300, 0.00692602660;
+0.00404759460, -0.01017014800;
+-0.00663831950, -0.00315748290;
+-0.00085548858, -0.02827386400;
+0.00421366420, -0.02999430500;
+0.00228340080, 0.00351766350;
+0.00067972662, 0.00394969830;
+0.00010249414, -0.00227112120;
+0.01352092200, 0.00054581385;
+-0.01119695100, 0.01346546700;
+0.03037738600, 0.01926781500;
+-0.00648092580, 0.03341492100;
+0.00742909040, 0.03054532700;
+0.00348382550, 0.01877144600;
+0.00246629280, 0.00970566090;
+0.01095858000, 0.01093582600;
+-0.01513041900, 0.02512391700;
+0.00903471840, 0.03498919400;
+-0.00618408790, 0.02227141800;
+0.01096205900, -0.00920153520;
+0.00262835580, -0.00765528570;
+0.01114218200, 0.00619863290;
+-0.00919430790, 0.01755913200;
+0.01006375400, 0.01441648800;
+-0.01990465700, 0.00916741770;
+0.00855497720, -0.00323036000;
+-0.01369815600, 0.00361482240;
+-0.00712474120, 0.01056456100;
+-0.01264778000, 0.00232601930;
+-0.01423405400, -0.00320915910;
+-0.00016743283, 0.00840220560;
+0.00285416310, 0.01212758900;
+-0.00345522980, -0.01240091400;
+-0.01061054000, -0.00392867620;
+-0.01603832900, 0.00257474180;
+0.00324895860, 0.01867151600;
+-0.00291754020, 0.01065674500;
+0.02361004800, 0.01609781500;
+-0.00318450010, 0.00712827010;
+0.02139297300, 0.01445064800;
+0.01460282300, -0.00449260470;
+0.00647488450, 0.02045964500;
+0.00854365700, -0.00148195210;
+-0.02251529400, -0.00256425170;
+0.00222816500, -0.01526768300;
+0.02185776000, -0.00714712190;
+-0.00455624340, -0.00160773030;
+-0.01246960000, 0.00150635870;
+0.00924045130, -0.00910181770;
+0.00343446870, 0.01052361000;
+0.01349456500, -0.01018272900;
+-0.00740446960, -0.00215583630;
+0.00813427010, 0.00314027880;
+-0.00739251150, -0.01104516400;
+-0.00135688900, -0.00758587260;
+0.01004834800, 0.00714729720;
+0.00071365274, 0.00981284720;
+0.00354068790, -0.01254811000;
+-0.02248783700, 0.00397571800;
+-0.00865090470, 0.00869799720;
+0.00755320970, -0.00274643140;
+0.00718197010, -0.01057977500;
+-0.00890055570, -0.01187215200;
+-0.00221861280, -0.00737277380;
+-0.00176862730, -0.00544962520;
+-0.01488865900, -0.00755715830;
+-0.01003201200, -0.01536865400;
+-0.00885387310, 0.00157814460;
+-0.01057416100, -0.00872661580;
+0.00529372600, -0.02309533000;
+-0.00129770280, 0.00439926800;
+-0.00471011830, 0.00686916260;
+0.00221095220, -0.00075376512;
+0.00396970840, -0.00307360450;
+-0.00949946950, -0.00932127890;
+-0.01425166300, -0.00887158980;
+-0.00839041170, -0.00739858640;
+0.01094292700, -0.00463808010;
+-0.01503297800, -0.00486242570;
+-0.00780511670, -0.00013977193;
+0.00295906390, -0.00244925080;
+0.00888417030, -0.00027793976;
+-0.00264289810, -0.00356239480;
+-0.00233235380, 0.00853562660;
+0.00999011710, -0.01266408700;
+0.00615571440, -0.01048649200;
+0.00129589980, -0.02057649900;
+-0.00167519580, -0.00756073410;
+0.00573725950, -0.00893045730;
+-0.01489402600, 0.00410294180;
+0.02847956800, -0.00493285520;
+-0.01474864500, -0.00667757730;
+0.01322265000, -0.01081593400;
+-0.01326839900, -0.01371889900;
+0.01640160600, -0.01247788100;
+-0.00374336080, 0.00492074290;
+0.00615137690, 0.01806502100;
+0.01356203500, 0.01259282000;
+-0.01542659000, 0.00767045720;
+0.00642653950, -0.00537146090;
+0.00310662030, 0.00506285650;
+-0.00504839670, 0.00859490920;
+0.00355458360, -0.00183994500;
+-0.02023486200, 0.00574867890;
+0.00454694680, 0.01137622400;
+-0.00387160520, 0.01413229400;
+-0.01348735800, 0.00439081620;
+0.01672376100, 0.00070763533;
+-0.00455330340, -0.00686520060;
+0.00822146830, -0.01299495800;
+-0.00426795680, 0.00457871690;
+0.00550981790, 0.00756567730;
+-0.01690307400, -0.00726203990;
+0.01440696000, -0.01560053400;
+0.00957262890, -0.01337257400;
+-0.00220497700, -0.00441573200;
+-0.00056364617, -0.00045505510;
+-0.00194646630, 0.00321663400;
+0.01391187800, -0.01801557100;
+0.00082409925, -0.01950009600;
+-0.01465276400, -0.00260673980;
+-0.00650069260, -0.01902260000;
+0.00029876759, -0.01215615700;
+0.01261499800, -0.01651988700;
+0.00063004297, -0.02457780800;
+0.00169295250, 0.00033544910;
+-0.00976376420, 0.00505643970;
+-0.00711589770, -0.00639119460;
+0.01025748200, -0.00422405210;
+-0.00945158550, 0.00792116440;
+-0.01345565600, -0.00015260044;
+0.00347003790, -0.00603041040;
+-0.01301538300, -0.01133294300;
+-0.00750695770, -0.00933159140;
+-0.00440517780, -0.02171622400;
+-0.00147922330, -0.02082012000;
+-0.00906688280, -0.02642304400;
+0.00194159560, -0.02100981100;
+-0.00420262710, -0.00838592350;
+0.01891564200, 0.01082611100;
+0.00182342580, -0.00240049780;
+-0.01810654000, 0.01711595900;
+-0.00212834600, 0.00352360610;
+0.00178391370, -0.00108616550;
+-0.00043459404, 0.00088082942;
+-0.00412604630, 0.01755816600;
+-0.00064959885, 0.01457685600;
+0.01347751700, 0.00931501890;
+0.00352526210, 0.00083007064;
+-0.01322128800, -0.00201091000;
+0.00009614403, -0.00995798470;
+0.00444349320, -0.01249145900;
+0.00425595950, -0.00116484430;
+-0.01175602700, 0.00285725700;
+0.00657894370, 0.00180430300;
+-0.00704443210, -0.00289686610;
+-0.00639969420, 0.00144511130;
+-0.01682459800, -0.01084454800;
+0.00046732062, -0.01183596800;
+-0.00265618720, -0.00617053630;
+-0.00627824550, -0.01772563100;
+-0.01435354300, -0.00991358750;
+0.00428677970, 0.01192595200;
+0.00863044650, 0.00914107900;
+-0.00273840730, -0.00467048220;
+0.01769520800, -0.01364493500;
+-0.00860223420, -0.00593776970;
+0.00834198560, -0.00768299240;
+-0.01394435200, -0.01339647000;
+-0.00251396410, -0.02358333200;
+0.00252897310, 0.00127176740;
+0.00229634080, 0.01985044500;
+-0.01441004500, 0.00210260990;
+0.00994943720, 0.01327428000;
+-0.02038994400, 0.01331653800;
+0.01941131500, 0.00250981050;
+-0.02126588500, 0.00117877630;
+0.01703305400, -0.00767290020;
+-0.01349053100, -0.00602226180;
+-0.01591448200, -0.00589764240;
+0.00843590470, 0.01499918200;
+-0.00014857487, 0.00860687000;
+-0.02363695800, -0.00112907670;
+-0.00706394760, -0.00303277220;
+-0.01303618000, 0.01329845500;
+-0.00483198940, -0.02019482500;
+0.00339302700, 0.00572997660;
+-0.00551248650, 0.00769795860;
+0.00419796130, 0.00406189010;
+-0.00370703540, 0.00782197680;
+0.00867027450, 0.00822771140;
+0.00596786670, 0.02899416200;
+0.00681206890, 0.02001652400;
+0.00165106500, 0.00849942220;
+0.01299251700, 0.00086235046;
+-0.00748960250, 0.00782463780;
+0.00209973650, 0.00815596800;
+-0.00850592120, 0.02334669100;
+0.01134628100, 0.01134613400;
+-0.01352224100, -0.00836556270;
+0.00671531310, -0.01956063600;
+-0.00242272570, -0.00033519061;
+0.01284221800, -0.00689856370;
+-0.01145770400, -0.01209985200;
+0.00424026140, -0.00680320230;
+0.00499683310, -0.00186745700;
+-0.00379175090, -0.00973519550;
+-0.00284374760, -0.00534973380;
+0.00751068230, -0.00172811330;
+-0.00973646530, -0.01550932400;
+0.01166327400, -0.01425923100;
+0.00160914390, -0.00604851180;
+-0.00663530550, -0.00054579530;
+0.00060567236, 0.02071117500;
+-0.00036915903, 0.01075306500;
+-0.02211141600, 0.01878292800;
+0.00686511410, 0.00102341950;
+-0.00340655980, 0.00238579960;
+-0.00067203259, 0.00114114460;
+-0.00102357060, 0.00753831560;
+-0.00768802670, -0.00839238920;
+0.01638687000, 0.00724520850;
+-0.00347730340, 0.00605236490;
+0.00269696720, 0.02358320200;
+-0.01185299400, -0.00448258220;
+-0.00641221420, 0.00183018270;
+0.02135322200, 0.00817785940;
+0.00869419570, -0.00233532870;
+-0.00769650030, -0.00544744100;
+0.00878221650, -0.00288025810;
+-0.00427262690, -0.00458403970;
+0.01034842700, -0.00944620050;
+0.00019401874, -0.02223294900;
+-0.00148483690, -0.00943247910;
+-0.00436740400, -0.01781865300;
+0.00173273960, -0.00608950980;
+-0.01099621500, -0.00400127680;
+0.02741524200, -0.01422095500;
+-0.00882605320, -0.00466699960;
+0.01370161600, -0.01526308600;
+0.00054116472, -0.00448123640;
+0.00621596090, 0.00724029820;
+-0.01069932100, -0.00560117420;
+-0.01421629600, 0.00928500080;
+0.01192448400, 0.02028709800;
+-0.01069542700, 0.01139402200;
+0.01009124900, 0.00256825410;
+0.00127767120, 0.00434814080;
+0.00499351370, -0.00928891760;
+-0.00473548910, -0.00480540750;
+0.00740867780, 0.00620164840;
+-0.00569582270, -0.00336372610;
+0.02118048300, 0.00751171350;
+-0.02275689800, 0.00448348720;
+-0.00180431540, 0.00477640310;
+-0.00343045450, 0.02132982500;
+-0.00110349160, 0.01799333500;
+0.00566623340, 0.00824425200;
+0.01008643600, -0.01564701600;
+0.01109274800, -0.01687864900;
+-0.01099148700, -0.01485227600;
+0.02434629100, -0.02618405000;
+0.00145410160, -0.01696036900;
+-0.02344772100, 0.00088506469;
+0.01081117400, 0.01607764500;
+-0.01274696100, 0.01073171700;
+-0.02814399500, -0.01204674900;
+0.01467717300, 0.01001183700;
+-0.01282640100, 0.00785533930;
+-0.00039151466, -0.00158353920;
+0.00506089730, 0.01103509500;
+0.00520334890, 0.00764525420;
+-0.00791932050, 0.01578666600;
+-0.02282695200, 0.02060965800;
+-0.00477700370, 0.00444865870;
+-0.00001976087, 0.00925757550;
+0.00031481039, -0.01739030000;
+0.01023393500, -0.00412322340;
+-0.00657133560, 0.01098436400;
+0.01332517600, 0.01175247000;
+0.00853561840, 0.01257092400;
+-0.00990227900, 0.00971206290;
+0.00601343650, 0.01676401700;
+0.02034657200, 0.00380624610;
+-0.01610970400, -0.00382222490;
+-0.00784886630, -0.01541948200;
+-0.01486246300, 0.00046089183;
+0.00059140790, 0.00977498470;
+0.00131100280, 0.01144934500;
+-0.00249520130, 0.00763555490;
+-0.00995953580, 0.00947764900;
+0.00515067260, -0.00447725650;
+-0.00628485890, -0.00625777520;
+-0.00055236814, -0.00045996980;
+0.00907149900, 0.00550255670;
+-0.02189032300, 0.00647248100;
+0.02009786100, 0.00745576110;
+-0.00891947350, -0.01155851100;
+0.00125060520, -0.01440449400;
+-0.00331509880, -0.01211877600;
+0.00176437740, 0.00308533290;
+-0.00423796010, 0.00764018890;
+0.00502629330, -0.00524800480;
+-0.01859839300, -0.01602257900;
+0.00760957450, -0.00063382743;
+0.01352106500, -0.02070491800;
+-0.01484082600, -0.01837788900;
+-0.00180805220, 0.00180058220;
+0.00646895960, -0.01067731900;
+-0.00319460360, 0.00204543950;
+0.01283819000, 0.00788961100;
+0.00897728170, 0.01235817300;
+-0.00911367310, 0.00216576220;
+0.00247233850, 0.00197748290;
+0.01385073000, -0.00628759110;
+-0.00244131680, -0.00549276880;
+0.00247377740, 0.00010081507;
+0.00223374800, 0.00167638370;
+0.00622179480, 0.00636981950;
+-0.01451075100, 0.00349200990;
+0.01701029100, 0.01655859500;
+0.00540505380, 0.00805163880;
+-0.01032426300, 0.00545309340;
+0.01498743600, 0.00845128410;
+0.02407752900, 0.00198533570;
+-0.00960939560, 0.00853352640;
+-0.01023723300, 0.01335469200;
+-0.00270911950, 0.00849549120;
+-0.00369286780, -0.00121018950;
+0.00826982030, 0.00814966480;
+-0.00479820070, -0.00430578830;
+0.01720646400, 0.01156837700;
+0.01664923600, -0.00173370660;
+-0.00369501470, 0.02465627800;
+-0.01376969800, 0.01146760700;
+0.00789807890, 0.00927350640;
+-0.02031981900, 0.00182745860;
+0.00893684220, -0.00310349950;
+-0.00058117960, -0.01036477300;
+0.00398354320, 0.00524400960;
+-0.01072630400, 0.00893152600;
+-0.01281647700, 0.00198587250;
+0.00527370920, -0.00790188520;
+-0.00006975255, 0.02076850400;
+-0.00795713420, 0.01823942500;
+0.00709618300, 0.00210983490;
+0.00385266830, 0.00600135910;
+-0.01078681200, -0.02391983000;
+0.02052245600, -0.01704146200;
+-0.00944289330, -0.01192082800;
+-0.00394662410, -0.02925877900;
+0.01354173000, -0.02406313000;
+-0.00718647540, -0.01098199500;
+0.02058008400, -0.00638229480;
+-0.00854536810, -0.00450554770;
+0.00866409980, -0.00330021160;
+-0.00686748550, -0.02114934800;
+0.00445321310, -0.00847144790;
+0.00801991790, -0.00241975850;
+-0.00120417690, -0.00393759540;
+-0.00494995210, -0.02696714500;
+-0.01267562000, -0.01038903900;
+0.00353257720, -0.00908920320;
+-0.00975382080, 0.01760238600;
+-0.01260558500, 0.02760804400;
+-0.00316022200, 0.02508482500;
+0.00082647851, 0.01143638600;
+0.00479109240, -0.00074145901;
+0.00524306200, -0.00265805690;
+-0.00578202170, 0.01897214300;
+0.00893716350, -0.00482091210;
+-0.01982108100, -0.01158432200;
+0.03126658600, 0.00409586630;
+-0.00273803110, -0.00161845770;
+-0.01761996600, 0.01334919500;
+0.00757518640, 0.01502052000;
+-0.00292343760, 0.02766780900;
+0.00547019230, 0.02912370300;
+0.00907626300, 0.01593786700;
+-0.00455934350, 0.00063507953;
+0.00508186300, 0.02238021200;
+0.01289502600, -0.00593488700;
+0.00236970730, 0.00388511510;
+0.00883958660, -0.00257234340;
+0.01720261100, 0.01188001800;
+-0.00006246719, -0.00203679550;
+-0.01575553100, -0.00676416250;
+0.00814828810, -0.00356291510;
+0.00379630600, -0.00175582960;
+0.01519689300, 0.01032388100;
+0.00604297190, -0.01207842000;
+0.00784725260, 0.00484980530;
+0.00757792060, 0.00642184950;
+0.00097163435, -0.01346602900;
+-0.00080646536, -0.01005009400;
+-0.00544594560, -0.01436795200;
+-0.00170059540, 0.00889975570;
+-0.00234754820, 0.01182947400;
+0.01225048700, 0.01299069100;
+-0.01026220700, 0.01595514900;
+-0.00944973050, 0.00843166930;
+0.00874279600, -0.01267545100;
+-0.00362453400, 0.01054616000;
+-0.00084828359, -0.00199187910;
+0.01428511500, -0.00406989120;
+-0.00882438660, -0.02808280200;
+0.00704659960, -0.02179662700;
+-0.00410832820, -0.00192698990;
+-0.00147723550, -0.00896090550;
+0.00459580110, 0.01065118700;
+-0.00605537920, -0.00488607770;
+-0.00027256522, -0.00401632280;
+-0.01978864800, -0.00626533710;
+0.00607277630, -0.01497391500;
+-0.01143713900, -0.00323604060;
+0.01228681400, -0.00172676930;
+-0.00793191320, -0.00843394290;
+0.00991768270, -0.00966059600;
+0.00992587030, -0.00349087710;
+0.00505795500, -0.00671022150;
+0.00788954440, 0.00332091270;
+0.01182401000, -0.00092086600;
+-0.00660517190, -0.01039393600;
+0.01134255700, -0.00751655470;
+0.00038790604, -0.01755658800;
+-0.00807366080, 0.00988425450;
+-0.00088186225, 0.00561425140;
+-0.00923030850, 0.00486096700;
+0.02739705100, 0.01565417800;
+-0.02436147600, -0.00475603930;
+-0.00474490120, 0.01578322600;
+0.00832453990, 0.00998216280;
+-0.00713154110, -0.00411591940;
+0.01586726000, -0.00728781440;
+0.00901038060, 0.00388117450;
+-0.01278363800, 0.00560553200;
+-0.00341314840, -0.01414107100;
+-0.01413398600, 0.02152507100;
+-0.00084512439, 0.00416185940;
+-0.00213784220, -0.00065205271;
+0.00447733340, -0.01064756800;
+0.01404655600, -0.00371620300;
+0.02279766500, 0.00569317110;
+-0.00682377560, -0.00308033630;
+0.01124674300, -0.00598650510;
+-0.01376857100, -0.00734424350;
+0.00966640550, 0.00595518380;
+-0.01042231400, -0.00339618560;
+-0.00210584750, -0.01492290700;
+0.00793225120, -0.01773942700;
+-0.00746719420, -0.02023369900;
+0.00320403030, -0.00425187160;
+-0.01498758300, -0.00172616900;
+-0.00125324900, -0.01646365100;
+-0.02719981800, -0.00720045620;
+0.00507847130, -0.00507992190;
+0.00408332760, -0.00696923090;
+0.00206618350, -0.01585097200;
+-0.00266175350, -0.01324462400;
+-0.00031912447, 0.00100260870;
+-0.01038003300, 0.01981869200;
+-0.01218511000, 0.02173349700;
+0.01136888100, 0.02204497600;
+-0.01202743900, 0.00829954090;
+-0.00021401182, -0.00175504700;
+-0.00596558870, 0.00380210670;
+0.01569683000, 0.00347734000;
+0.00801820710, -0.00144632600;
+-0.02250001500, 0.00504014370;
+0.01240035200, -0.00942954560;
+0.00858523030, -0.00623408720;
+-0.01626079300, 0.00397289760;
+0.00723434090, 0.00783343600;
+-0.00919603870, -0.00059345202;
+0.01085680800, 0.00243835800;
+-0.00888834510, 0.00445439110;
+-0.00052505879, 0.03196236900;
+0.00407476500, 0.02115388200;
+0.01036235200, 0.00961476180;
+0.00176157930, 0.00765388480;
+-0.00053452369, -0.00819328090;
+0.00703537300, 0.00742844800;
+-0.00014851151, 0.02083584000;
+0.00393808440, -0.00220486220;
+0.00068062472, -0.01090794200;
+0.00162973150, 0.01016291400;
+0.00956508570, 0.00314153260;
+0.00040965810, 0.00424568390;
+-0.00342205330, 0.01575583500;
+-0.00666487520, 0.03253912100;
+0.00357257790, -0.00193096120;
+-0.00479944880, 0.00276754820;
+-0.02008366200, 0.01813183600;
+0.01024278800, 0.00899311180;
+0.00331510340, 0.00874296380;
+-0.00367787790, 0.01032780200;
+0.02355042500, 0.00879580860;
+-0.02098926500, -0.00010779314;
+0.02242707300, -0.00613259750;
+-0.00708729650, -0.00601044260;
+0.01401990900, 0.00501994170;
+0.01116776500, 0.00055147171;
+-0.00789437150, 0.00307380160;
+-0.00079795363, 0.00071918763;
+0.00024460379, -0.01076551400;
+0.00413459290, -0.01001296500;
+-0.02104470800, 0.00080366086;
+0.01176522400, 0.01678986600;
+-0.01816742200, 0.01265489200;
+-0.01569319400, -0.00779392590;
+-0.00283881540, -0.01456612300;
+0.00040506759, 0.00058628945;
+0.00945908740, 0.00075994717;
+-0.00979130970, -0.00461547690;
+0.00265457950, 0.00878213250;
+-0.02489547100, -0.00853506250;
+0.00102885490, 0.00684600140;
+-0.00130745500, -0.00382792360;
+0.00762038530, -0.00423731260;
+-0.00147484510, 0.01924464600;
+0.00727643910, 0.00989738330;
+-0.00160290830, -0.00187813300;
+0.00428527540, -0.00219760860;
+-0.03317646800, 0.00116740200;
+0.01658756800, 0.00518323290;
+0.00785352990, -0.00838975030;
+-0.00451492520, 0.00547096380;
+-0.00320296040, -0.02426730500;
+0.01417389300, -0.03256394100;
+-0.00661515490, -0.00421165110;
+0.01470659000, -0.00042946856;
+-0.02350439700, 0.00348050750;
+0.00366709700, 0.00938778820;
+-0.00046899718, 0.00674591590;
+0.01975974900, 0.00026316635;
+-0.00441742910, -0.01386567100;
+0.01032374900, -0.01708067200;
+-0.00343647840, -0.00627385440;
+0.01341498100, -0.00152079670;
+-0.01328190700, 0.00750671680;
+-0.00194644230, 0.01508688300;
+-0.01114553600, 0.03635301900;
+-0.00904033490, 0.00672707110;
+0.00213535390, 0.01554549900;
+-0.00147753730, 0.01329763200;
+0.00116701690, -0.00008942344;
+0.00341716790, -0.00317315000;
+-0.01381591900, -0.00277583010;
+0.01813890000, -0.01732665300;
+-0.01199155600, -0.00610674530;
+0.00444251760, 0.00143958250;
+0.01005538100, -0.00644700780;
+-0.00343175930, -0.00473816370;
+0.00077039637, 0.00638741850;
+0.01094944500, 0.02697045000;
+-0.00052522484, 0.00372434700;
+-0.01200624400, 0.01233773200;
+-0.00631723760, -0.00616098400;
+-0.00267661130, -0.00189383380;
+0.01800845900, 0.00251762240;
+-0.00070703292, -0.00777855150;
+0.01011331300, 0.00476866670;
+0.00535917660, -0.01284853600;
+0.01971133300, -0.00711727660;
+0.00471936570, -0.00527618130;
+-0.01922986900, -0.01071921700;
+0.01058494000, -0.01208949400;
+0.00252107150, -0.01009809800;
+-0.00635082770, -0.00325476460;
+-0.00338369140, -0.00678190390;
+-0.00560879390, 0.01429874600;
+-0.00730724340, 0.00839658360;
+0.01073289400, 0.01332610500;
+0.01411626800, 0.01741862000;
+-0.00578601340, 0.01236888600;
+-0.00640703040, 0.00204314960;
+-0.00277533020, 0.00809611970;
+0.01131091600, 0.02231586400;
+-0.00290565000, 0.01281723000;
+-0.00466721850, 0.01066850100;
+0.00003017692, -0.00045287596;
+0.01184006400, 0.02096790900;
+-0.01807510700, 0.00007107626;
+0.01200216000, 0.01695265800;
+-0.00233991190, -0.00762127830;
+0.01731830300, -0.01470775300;
+-0.00871332370, -0.00536830240;
+0.01416221600, -0.00020614753;
+-0.00720019210, -0.01392737100;
+-0.01677725400, -0.00963694400;
+0.00376816350, -0.01806841400;
+-0.01168453900, -0.02520963700;
+-0.00242508010, -0.01003563800;
+-0.00398142050, -0.00574731140;
+0.01750174900, -0.00421972000;
+0.00585300950, -0.01083337500;
+0.00418233240, -0.01247003500;
+-0.00614589600, -0.00520667130;
+0.01135575200, 0.00930381060;
+0.00591022240, -0.01228150100;
+-0.00330099160, -0.01714747100;
+0.00461113550, 0.00279658620;
+0.01844313500, -0.00381210120;
+-0.00730330260, -0.01948227900;
+0.00114113770, 0.00359516800;
+-0.01340516800, 0.01142347700;
+0.00242013210, 0.01479981600;
+-0.01177683000, 0.00005024148;
+-0.00140618160, 0.01536890200;
+-0.00496745630, 0.03046414700;
+0.01227024900, 0.01537145000;
+0.00015891232, 0.02228270700;
+-0.00275003980, 0.01807071800;
+0.00213022040, 0.02195794900;
+-0.00456855430, -0.00847451820;
+0.00368394090, 0.00167170220;
+0.00053423273, -0.00101325060;
+0.01502387300, -0.00299957890;
+-0.00364911970, 0.01043386100;
+0.00292325880, 0.00369136530;
+-0.01000623700, 0.01065743200;
+-0.00737237320, 0.01173679900;
+0.00470212590, -0.00172331660;
+0.00064041836, -0.00112935140;
+0.00801705600, 0.00908517860;
+-0.01752767500, 0.01340269200;
+-0.00167078620, 0.00984110940;
+-0.00736765550, -0.00183892060;
+0.00171112270, 0.00325198900;
+-0.00459124470, 0.00333673000;
+0.00090628466, -0.00136710980;
+-0.00953744110, -0.00330812520;
+0.01382525800, -0.00074019487;
+0.00182379050, 0.00271536240;
+-0.00144417870, -0.01965826300;
+0.00262746520, -0.00738069840;
+-0.00315157850, -0.00579473100;
+-0.00149920540, -0.00471902850;
+0.01724853900, -0.00444270650;
+-0.00323729290, 0.01599976100;
+0.00818759990, 0.00475884400;
+-0.00670440270, 0.00662529590;
+0.00761535810, -0.01531597000;
+-0.00898965620, -0.01407707000;
+-0.00095826091, 0.00110351110;
+0.01922539900, 0.00976795960;
+0.00107279500, -0.00201196850;
+0.00184468230, -0.01900434900;
+0.00206808720, -0.01044463400;
+0.01012566700, -0.00995885900;
+-0.00264965050, -0.00197648630;
+0.01007788900, -0.01722402900;
+0.00857747020, -0.00978182180;
+-0.00390662100, -0.00260237180;
+0.00692129190, -0.00378992080;
+0.00029091915, -0.00259509570;
+-0.00360680420, -0.00713074060;
+-0.00860419840, -0.02057721600;
+0.00044751379, -0.01449312400;
+-0.00145591500, -0.01523862700;
+0.01682939900, -0.01270554100;
+0.00567881680, -0.01943714400;
+0.00848238640, -0.00223198500;
+0.00325092290, -0.00082652871;
+0.01223402300, 0.00644947070;
+0.00051464095, 0.00898356600;
+0.01260583200, 0.00834137450;
+0.01064180800, -0.00190874350;
+0.01005380200, -0.00116214780;
+-0.00116234090, -0.00675879300;
+-0.02332964500, -0.01838281800;
+-0.00696804150, -0.00944441820;
+-0.01819834100, -0.01808908500;
+0.02201795200, -0.00716774540;
+-0.01672468800, -0.00826797040;
+0.01170834800, -0.00949888840;
+-0.00615648660, -0.00355936780;
+0.00535839890, 0.00559401360;
+-0.00703042400, -0.01059598600;
+0.00318876840, 0.00011921905;
+-0.01874264500, 0.00790409920;
+0.00552417410, 0.00766524880;
+-0.01497631100, -0.00238697410;
+-0.00439945850, 0.00914147460;
+0.01828331600, -0.00206804820;
+0.00068550745, -0.00122205150;
+-0.00759101970, -0.01153777900;
+0.00648242600, -0.01640673600;
+-0.00543452600, -0.02063951400;
+0.00155147620, -0.02622296300;
+-0.00564122550, -0.01103051900;
+0.00341228520, 0.00583169540;
+0.00646375290, 0.00936322370;
+-0.00478098810, 0.01100696200;
+0.00573895680, -0.00239250900;
+-0.00970467940, 0.00871843140;
+0.02038830400, 0.01480759600;
+0.00026758833, 0.02045451100;
+0.00791676330, 0.01696119900;
+0.00151902060, 0.00369441970;
+0.00695727800, -0.00513502650;
+-0.01493114700, 0.00259436800;
+0.01356549700, -0.00125019700;
+0.01129927200, -0.01805236600;
+-0.01605158000, -0.00110185760;
+0.01796653700, -0.01000584500;
+-0.01611534000, -0.00357616450;
+0.00480241820, -0.01235228300;
+0.00765884520, 0.00199081530;
+-0.00445450970, 0.00373594290;
+0.00836337530, 0.00844062310;
+0.00000608640, 0.00814252730;
+-0.00242506490, 0.00107690310;
+-0.00655880720, -0.01044158000;
+0.00959842540, -0.01282298400;
+0.00710086670, -0.00628089330;
+-0.01539525500, 0.00145629030;
+-0.01019127500, 0.00506089250;
+-0.00415539980, 0.00121860340;
+-0.00222234300, -0.00235775530;
+0.00145298240, 0.00074290054;
+0.00383045620, 0.00499606180;
+-0.01581364300, 0.00991048820;
+-0.00505534040, 0.00362636340;
+0.01275955400, -0.00852445050;
+-0.00646790680, -0.00849281040;
+0.00822635380, 0.00506450010;
+-0.00999777920, 0.01192172300;
+0.01259965900, -0.01267426000;
+-0.00334331530, -0.01193505000;
+0.00531845400, 0.00036486233;
+0.00324434670, 0.01617751400;
+-0.00182198070, 0.01450107800;
+-0.01316162900, 0.00575151330;
+-0.00245819090, -0.00185123220;
+0.00716449280, 0.00787328720;
+-0.00111474240, 0.00293388970;
+-0.01296516800, -0.00225148550;
+0.00284074300, -0.00331728310;
+0.01133071500, 0.02057075900;
+-0.00100379480, 0.01280891700;
+0.00049387445, 0.00507951680;
+0.00229614130, -0.00764568280;
+-0.01313835900, -0.00525744170;
+0.00966316020, -0.00556556230;
+0.01118421300, -0.00490035560;
+0.01672044300, -0.00988298390;
+-0.01088174000, -0.00216302190;
+-0.00920015300, 0.00190343440;
+0.00027256857, -0.00606717780;
+0.00745269630, 0.00488672340;
+-0.00485878040, 0.00337006910;
+-0.01014946800, 0.00628172350;
+0.00133496050, -0.00095504333;
+0.01278446800, 0.00344898280;
+-0.00703416400, 0.00739247270;
+0.01328898700, 0.00304838790;
+-0.01491870500, 0.00633638140;
+0.00873045630, 0.00319640990;
+0.00254909610, 0.01211332200;
+0.00232342310, 0.00470528570;
+-0.00764997870, -0.00240813430;
+-0.01090000900, -0.01170578800;
+0.00843239100, -0.01170118700;
+-0.02507916900, -0.01158650100;
+0.04003462300, -0.01629908500;
+-0.01222446500, -0.01477344200;
+0.00521617900, -0.00968336430;
+0.01952769300, -0.02338928900;
+-0.00455805500, -0.01208632300;
+-0.00421777900, -0.01515016500;
+-0.02292950600, 0.00681974800;
+0.02065804000, -0.01601951200;
+-0.01175698600, -0.01763198100;
+0.00847885710, -0.01709137000;
+-0.00522204640, 0.00520781450;
+0.01653303200, 0.01230743800;
+0.01491689300, 0.02278097800;
+-0.00390021000, -0.00599679960;
+0.00987391320, -0.01527627300;
+-0.01292332700, -0.01725711000;
+-0.00611290270, -0.00008627481;
+0.01173359600, 0.00525802720;
+0.00023658130, 0.00219369170;
+0.00527818840, -0.01008107600;
+-0.00805139170, -0.01193710000;
+-0.01872491200, 0.00860016370;
+-0.01259698500, -0.01756964500;
+-0.00088728350, -0.01512096000;
+-0.01535824800, -0.01295353000;
+0.02003583600, -0.00614556620;
+-0.00662873120, 0.00258939970;
+0.02039917600, -0.00012182475;
+-0.00137236040, -0.00075700965;
+-0.01450454300, -0.00207827570;
+0.01535757000, 0.00707412260;
+-0.01704817500, -0.00431544930;
+0.00832049550, -0.01881308400;
+0.00788077160, -0.01301967100;
+-0.00535764100, -0.02307963700;
+0.01684468900, -0.01761785700;
+-0.00494331070, -0.02023850500;
+-0.01844518300, -0.01120281300;
+0.01030114100, -0.00246253960;
+0.00737732820, 0.01367079900;
+0.00930385080, -0.01638037700;
+0.01184141400, -0.00128950800;
+-0.02316092800, 0.00518400230;
+0.01259350700, 0.01851841100;
+0.00032334407, 0.00708510310;
+-0.00380004070, 0.01466849000;
+0.00572216670, 0.02763848700;
+0.01450073300, 0.02130598400;
+-0.00061716695, 0.01299269100;
+0.00032716641, 0.02931071500;
+0.00102466110, 0.01050204800;
+-0.00339657480, -0.00413612190;
+0.01311750600, -0.00235546960;
+0.00609382540, 0.00646251750;
+-0.00126880700, 0.01452674700;
+-0.00768738760, 0.01051401500;
+0.01058750900, 0.00661389120;
+-0.00857671250, 0.00564091490;
+0.00603614820, 0.00790147090;
+-0.00383731350, 0.01219309200;
+-0.00750234770, -0.00565016960;
+-0.01197183700, -0.01579100100;
+0.00940025550, 0.01919136600;
+-0.00001261024, 0.02626728500;
+-0.01119718500, 0.00144775010;
+0.02249039100, 0.02039881000;
+-0.00379732890, -0.01609038000;
+0.01565908800, -0.00588713290;
+0.00875294490, 0.00373467350;
+0.00256396420, 0.01632317700;
+-0.00451786920, -0.00480455360;
+-0.00790291250, 0.00345569200;
+-0.01455265100, -0.01382336400;
+0.01350253300, 0.00019931557;
+-0.00674284800, 0.00449999260;
+0.02374096100, -0.00641924120;
+-0.02211973900, -0.00053401624;
+0.01207118500, -0.00983951590;
+-0.00702998800, -0.02173194800;
+0.00650176870, -0.03939793300;
+0.01983586800, -0.01688164300;
+-0.00523048000, -0.01586871000;
+-0.00024937096, -0.00762047480;
+0.01848711000, -0.02202737800;
+0.00320481510, 0.00115403630;
+-0.00339570830, -0.00416020450;
+0.00292867830, -0.00800372950;
+-0.00085958037, -0.00702345910;
+-0.00661261130, -0.00240180080;
+0.00915375200, -0.00072184277;
+-0.02097610500, 0.00164769990;
+0.00794447800, 0.00132242720;
+0.00417510660, -0.00030181197;
+-0.00634899330, -0.01677800600;
+0.00999671400, -0.00762022470;
+-0.01004270400, 0.00644466200;
+0.00245296560, -0.00189053390;
+-0.00558639080, -0.00629843410;
+0.00063566426, 0.00748679840;
+-0.00197196620, -0.01231472900;
+-0.00858143530, -0.00982022010;
+0.01118201300, -0.00005704770;
+-0.01452712100, 0.00525489720;
+0.00556580190, -0.00614996780;
+0.00722027820, 0.00126887710;
+-0.00106240920, 0.00248088000;
+0.00266047030, 0.00506315460;
+-0.01615042800, -0.00024735048;
+0.00690899540, -0.02230154100;
+0.00016806370, -0.00703005220;
+0.01157961100, -0.00046847502;
+-0.00569027140, -0.00074088147;
+0.00279183700, -0.01112727400;
+0.01159847500, -0.01397495400;
+-0.01618859800, -0.03057030300;
+0.00051325767, -0.00865006790;
+0.00549707250, 0.00357878980;
+-0.00970590920, -0.00253900500;
+0.01545455300, 0.00679668570;
+-0.01066617100, -0.00621207310;
+0.00575491460, -0.00657640880;
+-0.00605682630, 0.01005724800;
+-0.00028086638, 0.01720437100;
+0.00314218690, -0.00112510120;
+-0.01232869600, 0.00529184200;
+0.00156071380, 0.00332171610;
+0.01586504900, -0.00687919610;
+-0.00700561370, 0.00627937710;
+0.00416313760, 0.01338622200;
+-0.00469103860, -0.00207565840;
+-0.00515967500, -0.02677465800;
+-0.00329796470, -0.02347414900;
+0.00458593860, -0.01994345300;
+0.00449779160, -0.01500910700;
+-0.01450006100, -0.02433756900;
+-0.00982530810, 0.00515777190;
+0.02169452900, 0.00395559630;
+-0.02732960700, -0.01296309000;
+-0.00943391470, 0.00970794530;
+0.00883871190, -0.00847782470;
+-0.00641242250, -0.00159739350;
+-0.00622211610, -0.00023249961;
+0.01103231400, 0.01345929400;
+-0.01604871600, 0.01444581500;
+0.00408581520, 0.00391976300;
+-0.00585816760, -0.00136833520;
+0.01285105500, -0.01355861400;
+-0.01282979900, -0.02075753400;
+0.00240514790, -0.00583408830;
+-0.00821620830, -0.00917124260;
+0.01161346900, 0.00589059210;
+-0.00416354780, 0.01478035400;
+0.00910147760, 0.00162353340;
+0.00645020290, -0.00029596225;
+0.00664065850, 0.00334591190;
+-0.01628421500, -0.01667108200;
+0.01017428900, -0.01182986900;
+-0.01740919900, 0.00421845090;
+0.01419528300, -0.00170271310;
+-0.01832044100, -0.00271804760;
+0.00478798390, 0.01451607600;
+-0.01552720100, 0.00680642330;
+0.00557794300, 0.01041172100;
+0.00418925410, -0.00240398610;
+-0.00542981940, -0.01092214200;
+0.01256706900, -0.01379128400;
+-0.01899332900, -0.00274706900;
+0.00907149380, -0.00663018700;
+0.01506829200, -0.00293179520;
+-0.01827722500, -0.00283953570;
+-0.00150598710, 0.00448947120;
+0.00689968130, 0.01392841800;
+0.00838313220, 0.00056270157;
+-0.01889400800, 0.00445784700;
+0.01083541500, -0.00433810380;
+0.00975696280, -0.01959502400;
+-0.00687770220, -0.01815605200;
+-0.01112640300, -0.01494359600;
+-0.00472052850, -0.01500657700;
+-0.01367499100, -0.00267410440;
+0.01489290400, -0.00432076310;
+-0.00262017640, -0.00290406560;
+-0.00261222360, 0.00098096246;
+0.00452692100, -0.01865841900;
+0.00118941740, 0.00323370830;
+0.00029588303, 0.00675359970;
+-0.01081920700, 0.02384338300;
+];
 
 dy = bvar_data(:, 1);
 dx = bvar_data(:, 2);
diff --git a/tests/conditional_forecasts/2/fsdat_simul.m b/tests/conditional_forecasts/2/fsdat_simul.m
index 159612e577..d4f4a8066f 100644
--- a/tests/conditional_forecasts/2/fsdat_simul.m
+++ b/tests/conditional_forecasts/2/fsdat_simul.m
@@ -1,828 +1,828 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/dates/fsdat_simul.m b/tests/dates/fsdat_simul.m
index 6ce6114a74..bc2c5a4fe3 100644
--- a/tests/dates/fsdat_simul.m
+++ b/tests/dates/fsdat_simul.m
@@ -2,830 +2,830 @@ INIT__ = '1950Q1';
 FREQ__ = 4;
 
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/decision_rules/third_order/comparison_policy_functions_dynare_mathematica.m b/tests/decision_rules/third_order/comparison_policy_functions_dynare_mathematica.m
index dea593c266..4b4c0adde4 100644
--- a/tests/decision_rules/third_order/comparison_policy_functions_dynare_mathematica.m
+++ b/tests/decision_rules/third_order/comparison_policy_functions_dynare_mathematica.m
@@ -1,8 +1,8 @@
 %read in the FV et al. policy functions derived from Mathematica
 if ~isoctave() && ~matlab_ver_less_than('8.4')
-    websave('FV_2011_policyfunctions.mat','http://www.dynare.org/Datasets/FV_2011_policyfunctions.mat', weboptions('Timeout', 30))
+   websave('FV_2011_policyfunctions.mat','http://www.dynare.org/Datasets/FV_2011_policyfunctions.mat', weboptions('Timeout', 30))
 else
-    urlwrite('http://www.dynare.org/Datasets/FV_2011_policyfunctions.mat','FV_2011_policyfunctions.mat')
+   urlwrite('http://www.dynare.org/Datasets/FV_2011_policyfunctions.mat','FV_2011_policyfunctions.mat')
 end
 
 load FV_2011_policyfunctions
@@ -79,9 +79,9 @@ end
 gxxx_dyn=zeros(size(gxxx));
 for endo_iter_1=1:nx
     for endo_iter_2=1:nx
-        for endo_iter_3=1:nx
+         for endo_iter_3=1:nx
             gxxx_dyn(nu+endo_iter_1,nu+endo_iter_2,nu+endo_iter_3,:)=dr.ghxxx(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nx*nx+(FV_endo_state_order(endo_iter_2)-1)*nx+FV_endo_state_order(endo_iter_3));
-        end
+         end
     end
 end
 
@@ -95,21 +95,21 @@ end
 
 for endo_iter_1=1:nx
     for endo_iter_2=1:nx
-        for exo_iter=1:nu
+         for exo_iter=1:nu
             gxxx_dyn(nu+endo_iter_1,nu+endo_iter_2,exo_iter,:)=dr.ghxxu(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nx*nu+(FV_endo_state_order(endo_iter_2)-1)*nu+FV_exo_order(exo_iter));
             gxxx_dyn(exo_iter,nu+endo_iter_2,nu+endo_iter_1,:)=dr.ghxxu(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nx*nu+(FV_endo_state_order(endo_iter_2)-1)*nu+FV_exo_order(exo_iter));
             gxxx_dyn(nu+endo_iter_1,exo_iter,nu+endo_iter_2,:)=dr.ghxxu(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nx*nu+(FV_endo_state_order(endo_iter_2)-1)*nu+FV_exo_order(exo_iter));      
-        end
+         end
     end
 end
 
 for endo_iter_1=1:nx
     for exo_iter_1=1:nu
-        for exo_iter_2=1:nu
+         for exo_iter_2=1:nu
             gxxx_dyn(nu+endo_iter_1,exo_iter_1,exo_iter_2,:)=dr.ghxuu(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nu*nu+(FV_exo_order(exo_iter_1)-1)*nu+FV_exo_order(exo_iter_2));
             gxxx_dyn(exo_iter_1,nu+endo_iter_1,exo_iter_2,:)=dr.ghxuu(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nu*nu+(FV_exo_order(exo_iter_1)-1)*nu+FV_exo_order(exo_iter_2));
             gxxx_dyn(exo_iter_1,exo_iter_2,nu+endo_iter_1,:)=dr.ghxuu(FV_endo_order,(FV_endo_state_order(endo_iter_1)-1)*nu*nu+(FV_exo_order(exo_iter_1)-1)*nu+FV_exo_order(exo_iter_2));
-        end
+         end
     end
 end
 
diff --git a/tests/ep/ar_steadystate.m b/tests/ep/ar_steadystate.m
index d040472426..966331f8e2 100644
--- a/tests/ep/ar_steadystate.m
+++ b/tests/ep/ar_steadystate.m
@@ -1,8 +1,8 @@
 function [ys, info] = ar_steadystate(ys, exogenous)
 % Steady state routine for ar.mod (First order autoregressive process)
-
+    
 global M_
-
+    
 info = 0;
 
 ys(1)=M_.params(2);
diff --git a/tests/ep/exact_solution.m b/tests/ep/exact_solution.m
index 64b1aa7dc6..5b525797fa 100644
--- a/tests/ep/exact_solution.m
+++ b/tests/ep/exact_solution.m
@@ -1,30 +1,30 @@
 function y=exact_solution(M,oo,n)
-beta = M.params(1);
-theta = M.params(2);
-rho = M.params(3);
-xbar = M.params(4);
-sigma2 = M.Sigma_e;
-
-if beta*exp(theta*xbar+.5*theta^2*sigma2/(1-rho)^2)>1-eps
-    disp('The model doesn''t have a solution!')
-    return
-end
-
-i = 1:n;
-a = theta*xbar*i+(theta^2*sigma2)/(2*(1-rho)^2)*(i-2*rho*(1-rho.^i)/(1-rho)+rho^2*(1-rho.^(2*i))/(1-rho^2));
-b = theta*rho*(1-rho.^i)/(1-rho);
-
-x = oo.endo_simul(2,:);
-xhat = x-xbar;
-
-n2 = size(x,2);
-
-y = zeros(1,n2);
-
-
-for j=1:n2
-    y(j) = sum(beta.^i.*exp(a+b*xhat(j)));
-end
-
-disp(sum(beta.^i.*exp(theta*xbar*i)))
-disp(sum(beta.^i.*exp(a)))
\ No newline at end of file
+    beta = M.params(1);
+    theta = M.params(2);
+    rho = M.params(3);
+    xbar = M.params(4);
+    sigma2 = M.Sigma_e;
+    
+    if beta*exp(theta*xbar+.5*theta^2*sigma2/(1-rho)^2)>1-eps
+        disp('The model doesn''t have a solution!')
+        return
+    end
+    
+    i = 1:n;
+    a = theta*xbar*i+(theta^2*sigma2)/(2*(1-rho)^2)*(i-2*rho*(1-rho.^i)/(1-rho)+rho^2*(1-rho.^(2*i))/(1-rho^2));
+    b = theta*rho*(1-rho.^i)/(1-rho);
+    
+    x = oo.endo_simul(2,:);
+    xhat = x-xbar;
+    
+    n2 = size(x,2);
+    
+    y = zeros(1,n2);
+    
+    
+    for j=1:n2
+        y(j) = sum(beta.^i.*exp(a+b*xhat(j)));
+    end
+    
+    disp(sum(beta.^i.*exp(theta*xbar*i)))
+    disp(sum(beta.^i.*exp(a)))
\ No newline at end of file
diff --git a/tests/ep/rbcii_steady_state.m b/tests/ep/rbcii_steady_state.m
index dd79d28a4b..5fc2dcb1ae 100644
--- a/tests/ep/rbcii_steady_state.m
+++ b/tests/ep/rbcii_steady_state.m
@@ -1,61 +1,61 @@
-function [ys_, params, info] = rbcii_steady_state(ys_, exo_, params)
-
-% Flag initialization (equal to zero if the deterministic steady state exists) 
-info = 0;
-
-% efficiency
-ys_(13)=0;
-
-% Efficiency
-ys_(12)=params(8);
-
-% Steady state ratios 
-Output_per_unit_of_Capital=((1/params(1)-1+params(6))/params(4))^(1/(1-params(5)));
-Consumption_per_unit_of_Capital=Output_per_unit_of_Capital-params(6);
-Labour_per_unit_of_Capital=(((Output_per_unit_of_Capital/ys_(12))^params(5)-params(4))/(1-params(4)))^(1/params(5));
-Output_per_unit_of_Labour=Output_per_unit_of_Capital/Labour_per_unit_of_Capital;
-Consumption_per_unit_of_Labour=Consumption_per_unit_of_Capital/Labour_per_unit_of_Capital;
-
-% Steady state share of capital revenues in total revenues (calibration check) 
-ShareOfCapital=params(4)/(params(4)+(1-params(4))*Labour_per_unit_of_Capital^params(5));
-
-% Steady state level of labour
-ys_(3)=1/(1+Consumption_per_unit_of_Labour/((1-params(4))*params(2)/(1-params(2))*Output_per_unit_of_Labour^(1-params(5))));
-
-% Steady state level of consumption
-ys_(4)=Consumption_per_unit_of_Labour*ys_(3);
-
-% Steady state level of physical capital stock
-ys_(1)=ys_(3)/Labour_per_unit_of_Capital;
-
-% Steady state level of output
-ys_(2)=Output_per_unit_of_Capital*ys_(1);
-
-% Steady state level of investment
-ys_(5)=params(6)*ys_(1);
-
-% Steady state level of the expected term appearing in the Euler equation
-ys_(14)=(ys_(4)^params(2)*(1-ys_(3))^(1-params(2)))^(1-params(3))/ys_(4)*(1+params(4)*(ys_(2)/ys_(1))^(1-params(5))-params(6));
-
-% Steady state level of output in the unconstrained regime (positive investment)
-ys_(6)=ys_(2);
-
-% Steady state level of labour in the unconstrained regime
-ys_(7)=ys_(3);
-
-% Steady state level of consumption in the unconstrained regime 
-ys_(8)=ys_(4);
-
-% Steady state level of labour in the constrained regime (noinvestment)
-[lss,info] = l_solver(ys_(3),params(4),params(5),params(2),params(8),ys_(1),100);
-if info, return, end
-ys_(10) = lss;
-
-% Steady state level of consumption in the constrained regime
-ys_(11)=params(8)*(params(4)*ys_(1)^params(5)+(1-params(4))*ys_(10)^params(5))^(1/params(5));
-
-% Steady state level of output in the constrained regime
-ys_(9)=ys_(11);
+function [ys_, params, info] = rbcii_steadystate2(ys_, exo_, params)
+     
+    % Flag initialization (equal to zero if the deterministic steady state exists) 
+    info = 0;
+    
+    % efficiency
+    ys_(13)=0;
+    
+    % Efficiency
+    ys_(12)=params(8);
+    
+    % Steady state ratios 
+    Output_per_unit_of_Capital=((1/params(1)-1+params(6))/params(4))^(1/(1-params(5)));
+    Consumption_per_unit_of_Capital=Output_per_unit_of_Capital-params(6);
+    Labour_per_unit_of_Capital=(((Output_per_unit_of_Capital/ys_(12))^params(5)-params(4))/(1-params(4)))^(1/params(5));
+    Output_per_unit_of_Labour=Output_per_unit_of_Capital/Labour_per_unit_of_Capital;
+    Consumption_per_unit_of_Labour=Consumption_per_unit_of_Capital/Labour_per_unit_of_Capital;
+
+    % Steady state share of capital revenues in total revenues (calibration check) 
+    ShareOfCapital=params(4)/(params(4)+(1-params(4))*Labour_per_unit_of_Capital^params(5));
+
+    % Steady state level of labour
+    ys_(3)=1/(1+Consumption_per_unit_of_Labour/((1-params(4))*params(2)/(1-params(2))*Output_per_unit_of_Labour^(1-params(5))));
+    
+    % Steady state level of consumption
+    ys_(4)=Consumption_per_unit_of_Labour*ys_(3);
+    
+    % Steady state level of physical capital stock
+    ys_(1)=ys_(3)/Labour_per_unit_of_Capital;
+    
+    % Steady state level of output
+    ys_(2)=Output_per_unit_of_Capital*ys_(1);
+    
+    % Steady state level of investment
+    ys_(5)=params(6)*ys_(1);
+    
+    % Steady state level of the expected term appearing in the Euler equation
+    ys_(14)=(ys_(4)^params(2)*(1-ys_(3))^(1-params(2)))^(1-params(3))/ys_(4)*(1+params(4)*(ys_(2)/ys_(1))^(1-params(5))-params(6));
+
+    % Steady state level of output in the unconstrained regime (positive investment)
+    ys_(6)=ys_(2);
+
+    % Steady state level of labour in the unconstrained regime
+    ys_(7)=ys_(3);
+    
+    % Steady state level of consumption in the unconstrained regime 
+    ys_(8)=ys_(4);
+        
+    % Steady state level of labour in the constrained regime (noinvestment)
+    [lss,info] = l_solver(ys_(3),params(4),params(5),params(2),params(8),ys_(1),100);
+    if info, return, end
+    ys_(10) = lss;
+
+    % Steady state level of consumption in the constrained regime
+    ys_(11)=params(8)*(params(4)*ys_(1)^params(5)+(1-params(4))*ys_(10)^params(5))^(1/params(5));
+    
+    % Steady state level of output in the constrained regime
+    ys_(9)=ys_(11);
 
 end
 
@@ -63,26 +63,26 @@ end
 
 
 function r = p0(labour,alpha,psi,theta,effstar,kstar)
-r = labour * ( alpha*kstar^psi/labour^psi + 1-alpha + theta*(1-alpha)/(1-theta)/effstar^psi ) - theta*(1-alpha)/(1-theta)/effstar^psi;
+    r = labour * ( alpha*kstar^psi/labour^psi + 1-alpha + theta*(1-alpha)/(1-theta)/effstar^psi ) - theta*(1-alpha)/(1-theta)/effstar^psi;
 end
-
+    
 function d = p1(labour,alpha,psi,theta,effstar,kstar)
-d = alpha*(1-psi)*kstar^psi/labour^psi + 1-alpha + theta*(1-alpha)/(1-alpha)/effstar^psi;
+    d = alpha*(1-psi)*kstar^psi/labour^psi + 1-alpha + theta*(1-alpha)/(1-alpha)/effstar^psi;
 end
 
 function [labour,info] = l_solver(labour,alpha,psi,theta,effstar,kstar,maxiter)
-iteration = 1; info = 0;
-r = p0(labour,alpha,psi,theta,effstar,kstar);
-condition = abs(r);
-while condition
-    if iteration==maxiter
-        info = 1;
-        break
-    end
-    d = p1(labour,alpha,psi,theta,effstar,kstar);
-    labour = labour - r/d;
+    iteration = 1; info = 0;
     r = p0(labour,alpha,psi,theta,effstar,kstar);
-    condition = abs(r)>1e-9;
-    iteration = iteration + 1; 
-end
+    condition = abs(r);
+    while condition
+        if iteration==maxiter
+            info = 1;
+            break
+        end
+        d = p1(labour,alpha,psi,theta,effstar,kstar);
+        labour = labour - r/d;
+        r = p0(labour,alpha,psi,theta,effstar,kstar);
+        condition = abs(r)>1e-9;
+        iteration = iteration + 1; 
+    end
 end
\ No newline at end of file
diff --git a/tests/estimation/fsdat_simul.m b/tests/estimation/fsdat_simul.m
index 159612e577..d4f4a8066f 100644
--- a/tests/estimation/fsdat_simul.m
+++ b/tests/estimation/fsdat_simul.m
@@ -1,828 +1,828 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/expectations/expectation_ss_old_steadystate.m b/tests/expectations/expectation_ss_old_steadystate.m
index 1b230e4b02..bfd46d82a7 100644
--- a/tests/expectations/expectation_ss_old_steadystate.m
+++ b/tests/expectations/expectation_ss_old_steadystate.m
@@ -1,12 +1,12 @@
 function [ys_, check_] = expectation_ss_old_steadystate(ys_orig_, exo_)
-ys_=zeros(6,1);
-global M_
-ys_(4)=0;
-ys_(6)=0;
-ys_(5)=0.3333333333333333;
-ys_(3)=((1/M_.params(1)-(1-M_.params(4)))/(M_.params(3)*ys_(5)^(1-M_.params(3))))^(1/(M_.params(3)-1));
-ys_(1)=ys_(5)^(1-M_.params(3))*ys_(3)^M_.params(3);
-ys_(2)=ys_(1)-M_.params(4)*ys_(3);
-M_.params(5)=(1-M_.params(3))*ys_(1)/(ys_(2)*ys_(5)^(1+M_.params(6)));
-check_=0;
+    ys_=zeros(6,1);
+    global M_
+    ys_(4)=0;
+    ys_(6)=0;
+    ys_(5)=0.3333333333333333;
+    ys_(3)=((1/M_.params(1)-(1-M_.params(4)))/(M_.params(3)*ys_(5)^(1-M_.params(3))))^(1/(M_.params(3)-1));
+    ys_(1)=ys_(5)^(1-M_.params(3))*ys_(3)^M_.params(3);
+    ys_(2)=ys_(1)-M_.params(4)*ys_(3);
+    M_.params(5)=(1-M_.params(3))*ys_(1)/(ys_(2)*ys_(5)^(1+M_.params(6)));
+    check_=0;
 end
diff --git a/tests/fataltest.m b/tests/fataltest.m
index 1ea213403a..a23db43112 100644
--- a/tests/fataltest.m
+++ b/tests/fataltest.m
@@ -1,4 +1,4 @@
-function fataltest(a,b,n)
-if max(max(abs(a)-abs(b))) > 1e-5
+function test(a,b,n)
+  if max(max(abs(a)-abs(b))) > 1e-5
     error(['Test error in test ' int2str(n)])
-end
\ No newline at end of file
+  end
\ No newline at end of file
diff --git a/tests/fs2000/fsdat_simul.m b/tests/fs2000/fsdat_simul.m
index 159612e577..d4f4a8066f 100644
--- a/tests/fs2000/fsdat_simul.m
+++ b/tests/fs2000/fsdat_simul.m
@@ -1,828 +1,828 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/fs2000/fsdat_simul_dseries.m b/tests/fs2000/fsdat_simul_dseries.m
index 5fa6d19a3b..2dd9c2e2d6 100644
--- a/tests/fs2000/fsdat_simul_dseries.m
+++ b/tests/fs2000/fsdat_simul_dseries.m
@@ -7,822 +7,822 @@ NAMES__ = {'P_obs'; 'Y_obs'; 'gp_obs'; 'gy_obs'};
 TEX__ = {'P\_obs'; 'Y\_obs'; 'gp\_obs'; 'gy\_obs'};
 
 P_obs = [
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407];
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407];
 
 Y_obs = [
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987];
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987];
 
 gp_obs = [
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703];
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703];
 
 gy_obs = [
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411];
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411];
 
diff --git a/tests/fs2000/fsdat_simul_missing_obs.m b/tests/fs2000/fsdat_simul_missing_obs.m
index cc5674e625..fe9dc57794 100644
--- a/tests/fs2000/fsdat_simul_missing_obs.m
+++ b/tests/fs2000/fsdat_simul_missing_obs.m
@@ -1,416 +1,416 @@
 % Generated data, used by fs2000.mod
 
 gy_obs          =[
-    NaN
-    1.0002599
-    0.99104664
-    1.0321162
-    1.0223545
-    1.0043614
-    0.98626929
-    1.0092127
-    1.0357197
-    1.0150827
-    1.0051548
-    0.98465775
-    0.99132132
-    0.99904153
-    1.0044641
-    1.0179198
-    1.0113462
-    0.99409421
-    0.99904293
-    1.0448336
-    0.99932433
-    1.0057004
-    0.99619787
-    1.0267504
-    1.0077645
-    1.0058026
-    1.0025891
-    0.9939097
-    0.99604693
-    0.99908569
-    1.0151094
-    0.99348134
-    1.0039124
-    1.0145805
-    0.99800868
-    0.98578138
-    1.0065771
-    0.99843919
-    0.97979062
-    0.98413351
-    0.96468174
-    1.0273857
-    1.0225211
-    0.99958667
-    1.0111157
-    1.0099585
-    0.99480311
-    1.0079265
-    0.98924573
-    1.0070613
-    1.0075706
-    0.9937151
-    1.0224711
-    1.0018891
-    0.99051863
-    1.0042944
-    1.0184055
-    0.99419508
-    0.99756624
-    1.0015983
-    0.9845772
-    1.0004407
-    1.0116237
-    0.9861885
-    1.0073094
-    0.99273355
-    1.0013224
-    0.99777979
-    1.0301686
-    0.96809556
-    0.99917088
-    0.99949253
-    0.96590004
-    1.0083938
-    0.96662298
-    1.0221454
-    1.0069792
-    1.0343996
-    1.0066531
-    1.0072525
-    0.99743563
-    0.99723703
-    1.000372
-    0.99013917
-    1.0095223
-    0.98864268
-    0.98092242
-    0.98886488
-    1.0030341
-    1.01894
-    0.99155059
-    0.99533235
-    0.99734316
-    1.0047356
-    1.0082737
-    0.98425116
-    0.99949212
-    1.0055899
-    1.0065075
-    0.99385069
-    0.98867975
-    0.99804843
-    1.0184038
-    0.99301902
-    1.0177222
-    1.0051924
-    1.0187852
-    1.0098985
-    1.0097172
-    1.0145811
-    0.98721038
-    1.0361722
-    1.0105821
-    0.99469309
-    0.98626785
-    1.013871
-    0.99858924
-    0.99302637
-    1.0042186
-    0.99623745
-    0.98545708
-    1.0225435
-    1.0011861
-    1.0130321
-    0.97861347
-    1.0228193
-    0.99627435
-    1.0272779
-    1.0075172
-    1.0096762
-    1.0129306
-    0.99966549
-    1.0262882
-    1.0026914
-    1.0061475
-    1.009523
-    1.0036127
-    0.99762992
-    0.99092634
-    1.0058469
-    0.99887292
-    1.0060653
-    0.98673557
-    0.98895709
-    0.99111967
-    0.990118
-    0.99788054
-    0.97054709
-    1.0099157
-    1.0107431
-    0.99518695
-    1.0114048
-    0.99376019
-    1.0023369
-    0.98783327
-    1.0051727
-    1.0100462
-    0.98607387
-    1.0000064
-    0.99692442
-    1.012225
-    0.99574078
-    0.98642833
-    0.99008207
-    1.0197359
-    1.0112849
-    0.98711069
-    0.99402748
-    1.0242141
-    1.0135349
-    0.99842505
-    1.0130714
-    0.99887044
-    1.0059058
-    1.0185998
-    1.0073314
-    0.98687706
-    1.0084551
-    0.97698964
-    0.99482714
-    1.0015302
-    1.0105331
-    1.0261767
-    1.0232822
-    1.0084176
-    0.99785167
-    0.99619733
-    1.0055223
-    1.0076326
-    0.99205461
-    1.0030587
-    1.0137012
-    1.0145878
-    1.0190297
-    1.0000681
-    1.0153894
-    1.0140649
-    1.0007236
-    0.97961463
-    1.0125257
-    1.0169503
-    NaN
-    1.0221185
+      NaN
+      1.0002599
+     0.99104664
+      1.0321162
+      1.0223545
+      1.0043614
+     0.98626929
+      1.0092127
+      1.0357197
+      1.0150827
+      1.0051548
+     0.98465775
+     0.99132132
+     0.99904153
+      1.0044641
+      1.0179198
+      1.0113462
+     0.99409421
+     0.99904293
+      1.0448336
+     0.99932433
+      1.0057004
+     0.99619787
+      1.0267504
+      1.0077645
+      1.0058026
+      1.0025891
+      0.9939097
+     0.99604693
+     0.99908569
+      1.0151094
+     0.99348134
+      1.0039124
+      1.0145805
+     0.99800868
+     0.98578138
+      1.0065771
+     0.99843919
+     0.97979062
+     0.98413351
+     0.96468174
+      1.0273857
+      1.0225211
+     0.99958667
+      1.0111157
+      1.0099585
+     0.99480311
+      1.0079265
+     0.98924573
+      1.0070613
+      1.0075706
+      0.9937151
+      1.0224711
+      1.0018891
+     0.99051863
+      1.0042944
+      1.0184055
+     0.99419508
+     0.99756624
+      1.0015983
+      0.9845772
+      1.0004407
+      1.0116237
+      0.9861885
+      1.0073094
+     0.99273355
+      1.0013224
+     0.99777979
+      1.0301686
+     0.96809556
+     0.99917088
+     0.99949253
+     0.96590004
+      1.0083938
+     0.96662298
+      1.0221454
+      1.0069792
+      1.0343996
+      1.0066531
+      1.0072525
+     0.99743563
+     0.99723703
+       1.000372
+     0.99013917
+      1.0095223
+     0.98864268
+     0.98092242
+     0.98886488
+      1.0030341
+        1.01894
+     0.99155059
+     0.99533235
+     0.99734316
+      1.0047356
+      1.0082737
+     0.98425116
+     0.99949212
+      1.0055899
+      1.0065075
+     0.99385069
+     0.98867975
+     0.99804843
+      1.0184038
+     0.99301902
+      1.0177222
+      1.0051924
+      1.0187852
+      1.0098985
+      1.0097172
+      1.0145811
+     0.98721038
+      1.0361722
+      1.0105821
+     0.99469309
+     0.98626785
+       1.013871
+     0.99858924
+     0.99302637
+      1.0042186
+     0.99623745
+     0.98545708
+      1.0225435
+      1.0011861
+      1.0130321
+     0.97861347
+      1.0228193
+     0.99627435
+      1.0272779
+      1.0075172
+      1.0096762
+      1.0129306
+     0.99966549
+      1.0262882
+      1.0026914
+      1.0061475
+       1.009523
+      1.0036127
+     0.99762992
+     0.99092634
+      1.0058469
+     0.99887292
+      1.0060653
+     0.98673557
+     0.98895709
+     0.99111967
+       0.990118
+     0.99788054
+     0.97054709
+      1.0099157
+      1.0107431
+     0.99518695
+      1.0114048
+     0.99376019
+      1.0023369
+     0.98783327
+      1.0051727
+      1.0100462
+     0.98607387
+      1.0000064
+     0.99692442
+       1.012225
+     0.99574078
+     0.98642833
+     0.99008207
+      1.0197359
+      1.0112849
+     0.98711069
+     0.99402748
+      1.0242141
+      1.0135349
+     0.99842505
+      1.0130714
+     0.99887044
+      1.0059058
+      1.0185998
+      1.0073314
+     0.98687706
+      1.0084551
+     0.97698964
+     0.99482714
+      1.0015302
+      1.0105331
+      1.0261767
+      1.0232822
+      1.0084176
+     0.99785167
+     0.99619733
+      1.0055223
+      1.0076326
+     0.99205461
+      1.0030587
+      1.0137012
+      1.0145878
+      1.0190297
+      1.0000681
+      1.0153894
+      1.0140649
+      1.0007236
+     0.97961463
+      1.0125257
+      1.0169503
+      NaN
+      1.0221185
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0115853
-    1.0167502
-    1.0068957
-    1.0138189
-    1.0258364
-    1.0243817
-    1.017373
-    1.0020171
-    1.0003742
-    1.0008974
-    1.0104804
-    1.0116393
-    1.0114294
-    0.99932124
-    0.99461459
-    1.0170349
-    1.0051446
-    1.020639
-    1.0051964
-    1.0093042
-    1.007068
-    1.01086
-    NaN
-    1.0014883
-    1.0117332
-    0.9990095
-    1.0108284
-    1.0103672
-    1.0036722
-    1.0005124
-    1.0190331
-    1.0130978
-    1.007842
-    1.0285436
-    1.0322054
-    1.0213403
-    1.0246486
-    1.0419306
-    1.0258867
-    1.0156316
-    0.99818589
-    0.9894107
-    1.0127584
-    1.0146882
-    1.0136529
-    1.0340107
-    1.0343652
-    1.02971
-    1.0077932
-    1.0198114
-    1.013971
-    1.0061083
-    1.0089573
-    1.0037926
-    1.0082071
-    0.99498155
-    0.99735772
-    0.98765026
-    1.006465
-    1.0196088
-    1.0053233
-    1.0119974
-    1.0188066
-    1.0029302
-    1.0183459
-    1.0034218
-    1.0158799
-    0.98824798
-    1.0274357
-    1.0168832
-    1.0180641
-    1.0294657
-    0.98864091
-    1.0358326
-    0.99889969
-    1.0178322
-    0.99813566
-    1.0073549
-    1.0215985
-    1.0084245
-    1.0080939
-    1.0157021
-    1.0075815
-    1.0032633
-    1.0117871
-    1.0209276
-    1.0077569
-    0.99680958
-    1.0120266
-    1.0017625
-    1.0138811
-    1.0198358
-    1.0059629
-    1.0115416
-    1.0319473
-    1.0167074
-    1.0116111
-    1.0048627
-    1.0217622
-    1.0125221
-    1.0142045
-    0.99792469
-    0.99823971
-    0.99561547
-    0.99850373
-    0.9898464
-    1.0030963
-    1.0051373
-    1.0004213
-    1.0144117
-    0.97185592
-    0.9959518
-    1.0073529
-    1.0051603
-    0.98642572
-    0.99433423
-    1.0112131
-    1.0007695
-    1.0176867
-    1.0134363
-    0.99926191
-    0.99879835
-    0.99878754
-    1.0331374
-    1.0077797
-    1.0127221
-    1.0047393
-    1.0074106
-    0.99784213
-    1.0056495
-    1.0057708
-    0.98817494
-    0.98742176
-    0.99930555
-    1.0000687
-    1.0129754
-    1.009529
-    1.0226731
-    1.0149534
-    1.0164295
-    1.0239469
-    1.0293458
-    1.026199
-    1.0197525
-    1.0126818
-    1.0054473
-    1.0254423
-    1.0069461
-    1.0153135
-    1.0337515
-    1.0178187
-    1.0240469
-    1.0079489
-    1.0186953
-    1.0008628
-    1.0113799
-    1.0140118
-    1.0168007
-    1.011441
-    0.98422774
-    0.98909729
-    1.0157859
-    1.0151586
-    0.99756232
-    0.99497777
-    1.0102841
-    1.0221659
-    0.9937759
-    0.99877193
-    1.0079433
-    0.99667692
-    1.0095959
-    1.0128804
-    1.0156949
-    1.0111951
-    1.0228887
-    1.0122083
-    1.0190197
-    1.0074927
-    1.0268096
-    0.99689352
-    0.98948474
-    1.0024938
-    1.0105543
-    1.014116
-    1.0141217
-    1.0056504
-    1.0101026
-    1.0105069
-    0.99619053
-    1.0059439
-    0.99449473
-    0.99482458
-    1.0037702
-    1.0068087
-    0.99575975
-    1.0030815
-    1.0334014
-    0.99879386
-    0.99625634
-    NaN
-    0.99233844
+      1.0079715
+      1.0115853
+      1.0167502
+      1.0068957
+      1.0138189
+      1.0258364
+      1.0243817
+       1.017373
+      1.0020171
+      1.0003742
+      1.0008974
+      1.0104804
+      1.0116393
+      1.0114294
+     0.99932124
+     0.99461459
+      1.0170349
+      1.0051446
+       1.020639
+      1.0051964
+      1.0093042
+       1.007068
+        1.01086
+     NaN
+      1.0014883
+      1.0117332
+      0.9990095
+      1.0108284
+      1.0103672
+      1.0036722
+      1.0005124
+      1.0190331
+      1.0130978
+       1.007842
+      1.0285436
+      1.0322054
+      1.0213403
+      1.0246486
+      1.0419306
+      1.0258867
+      1.0156316
+     0.99818589
+      0.9894107
+      1.0127584
+      1.0146882
+      1.0136529
+      1.0340107
+      1.0343652
+        1.02971
+      1.0077932
+      1.0198114
+       1.013971
+      1.0061083
+      1.0089573
+      1.0037926
+      1.0082071
+     0.99498155
+     0.99735772
+     0.98765026
+       1.006465
+      1.0196088
+      1.0053233
+      1.0119974
+      1.0188066
+      1.0029302
+      1.0183459
+      1.0034218
+      1.0158799
+     0.98824798
+      1.0274357
+      1.0168832
+      1.0180641
+      1.0294657
+     0.98864091
+      1.0358326
+     0.99889969
+      1.0178322
+     0.99813566
+      1.0073549
+      1.0215985
+      1.0084245
+      1.0080939
+      1.0157021
+      1.0075815
+      1.0032633
+      1.0117871
+      1.0209276
+      1.0077569
+     0.99680958
+      1.0120266
+      1.0017625
+      1.0138811
+      1.0198358
+      1.0059629
+      1.0115416
+      1.0319473
+      1.0167074
+      1.0116111
+      1.0048627
+      1.0217622
+      1.0125221
+      1.0142045
+     0.99792469
+     0.99823971
+     0.99561547
+     0.99850373
+      0.9898464
+      1.0030963
+      1.0051373
+      1.0004213
+      1.0144117
+     0.97185592
+      0.9959518
+      1.0073529
+      1.0051603
+     0.98642572
+     0.99433423
+      1.0112131
+      1.0007695
+      1.0176867
+      1.0134363
+     0.99926191
+     0.99879835
+     0.99878754
+      1.0331374
+      1.0077797
+      1.0127221
+      1.0047393
+      1.0074106
+     0.99784213
+      1.0056495
+      1.0057708
+     0.98817494
+     0.98742176
+     0.99930555
+      1.0000687
+      1.0129754
+       1.009529
+      1.0226731
+      1.0149534
+      1.0164295
+      1.0239469
+      1.0293458
+       1.026199
+      1.0197525
+      1.0126818
+      1.0054473
+      1.0254423
+      1.0069461
+      1.0153135
+      1.0337515
+      1.0178187
+      1.0240469
+      1.0079489
+      1.0186953
+      1.0008628
+      1.0113799
+      1.0140118
+      1.0168007
+       1.011441
+     0.98422774
+     0.98909729
+      1.0157859
+      1.0151586
+     0.99756232
+     0.99497777
+      1.0102841
+      1.0221659
+      0.9937759
+     0.99877193
+      1.0079433
+     0.99667692
+      1.0095959
+      1.0128804
+      1.0156949
+      1.0111951
+      1.0228887
+      1.0122083
+      1.0190197
+      1.0074927
+      1.0268096
+     0.99689352
+     0.98948474
+      1.0024938
+      1.0105543
+       1.014116
+      1.0141217
+      1.0056504
+      1.0101026
+      1.0105069
+     0.99619053
+      1.0059439
+     0.99449473
+     0.99482458
+      1.0037702
+      1.0068087
+     0.99575975
+      1.0030815
+      1.0334014
+     0.99879386
+     0.99625634
+      NaN
+     0.99233844
 
-                 ];
+];
 
diff --git a/tests/fs2000_ssfile_aux.m b/tests/fs2000_ssfile_aux.m
index 50a40bcfba..c16bfc96da 100644
--- a/tests/fs2000_ssfile_aux.m
+++ b/tests/fs2000_ssfile_aux.m
@@ -1,4 +1,4 @@
 function [W, e] = fs2000_ssfile_aux(l, n)
-W = l/n;
-e = 1;
+  W = l/n;
+  e = 1;
 end
diff --git a/tests/gsa/data_ca1.m b/tests/gsa/data_ca1.m
index ca003056bd..c28fae1a28 100644
--- a/tests/gsa/data_ca1.m
+++ b/tests/gsa/data_ca1.m
@@ -1,98 +1,98 @@
 data = [0.928467646476  11.8716889412   20  0.418037507392  0.227382377518 ...
-        -0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
-        -0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
-        -0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
-        -0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
-        -0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
-        -0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
-        1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
-        2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
-        1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
-        1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
-        1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
-        1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
-        0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
-        1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
-        1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
-        0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
-        1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
-        1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
-        -0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
-        0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
-        0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
-        -0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
-        2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
-        1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
-        1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
-        1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
-        1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
-        1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
-        0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
-        0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
-        1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
-        0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
-        0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
-        0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
-        0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
-        -0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
-        -0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
-        -0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
-        -1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
-        0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
-        0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
-        0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
-        -0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
-        0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
-        0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
-        0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
-        0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
-        0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
-        0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
-        0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
-        1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
-        1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
-        1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
-        0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
-        0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
-        -0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
-        0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
-        0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
-        0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
-        0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
-        1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
-        0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
-        0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
-        1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
-        1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
-        0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
-        1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
-        0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
-        1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
-        1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
-        1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
-        1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
-        1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
-        1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
-        1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
-        0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
-        1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
-        0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
-        0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
-        0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
-        -0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
-        0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
-        1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
-        1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
-        0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
-       ]; 
-
+-0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
+-0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
+-0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
+-0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
+-0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
+-0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
+1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
+2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
+1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
+1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
+1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
+1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
+0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
+1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
+1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
+0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
+1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
+1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
+-0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
+0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
+0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
+-0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
+2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
+1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
+1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
+1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
+1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
+1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
+0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
+0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
+1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
+0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
+0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
+0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
+0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
+-0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
+-0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
+-0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
+-1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
+0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
+0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
+0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
+-0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
+0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
+0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
+0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
+0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
+0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
+0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
+0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
+1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
+1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
+1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
+0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
+0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
+-0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
+0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
+0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
+0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
+0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
+1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
+0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
+0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
+1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
+1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
+0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
+1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
+0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
+1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
+1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
+1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
+1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
+1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
+1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
+1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
+0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
+1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
+0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
+0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
+0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
+-0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
+0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
+1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
+1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
+0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
+]; 
+ 
 data = reshape(data,5,86)'; 
 y_obs = data(:,1); 
 pie_obs = data(:,2); 
 R_obs = data(:,3); 
 de = data(:,4); 
 dq = data(:,5); 
-
+ 
 %Country: Canada 
 %Sample Range: 1981:2 to 2002:3 
 %Observations: 86 
diff --git a/tests/kalman/likelihood/compare_kalman_routines.m b/tests/kalman/likelihood/compare_kalman_routines.m
index 8650db0865..13022bbead 100644
--- a/tests/kalman/likelihood/compare_kalman_routines.m
+++ b/tests/kalman/likelihood/compare_kalman_routines.m
@@ -187,3 +187,4 @@ else
         disp(['percentage dev. = ' num2str((LIK3/LIK2-1)*100)])        
     end
 end
+    
\ No newline at end of file
diff --git a/tests/kalman/likelihood/simul_state_space_model.m b/tests/kalman/likelihood/simul_state_space_model.m
index 5cc0e336c6..92d3450e06 100644
--- a/tests/kalman/likelihood/simul_state_space_model.m
+++ b/tests/kalman/likelihood/simul_state_space_model.m
@@ -1,25 +1,25 @@
 function observed_data = simul_state_space_model(T,R,Q,mf,nobs,H)
-pp = length(mf);
-mm = length(T);
-rr = length(Q);
-
-upper_cholesky_Q = chol(Q);
-if nargin>5
-    upper_cholesky_H = chol(H);
-end
-
-state_data = zeros(mm,1);
-
-if (nargin==5)
-    for t = 1:nobs
-        state_data = T*state_data + R* upper_cholesky_Q * randn(rr,1);
-        observed_data(:,t) = state_data(mf);
+    pp = length(mf);
+    mm = length(T);
+    rr = length(Q);
+    
+    upper_cholesky_Q = chol(Q);
+    if nargin>5
+        upper_cholesky_H = chol(H);
     end
-elseif (nargin==6)
-    for t = 1:nobs
-        state_data = T*state_data + R* upper_cholesky_Q * randn(rr,1);
-        observed_data(:,t) = state_data(mf) + upper_cholesky_H * randn(pp,1);            
-    end
-else
-    error('simul_state_space_model:: I don''t understand what you want!!!')
-end
\ No newline at end of file
+    
+    state_data = zeros(mm,1);
+    
+    if (nargin==5)
+        for t = 1:nobs
+            state_data = T*state_data + R* upper_cholesky_Q * randn(rr,1);
+            observed_data(:,t) = state_data(mf);
+        end
+    elseif (nargin==6)
+        for t = 1:nobs
+            state_data = T*state_data + R* upper_cholesky_Q * randn(rr,1);
+            observed_data(:,t) = state_data(mf) + upper_cholesky_H * randn(pp,1);            
+        end
+    else
+        error('simul_state_space_model:: I don''t understand what you want!!!')
+    end
\ No newline at end of file
diff --git a/tests/kalman_filter_smoother/compare_results_simulation/fsdat_simul_logged.m b/tests/kalman_filter_smoother/compare_results_simulation/fsdat_simul_logged.m
index 1129467473..3e442115c2 100644
--- a/tests/kalman_filter_smoother/compare_results_simulation/fsdat_simul_logged.m
+++ b/tests/kalman_filter_smoother/compare_results_simulation/fsdat_simul_logged.m
@@ -1,830 +1,830 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
 gp_obs=log(gp_obs);
 gy_obs=log(gy_obs);
diff --git a/tests/kalman_filter_smoother/fsdat_simul.m b/tests/kalman_filter_smoother/fsdat_simul.m
index 159612e577..d4f4a8066f 100644
--- a/tests/kalman_filter_smoother/fsdat_simul.m
+++ b/tests/kalman_filter_smoother/fsdat_simul.m
@@ -1,828 +1,828 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/kalman_filter_smoother/testsmoother.m b/tests/kalman_filter_smoother/testsmoother.m
index 3ec1c8cdff..2e633bc234 100644
--- a/tests/kalman_filter_smoother/testsmoother.m
+++ b/tests/kalman_filter_smoother/testsmoother.m
@@ -9,10 +9,10 @@ Pstar1(1,1) = 0;
 Pstar1(4,1) = 0;
 Pstar1(1,4) = 0;
 [alphahat1,epsilonhat1,etahat1,a11, aK1] = DiffuseKalmanSmootherH1(T,R,Q,H, ...
-                                                  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
 [alphahat2,epsilonhat2,etahat2,a12, aK2] = DiffuseKalmanSmootherH3(T,R,Q,H, ...
-                                                  Pinf1,Pstar1,Y,trend, ...
-                                                  pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend, ...
+						  pp,mm,smpl,mf);
 max(max(abs(alphahat1-alphahat2)))
 max(max(abs(epsilonhat1-epsilonhat2)))
 max(max(abs(etahat1-etahat2)))
@@ -21,10 +21,10 @@ max(max(abs(aK1-aK2)))
 
 return
 [alphahat1,etahat1,a11, aK1] = DiffuseKalmanSmoother1(T,R,Q, ...
-                                                  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
 [alphahat2,etahat2,a12, aK2] = DiffuseKalmanSmoother3(T,R,Q, ...
-                                                  Pinf1,Pstar1,Y,trend, ...
-                                                  pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend, ...
+						  pp,mm,smpl,mf);
 
 
 max(max(abs(alphahat1-alphahat2)))
@@ -35,10 +35,10 @@ max(max(abs(a11-a12)))
 
 H = zeros(size(H));
 [alphahat1,etahat1,a11, aK1] = DiffuseKalmanSmoother1(T,R,Q, ...
-                                                  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
 [alphahat2,epsilonhat2,etahat2,a12, aK2] = DiffuseKalmanSmootherH1(T,R,Q,H, ...
-                                                  Pinf1,Pstar1,Y,trend, ...
-                                                  pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend, ...
+						  pp,mm,smpl,mf);
 max(max(abs(alphahat1-alphahat2)))
 max(max(abs(etahat1-etahat2)))
 max(max(abs(a11-a12)))
@@ -46,9 +46,9 @@ max(max(abs(a11-a12)))
 
 
 [alphahat1,etahat1,a11, aK1] = DiffuseKalmanSmoother3(T,R,Q, ...
-                                                  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
 [alphahat2,epsilonhat2,etahat2,a12, aK2] = DiffuseKalmanSmootherH3(T,R,Q, H, ...
-                                                  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
+						  Pinf1,Pstar1,Y,trend,pp,mm,smpl,mf);
 
 max(max(abs(alphahat1-alphahat2)))
 max(max(abs(etahat1-etahat2)))
diff --git a/tests/load_octave_packages.m b/tests/load_octave_packages.m
index 62b6e3d3c4..886bf644b0 100644
--- a/tests/load_octave_packages.m
+++ b/tests/load_octave_packages.m
@@ -11,11 +11,11 @@
 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 ## GNU General Public License for more details.
-    ##
-    ## You should have received a copy of the GNU General Public License
-    ## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
+##
+## You should have received a copy of the GNU General Public License
+## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 
-    pkg load io
-    pkg load optim
-    pkg load control
-    pkg load statistics
\ No newline at end of file
+pkg load io
+pkg load optim
+pkg load control
+pkg load statistics
\ No newline at end of file
diff --git a/tests/ls2003/data_ca1.m b/tests/ls2003/data_ca1.m
index ca003056bd..c28fae1a28 100644
--- a/tests/ls2003/data_ca1.m
+++ b/tests/ls2003/data_ca1.m
@@ -1,98 +1,98 @@
 data = [0.928467646476  11.8716889412   20  0.418037507392  0.227382377518 ...
-        -0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
-        -0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
-        -0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
-        -0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
-        -0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
-        -0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
-        1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
-        2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
-        1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
-        1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
-        1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
-        1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
-        0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
-        1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
-        1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
-        0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
-        1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
-        1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
-        -0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
-        0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
-        0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
-        -0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
-        2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
-        1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
-        1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
-        1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
-        1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
-        1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
-        0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
-        0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
-        1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
-        0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
-        0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
-        0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
-        0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
-        -0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
-        -0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
-        -0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
-        -1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
-        0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
-        0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
-        0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
-        -0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
-        0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
-        0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
-        0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
-        0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
-        0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
-        0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
-        0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
-        1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
-        1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
-        1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
-        0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
-        0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
-        -0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
-        0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
-        0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
-        0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
-        0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
-        1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
-        0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
-        0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
-        1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
-        1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
-        0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
-        1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
-        0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
-        1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
-        1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
-        1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
-        1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
-        1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
-        1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
-        1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
-        0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
-        1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
-        0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
-        0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
-        0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
-        -0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
-        0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
-        1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
-        1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
-        0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
-       ]; 
-
+-0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
+-0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
+-0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
+-0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
+-0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
+-0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
+1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
+2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
+1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
+1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
+1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
+1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
+0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
+1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
+1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
+0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
+1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
+1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
+-0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
+0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
+0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
+-0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
+2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
+1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
+1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
+1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
+1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
+1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
+0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
+0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
+1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
+0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
+0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
+0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
+0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
+-0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
+-0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
+-0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
+-1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
+0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
+0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
+0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
+-0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
+0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
+0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
+0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
+0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
+0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
+0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
+0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
+1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
+1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
+1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
+0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
+0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
+-0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
+0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
+0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
+0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
+0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
+1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
+0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
+0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
+1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
+1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
+0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
+1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
+0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
+1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
+1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
+1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
+1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
+1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
+1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
+1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
+0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
+1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
+0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
+0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
+0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
+-0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
+0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
+1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
+1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
+0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
+]; 
+ 
 data = reshape(data,5,86)'; 
 y_obs = data(:,1); 
 pie_obs = data(:,2); 
 R_obs = data(:,3); 
 de = data(:,4); 
 dq = data(:,5); 
-
+ 
 %Country: Canada 
 %Sample Range: 1981:2 to 2002:3 
 %Observations: 86 
diff --git a/tests/measurement_errors/data_ca1.m b/tests/measurement_errors/data_ca1.m
index ca003056bd..c28fae1a28 100644
--- a/tests/measurement_errors/data_ca1.m
+++ b/tests/measurement_errors/data_ca1.m
@@ -1,98 +1,98 @@
 data = [0.928467646476  11.8716889412   20  0.418037507392  0.227382377518 ...
-        -0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
-        -0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
-        -0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
-        -0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
-        -0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
-        -0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
-        1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
-        2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
-        1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
-        1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
-        1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
-        1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
-        0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
-        1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
-        1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
-        0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
-        1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
-        1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
-        -0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
-        0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
-        0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
-        -0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
-        2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
-        1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
-        1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
-        1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
-        1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
-        1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
-        0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
-        0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
-        1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
-        0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
-        0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
-        0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
-        0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
-        -0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
-        -0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
-        -0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
-        -1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
-        0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
-        0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
-        0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
-        -0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
-        0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
-        0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
-        0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
-        0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
-        0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
-        0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
-        0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
-        1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
-        1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
-        1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
-        0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
-        0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
-        -0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
-        0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
-        0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
-        0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
-        0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
-        1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
-        0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
-        0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
-        1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
-        1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
-        0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
-        1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
-        0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
-        1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
-        1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
-        1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
-        1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
-        1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
-        1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
-        1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
-        0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
-        1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
-        0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
-        0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
-        0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
-        -0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
-        0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
-        1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
-        1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
-        0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
-       ]; 
-
+-0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
+-0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
+-0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
+-0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
+-0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
+-0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
+1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
+2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
+1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
+1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
+1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
+1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
+0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
+1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
+1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
+0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
+1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
+1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
+-0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
+0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
+0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
+-0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
+2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
+1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
+1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
+1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
+1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
+1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
+0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
+0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
+1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
+0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
+0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
+0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
+0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
+-0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
+-0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
+-0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
+-1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
+0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
+0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
+0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
+-0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
+0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
+0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
+0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
+0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
+0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
+0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
+0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
+1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
+1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
+1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
+0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
+0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
+-0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
+0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
+0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
+0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
+0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
+1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
+0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
+0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
+1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
+1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
+0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
+1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
+0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
+1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
+1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
+1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
+1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
+1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
+1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
+1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
+0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
+1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
+0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
+0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
+0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
+-0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
+0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
+1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
+1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
+0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
+]; 
+ 
 data = reshape(data,5,86)'; 
 y_obs = data(:,1); 
 pie_obs = data(:,2); 
 R_obs = data(:,3); 
 de = data(:,4); 
 dq = data(:,5); 
-
+ 
 %Country: Canada 
 %Sample Range: 1981:2 to 2002:3 
 %Observations: 86 
diff --git a/tests/measurement_errors/fs2000_corr_me_ml_mcmc/fsdat_simul.m b/tests/measurement_errors/fs2000_corr_me_ml_mcmc/fsdat_simul.m
index f6ad30c85b..56c0e4cd56 100644
--- a/tests/measurement_errors/fs2000_corr_me_ml_mcmc/fsdat_simul.m
+++ b/tests/measurement_errors/fs2000_corr_me_ml_mcmc/fsdat_simul.m
@@ -1,416 +1,416 @@
 % Generated data, used by fs2000.mod
 
 gy_obs          =[
-    1.0030045
-    1.0002599
-    0.99104664
-    1.0321162
-    1.0223545
-    1.0043614
-    0.98626929
-    1.0092127
-    1.0357197
-    1.0150827
-    1.0051548
-    0.98465775
-    0.99132132
-    0.99904153
-    1.0044641
-    1.0179198
-    1.0113462
-    0.99409421
-    0.99904293
-    1.0448336
-    0.99932433
-    1.0057004
-    0.99619787
-    1.0267504
-    1.0077645
-    1.0058026
-    1.0025891
-    0.9939097
-    0.99604693
-    0.99908569
-    1.0151094
-    0.99348134
-    1.0039124
-    1.0145805
-    0.99800868
-    0.98578138
-    1.0065771
-    0.99843919
-    0.97979062
-    0.98413351
-    0.96468174
-    1.0273857
-    1.0225211
-    0.99958667
-    1.0111157
-    1.0099585
-    0.99480311
-    1.0079265
-    0.98924573
-    1.0070613
-    1.0075706
-    0.9937151
-    1.0224711
-    1.0018891
-    0.99051863
-    1.0042944
-    1.0184055
-    0.99419508
-    0.99756624
-    1.0015983
-    0.9845772
-    1.0004407
-    1.0116237
-    0.9861885
-    1.0073094
-    0.99273355
-    1.0013224
-    0.99777979
-    1.0301686
-    0.96809556
-    0.99917088
-    0.99949253
-    0.96590004
-    1.0083938
-    0.96662298
-    1.0221454
-    1.0069792
-    1.0343996
-    1.0066531
-    1.0072525
-    0.99743563
-    0.99723703
-    1.000372
-    0.99013917
-    1.0095223
-    0.98864268
-    0.98092242
-    0.98886488
-    1.0030341
-    1.01894
-    0.99155059
-    0.99533235
-    0.99734316
-    1.0047356
-    1.0082737
-    0.98425116
-    0.99949212
-    1.0055899
-    1.0065075
-    0.99385069
-    0.98867975
-    0.99804843
-    1.0184038
-    0.99301902
-    1.0177222
-    1.0051924
-    1.0187852
-    1.0098985
-    1.0097172
-    1.0145811
-    0.98721038
-    1.0361722
-    1.0105821
-    0.99469309
-    0.98626785
-    1.013871
-    0.99858924
-    0.99302637
-    1.0042186
-    0.99623745
-    0.98545708
-    1.0225435
-    1.0011861
-    1.0130321
-    0.97861347
-    1.0228193
-    0.99627435
-    1.0272779
-    1.0075172
-    1.0096762
-    1.0129306
-    0.99966549
-    1.0262882
-    1.0026914
-    1.0061475
-    1.009523
-    1.0036127
-    0.99762992
-    0.99092634
-    1.0058469
-    0.99887292
-    1.0060653
-    0.98673557
-    0.98895709
-    0.99111967
-    0.990118
-    0.99788054
-    0.97054709
-    1.0099157
-    1.0107431
-    0.99518695
-    1.0114048
-    0.99376019
-    1.0023369
-    0.98783327
-    1.0051727
-    1.0100462
-    0.98607387
-    1.0000064
-    0.99692442
-    1.012225
-    0.99574078
-    0.98642833
-    0.99008207
-    1.0197359
-    1.0112849
-    0.98711069
-    0.99402748
-    1.0242141
-    1.0135349
-    0.99842505
-    1.0130714
-    0.99887044
-    1.0059058
-    1.0185998
-    1.0073314
-    0.98687706
-    1.0084551
-    0.97698964
-    0.99482714
-    1.0015302
-    1.0105331
-    1.0261767
-    1.0232822
-    1.0084176
-    0.99785167
-    0.99619733
-    1.0055223
-    1.0076326
-    0.99205461
-    1.0030587
-    1.0137012
-    1.0145878
-    1.0190297
-    1.0000681
-    1.0153894
-    1.0140649
-    1.0007236
-    0.97961463
-    1.0125257
-    1.0169503
-    1.0197363
-    1.0221185
+      1.0030045
+      1.0002599
+     0.99104664
+      1.0321162
+      1.0223545
+      1.0043614
+     0.98626929
+      1.0092127
+      1.0357197
+      1.0150827
+      1.0051548
+     0.98465775
+     0.99132132
+     0.99904153
+      1.0044641
+      1.0179198
+      1.0113462
+     0.99409421
+     0.99904293
+      1.0448336
+     0.99932433
+      1.0057004
+     0.99619787
+      1.0267504
+      1.0077645
+      1.0058026
+      1.0025891
+      0.9939097
+     0.99604693
+     0.99908569
+      1.0151094
+     0.99348134
+      1.0039124
+      1.0145805
+     0.99800868
+     0.98578138
+      1.0065771
+     0.99843919
+     0.97979062
+     0.98413351
+     0.96468174
+      1.0273857
+      1.0225211
+     0.99958667
+      1.0111157
+      1.0099585
+     0.99480311
+      1.0079265
+     0.98924573
+      1.0070613
+      1.0075706
+      0.9937151
+      1.0224711
+      1.0018891
+     0.99051863
+      1.0042944
+      1.0184055
+     0.99419508
+     0.99756624
+      1.0015983
+      0.9845772
+      1.0004407
+      1.0116237
+      0.9861885
+      1.0073094
+     0.99273355
+      1.0013224
+     0.99777979
+      1.0301686
+     0.96809556
+     0.99917088
+     0.99949253
+     0.96590004
+      1.0083938
+     0.96662298
+      1.0221454
+      1.0069792
+      1.0343996
+      1.0066531
+      1.0072525
+     0.99743563
+     0.99723703
+       1.000372
+     0.99013917
+      1.0095223
+     0.98864268
+     0.98092242
+     0.98886488
+      1.0030341
+        1.01894
+     0.99155059
+     0.99533235
+     0.99734316
+      1.0047356
+      1.0082737
+     0.98425116
+     0.99949212
+      1.0055899
+      1.0065075
+     0.99385069
+     0.98867975
+     0.99804843
+      1.0184038
+     0.99301902
+      1.0177222
+      1.0051924
+      1.0187852
+      1.0098985
+      1.0097172
+      1.0145811
+     0.98721038
+      1.0361722
+      1.0105821
+     0.99469309
+     0.98626785
+       1.013871
+     0.99858924
+     0.99302637
+      1.0042186
+     0.99623745
+     0.98545708
+      1.0225435
+      1.0011861
+      1.0130321
+     0.97861347
+      1.0228193
+     0.99627435
+      1.0272779
+      1.0075172
+      1.0096762
+      1.0129306
+     0.99966549
+      1.0262882
+      1.0026914
+      1.0061475
+       1.009523
+      1.0036127
+     0.99762992
+     0.99092634
+      1.0058469
+     0.99887292
+      1.0060653
+     0.98673557
+     0.98895709
+     0.99111967
+       0.990118
+     0.99788054
+     0.97054709
+      1.0099157
+      1.0107431
+     0.99518695
+      1.0114048
+     0.99376019
+      1.0023369
+     0.98783327
+      1.0051727
+      1.0100462
+     0.98607387
+      1.0000064
+     0.99692442
+       1.012225
+     0.99574078
+     0.98642833
+     0.99008207
+      1.0197359
+      1.0112849
+     0.98711069
+     0.99402748
+      1.0242141
+      1.0135349
+     0.99842505
+      1.0130714
+     0.99887044
+      1.0059058
+      1.0185998
+      1.0073314
+     0.98687706
+      1.0084551
+     0.97698964
+     0.99482714
+      1.0015302
+      1.0105331
+      1.0261767
+      1.0232822
+      1.0084176
+     0.99785167
+     0.99619733
+      1.0055223
+      1.0076326
+     0.99205461
+      1.0030587
+      1.0137012
+      1.0145878
+      1.0190297
+      1.0000681
+      1.0153894
+      1.0140649
+      1.0007236
+     0.97961463
+      1.0125257
+      1.0169503
+      1.0197363
+      1.0221185
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0115853
-    1.0167502
-    1.0068957
-    1.0138189
-    1.0258364
-    1.0243817
-    1.017373
-    1.0020171
-    1.0003742
-    1.0008974
-    1.0104804
-    1.0116393
-    1.0114294
-    0.99932124
-    0.99461459
-    1.0170349
-    1.0051446
-    1.020639
-    1.0051964
-    1.0093042
-    1.007068
-    1.01086
-    0.99590086
-    1.0014883
-    1.0117332
-    0.9990095
-    1.0108284
-    1.0103672
-    1.0036722
-    1.0005124
-    1.0190331
-    1.0130978
-    1.007842
-    1.0285436
-    1.0322054
-    1.0213403
-    1.0246486
-    1.0419306
-    1.0258867
-    1.0156316
-    0.99818589
-    0.9894107
-    1.0127584
-    1.0146882
-    1.0136529
-    1.0340107
-    1.0343652
-    1.02971
-    1.0077932
-    1.0198114
-    1.013971
-    1.0061083
-    1.0089573
-    1.0037926
-    1.0082071
-    0.99498155
-    0.99735772
-    0.98765026
-    1.006465
-    1.0196088
-    1.0053233
-    1.0119974
-    1.0188066
-    1.0029302
-    1.0183459
-    1.0034218
-    1.0158799
-    0.98824798
-    1.0274357
-    1.0168832
-    1.0180641
-    1.0294657
-    0.98864091
-    1.0358326
-    0.99889969
-    1.0178322
-    0.99813566
-    1.0073549
-    1.0215985
-    1.0084245
-    1.0080939
-    1.0157021
-    1.0075815
-    1.0032633
-    1.0117871
-    1.0209276
-    1.0077569
-    0.99680958
-    1.0120266
-    1.0017625
-    1.0138811
-    1.0198358
-    1.0059629
-    1.0115416
-    1.0319473
-    1.0167074
-    1.0116111
-    1.0048627
-    1.0217622
-    1.0125221
-    1.0142045
-    0.99792469
-    0.99823971
-    0.99561547
-    0.99850373
-    0.9898464
-    1.0030963
-    1.0051373
-    1.0004213
-    1.0144117
-    0.97185592
-    0.9959518
-    1.0073529
-    1.0051603
-    0.98642572
-    0.99433423
-    1.0112131
-    1.0007695
-    1.0176867
-    1.0134363
-    0.99926191
-    0.99879835
-    0.99878754
-    1.0331374
-    1.0077797
-    1.0127221
-    1.0047393
-    1.0074106
-    0.99784213
-    1.0056495
-    1.0057708
-    0.98817494
-    0.98742176
-    0.99930555
-    1.0000687
-    1.0129754
-    1.009529
-    1.0226731
-    1.0149534
-    1.0164295
-    1.0239469
-    1.0293458
-    1.026199
-    1.0197525
-    1.0126818
-    1.0054473
-    1.0254423
-    1.0069461
-    1.0153135
-    1.0337515
-    1.0178187
-    1.0240469
-    1.0079489
-    1.0186953
-    1.0008628
-    1.0113799
-    1.0140118
-    1.0168007
-    1.011441
-    0.98422774
-    0.98909729
-    1.0157859
-    1.0151586
-    0.99756232
-    0.99497777
-    1.0102841
-    1.0221659
-    0.9937759
-    0.99877193
-    1.0079433
-    0.99667692
-    1.0095959
-    1.0128804
-    1.0156949
-    1.0111951
-    1.0228887
-    1.0122083
-    1.0190197
-    1.0074927
-    1.0268096
-    0.99689352
-    0.98948474
-    1.0024938
-    1.0105543
-    1.014116
-    1.0141217
-    1.0056504
-    1.0101026
-    1.0105069
-    0.99619053
-    1.0059439
-    0.99449473
-    0.99482458
-    1.0037702
-    1.0068087
-    0.99575975
-    1.0030815
-    1.0334014
-    0.99879386
-    0.99625634
-    1.0171195
-    0.99233844
+      1.0079715
+      1.0115853
+      1.0167502
+      1.0068957
+      1.0138189
+      1.0258364
+      1.0243817
+       1.017373
+      1.0020171
+      1.0003742
+      1.0008974
+      1.0104804
+      1.0116393
+      1.0114294
+     0.99932124
+     0.99461459
+      1.0170349
+      1.0051446
+       1.020639
+      1.0051964
+      1.0093042
+       1.007068
+        1.01086
+     0.99590086
+      1.0014883
+      1.0117332
+      0.9990095
+      1.0108284
+      1.0103672
+      1.0036722
+      1.0005124
+      1.0190331
+      1.0130978
+       1.007842
+      1.0285436
+      1.0322054
+      1.0213403
+      1.0246486
+      1.0419306
+      1.0258867
+      1.0156316
+     0.99818589
+      0.9894107
+      1.0127584
+      1.0146882
+      1.0136529
+      1.0340107
+      1.0343652
+        1.02971
+      1.0077932
+      1.0198114
+       1.013971
+      1.0061083
+      1.0089573
+      1.0037926
+      1.0082071
+     0.99498155
+     0.99735772
+     0.98765026
+       1.006465
+      1.0196088
+      1.0053233
+      1.0119974
+      1.0188066
+      1.0029302
+      1.0183459
+      1.0034218
+      1.0158799
+     0.98824798
+      1.0274357
+      1.0168832
+      1.0180641
+      1.0294657
+     0.98864091
+      1.0358326
+     0.99889969
+      1.0178322
+     0.99813566
+      1.0073549
+      1.0215985
+      1.0084245
+      1.0080939
+      1.0157021
+      1.0075815
+      1.0032633
+      1.0117871
+      1.0209276
+      1.0077569
+     0.99680958
+      1.0120266
+      1.0017625
+      1.0138811
+      1.0198358
+      1.0059629
+      1.0115416
+      1.0319473
+      1.0167074
+      1.0116111
+      1.0048627
+      1.0217622
+      1.0125221
+      1.0142045
+     0.99792469
+     0.99823971
+     0.99561547
+     0.99850373
+      0.9898464
+      1.0030963
+      1.0051373
+      1.0004213
+      1.0144117
+     0.97185592
+      0.9959518
+      1.0073529
+      1.0051603
+     0.98642572
+     0.99433423
+      1.0112131
+      1.0007695
+      1.0176867
+      1.0134363
+     0.99926191
+     0.99879835
+     0.99878754
+      1.0331374
+      1.0077797
+      1.0127221
+      1.0047393
+      1.0074106
+     0.99784213
+      1.0056495
+      1.0057708
+     0.98817494
+     0.98742176
+     0.99930555
+      1.0000687
+      1.0129754
+       1.009529
+      1.0226731
+      1.0149534
+      1.0164295
+      1.0239469
+      1.0293458
+       1.026199
+      1.0197525
+      1.0126818
+      1.0054473
+      1.0254423
+      1.0069461
+      1.0153135
+      1.0337515
+      1.0178187
+      1.0240469
+      1.0079489
+      1.0186953
+      1.0008628
+      1.0113799
+      1.0140118
+      1.0168007
+       1.011441
+     0.98422774
+     0.98909729
+      1.0157859
+      1.0151586
+     0.99756232
+     0.99497777
+      1.0102841
+      1.0221659
+      0.9937759
+     0.99877193
+      1.0079433
+     0.99667692
+      1.0095959
+      1.0128804
+      1.0156949
+      1.0111951
+      1.0228887
+      1.0122083
+      1.0190197
+      1.0074927
+      1.0268096
+     0.99689352
+     0.98948474
+      1.0024938
+      1.0105543
+       1.014116
+      1.0141217
+      1.0056504
+      1.0101026
+      1.0105069
+     0.99619053
+      1.0059439
+     0.99449473
+     0.99482458
+      1.0037702
+      1.0068087
+     0.99575975
+      1.0030815
+      1.0334014
+     0.99879386
+     0.99625634
+      1.0171195
+     0.99233844
 
-                 ];
+];
 
diff --git a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol3v.m b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol3v.m
index 11a132b648..ce6156c7b9 100644
--- a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol3v.m
+++ b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol3v.m
@@ -49,7 +49,7 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free D+ parameters in ith equation in all states.
 
 if (nargin==3)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 end
 
 
@@ -59,10 +59,10 @@ k = kvar*nStates;  % Maximum number of lagged and exogenous variables in each eq
 
 Qi = zeros(n,n,nvar);   % 3rd dim: nvar contemporaneous equations.
 Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
-                         % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
-                         %        0 means no restriction.
-                         %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
-                         %        1 (only 1) means that the corresponding parameter is restricted to 0.
+   % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
+   %        0 means no restriction.
+   %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
+   %        1 (only 1) means that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -77,47 +77,47 @@ Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
 eqninx = 1;
 nreseqn = 2;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0      -1  0  0
-        0  1  0       0 -1  0
-        0  0  1       0  0 -1
-
-        0 0 0       0 1 0
-        0 0 0       0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0      -1  0  0
+      0  1  0       0 -1  0
+      0  0  1       0  0 -1
+
+      0 0 0       0 1 0
+      0 0 0       0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 1 0       0 0 0
-        0 0 1       0 0 0
-
-        0 0 0       0 1 0
-        0 0 0       0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 1 0       0 0 0
+      0 0 1       0 0 0
+
+      0 0 0       0 1 0
+      0 0 0       0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -125,61 +125,61 @@ end
 eqninx = 2;
 nreseqn = 1;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0     -1  0  0
-        0  1  0      0 -1  0
-        0  0  1      0  0 -1
-
-        0 0 0      0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0     -1  0  0
+      0  1  0      0 -1  0
+      0  0  1      0  0 -1
+
+      0 0 0      0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 1       0 0 0
-
-        0 0 0      0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
-
-    %==== For freely time-varying A+ for only the first 6 lags.
-    %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
-    %  nlagsno0 = 6;   % Number of lags to be nonzero.
-    %  for si=1:nStates
-    %     for ki = 1:lags-nlagsno0
-    %        for kj=1:nvar
-    %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
-    %        end
-    %     end
-    %  end
-    %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    %  for si=1:nStates-1
-    %     for ki=[2*nvar+1:kvar-1]
-    %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-    %     end
-    %  end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 1       0 0 0
+
+      0 0 0      0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
+
+   %==== For freely time-varying A+ for only the first 6 lags.
+   %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
+   %  nlagsno0 = 6;   % Number of lags to be nonzero.
+   %  for si=1:nStates
+   %     for ki = 1:lags-nlagsno0
+   %        for kj=1:nvar
+   %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
+   %        end
+   %     end
+   %  end
+   %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   %  for si=1:nStates-1
+   %     for ki=[2*nvar+1:kvar-1]
+   %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+   %     end
+   %  end
 end
 
 
@@ -187,42 +187,42 @@ end
 eqninx = 3;
 nreseqn = 0;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0      -1  0  0
-        0  1  0       0 -1  0
-        0  0  1       0  0 -1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0      -1  0  0
+      0  1  0       0 -1  0
+      0  0  1       0  0 -1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
 
 for ki=1:nvar   %  initializing loop for each equation
-    Ui{ki} = null(Qi(:,:,ki));
-    Vi{ki} = null(Ri(:,:,ki));
-    n0(ki) = size(Ui{ki},2);
-    np(ki) = size(Vi{ki},2);
+   Ui{ki} = null(Qi(:,:,ki));
+   Vi{ki} = null(Ri(:,:,ki));
+   n0(ki) = size(Ui{ki},2);
+   np(ki) = size(Vi{ki},2);
 end
diff --git a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol4v.m b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol4v.m
index 7af810db3a..bc3215cdeb 100644
--- a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol4v.m
+++ b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol4v.m
@@ -49,7 +49,7 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free D+ parameters in ith equation in all states.
 
 if (nargin==3)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 end
 
 
@@ -59,10 +59,10 @@ k = kvar*nStates;  % Maximum number of lagged and exogenous variables in each eq
 
 Qi = zeros(n,n,nvar);   % 3rd dim: nvar contemporaneous equations.
 Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
-                         % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
-                         %        0 means no restriction.
-                         %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
-                         %        1 (only 1) means that the corresponding parameter is restricted to 0.
+   % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
+   %        0 means no restriction.
+   %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
+   %        1 (only 1) means that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -77,51 +77,51 @@ Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
 eqninx = 1;
 nreseqn = 3;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0     -1  0  0  0
-        0  1  0  0      0 -1  0  0
-        0  0  1  0      0  0 -1  0
-        0  0  0  1      0  0  0 -1
-
-        0 0 0 0      0 1 0 0
-        0 0 0 0      0 0 1 0
-        0 0 0 0      0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0     -1  0  0  0
+      0  1  0  0      0 -1  0  0
+      0  0  1  0      0  0 -1  0
+      0  0  0  1      0  0  0 -1
+
+      0 0 0 0      0 1 0 0
+      0 0 0 0      0 0 1 0
+      0 0 0 0      0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 1 0 0      0 0 0 0
-        0 0 1 0      0 0 0 0
-        0 0 0 1      0 0 0 0
-
-        0 0 0 0      0 1 0 0
-        0 0 0 0      0 0 1 0
-        0 0 0 0      0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 1 0 0      0 0 0 0
+      0 0 1 0      0 0 0 0
+      0 0 0 1      0 0 0 0
+
+      0 0 0 0      0 1 0 0
+      0 0 0 0      0 0 1 0
+      0 0 0 0      0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -129,65 +129,65 @@ end
 eqninx = 2;
 nreseqn = 2;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0     -1  0  0  0
-        0  1  0  0      0 -1  0  0
-        0  0  1  0      0  0 -1  0
-        0  0  0  1      0  0  0 -1
-
-        0 0 0 0      0 0 1 0
-        0 0 0 0      0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0     -1  0  0  0
+      0  1  0  0      0 -1  0  0
+      0  0  1  0      0  0 -1  0
+      0  0  0  1      0  0  0 -1
+
+      0 0 0 0      0 0 1 0
+      0 0 0 0      0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 1 0      0 0 0 0
-        0 0 0 1      0 0 0 0
-
-        0 0 0 0      0 0 1 0
-        0 0 0 0      0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
-
-    %==== For freely time-varying A+ for only the first 6 lags.
-    %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
-    %  nlagsno0 = 6;   % Number of lags to be nonzero.
-    %  for si=1:nStates
-    %     for ki = 1:lags-nlagsno0
-    %        for kj=1:nvar
-    %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
-    %        end
-    %     end
-    %  end
-    %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    %  for si=1:nStates-1
-    %     for ki=[2*nvar+1:kvar-1]
-    %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-    %     end
-    %  end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 1 0      0 0 0 0
+      0 0 0 1      0 0 0 0
+
+      0 0 0 0      0 0 1 0
+      0 0 0 0      0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
+
+   %==== For freely time-varying A+ for only the first 6 lags.
+   %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
+   %  nlagsno0 = 6;   % Number of lags to be nonzero.
+   %  for si=1:nStates
+   %     for ki = 1:lags-nlagsno0
+   %        for kj=1:nvar
+   %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
+   %        end
+   %     end
+   %  end
+   %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   %  for si=1:nStates-1
+   %     for ki=[2*nvar+1:kvar-1]
+   %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+   %     end
+   %  end
 end
 
 
@@ -195,44 +195,44 @@ end
 eqninx = 3;
 nreseqn = 1;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0     -1  0  0  0
-        0  1  0  0      0 -1  0  0
-        0  0  1  0      0  0 -1  0
-        0  0  0  1      0  0  0 -1
-
-        0 0 0 0      0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0     -1  0  0  0
+      0  1  0  0      0 -1  0  0
+      0  0  1  0      0  0 -1  0
+      0  0  0  1      0  0  0 -1
+
+      0 0 0 0      0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 1      0 0 0 0
-
-        0 0 0 0      0 0 0 1
-                   ];
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 1      0 0 0 0
+
+      0 0 0 0      0 0 0 1
+                         ];
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -240,36 +240,36 @@ end
 eqninx = 4;
 nreseqn = 0;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0     -1  0  0  0
-        0  1  0  0      0 -1  0  0
-        0  0  1  0      0  0 -1  0
-        0  0  0  1      0  0  0 -1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0     -1  0  0  0
+      0  1  0  0      0 -1  0  0
+      0  0  1  0      0  0 -1  0
+      0  0  0  1      0  0  0 -1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -324,8 +324,8 @@ end
 
 
 for ki=1:nvar   %  initializing loop for each equation
-    Ui{ki} = null(Qi(:,:,ki));
-    Vi{ki} = null(Ri(:,:,ki));
-    n0(ki) = size(Ui{ki},2);
-    np(ki) = size(Vi{ki},2);
+   Ui{ki} = null(Qi(:,:,ki));
+   Vi{ki} = null(Ri(:,:,ki));
+   n0(ki) = size(Ui{ki},2);
+   np(ki) = size(Vi{ki},2);
 end
diff --git a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol6v.m b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol6v.m
index 932e927454..389109df7a 100644
--- a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol6v.m
+++ b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol6v.m
@@ -49,7 +49,7 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free D+ parameters in ith equation in all states.
 
 if (nargin==3)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 end
 
 
@@ -59,10 +59,10 @@ k = kvar*nStates;  % Maximum number of lagged and exogenous variables in each eq
 
 Qi = zeros(n,n,nvar);   % 3rd dim: nvar contemporaneous equations.
 Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
-                         % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
-                         %        0 means no restriction.
-                         %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
-                         %        1 (only 1) means that the corresponding parameter is restricted to 0.
+   % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
+   %        0 means no restriction.
+   %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
+   %        1 (only 1) means that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -77,59 +77,59 @@ Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
 eqninx = 1;
 nreseqn = 5;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0     -1  0  0  0  0  0
-        0  1  0  0  0  0      0 -1  0  0  0  0
-        0  0  1  0  0  0      0  0 -1  0  0  0
-        0  0  0  1  0  0      0  0  0 -1  0  0
-        0  0  0  0  1  0      0  0  0  0 -1  0
-        0  0  0  0  0  1      0  0  0  0  0 -1
-
-        0 0 0 0 0 0     0 1 0 0 0 0
-        0 0 0 0 0 0     0 0 1 0 0 0
-        0 0 0 0 0 0     0 0 0 1 0 0
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0     -1  0  0  0  0  0
+      0  1  0  0  0  0      0 -1  0  0  0  0
+      0  0  1  0  0  0      0  0 -1  0  0  0
+      0  0  0  1  0  0      0  0  0 -1  0  0
+      0  0  0  0  1  0      0  0  0  0 -1  0
+      0  0  0  0  0  1      0  0  0  0  0 -1
+
+      0 0 0 0 0 0     0 1 0 0 0 0
+      0 0 0 0 0 0     0 0 1 0 0 0
+      0 0 0 0 0 0     0 0 0 1 0 0
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 1 0 0 0 0     0 0 0 0 0 0
-        0 0 1 0 0 0     0 0 0 0 0 0
-        0 0 0 1 0 0     0 0 0 0 0 0
-        0 0 0 0 1 0     0 0 0 0 0 0
-        0 0 0 0 0 1     0 0 0 0 0 0
-
-        0 0 0 0 0 0     0 1 0 0 0 0
-        0 0 0 0 0 0     0 0 1 0 0 0
-        0 0 0 0 0 0     0 0 0 1 0 0
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 1 0 0 0 0     0 0 0 0 0 0
+      0 0 1 0 0 0     0 0 0 0 0 0
+      0 0 0 1 0 0     0 0 0 0 0 0
+      0 0 0 0 1 0     0 0 0 0 0 0
+      0 0 0 0 0 1     0 0 0 0 0 0
+
+      0 0 0 0 0 0     0 1 0 0 0 0
+      0 0 0 0 0 0     0 0 1 0 0 0
+      0 0 0 0 0 0     0 0 0 1 0 0
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -138,56 +138,56 @@ end
 eqninx = 2;
 nreseqn = 4;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0     -1  0  0  0  0  0
-        0  1  0  0  0  0      0 -1  0  0  0  0
-        0  0  1  0  0  0      0  0 -1  0  0  0
-        0  0  0  1  0  0      0  0  0 -1  0  0
-        0  0  0  0  1  0      0  0  0  0 -1  0
-        0  0  0  0  0  1      0  0  0  0  0 -1
-
-        0 0 0 0 0 0     0 0 1 0 0 0
-        0 0 0 0 0 0     0 0 0 1 0 0
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0     -1  0  0  0  0  0
+      0  1  0  0  0  0      0 -1  0  0  0  0
+      0  0  1  0  0  0      0  0 -1  0  0  0
+      0  0  0  1  0  0      0  0  0 -1  0  0
+      0  0  0  0  1  0      0  0  0  0 -1  0
+      0  0  0  0  0  1      0  0  0  0  0 -1
+
+      0 0 0 0 0 0     0 0 1 0 0 0
+      0 0 0 0 0 0     0 0 0 1 0 0
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 1 0 0 0     0 0 0 0 0 0
-        0 0 0 1 0 0     0 0 0 0 0 0
-        0 0 0 0 1 0     0 0 0 0 0 0
-        0 0 0 0 0 1     0 0 0 0 0 0
-
-        0 0 0 0 0 0     0 0 1 0 0 0
-        0 0 0 0 0 0     0 0 0 1 0 0
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 1 0 0 0     0 0 0 0 0 0
+      0 0 0 1 0 0     0 0 0 0 0 0
+      0 0 0 0 1 0     0 0 0 0 0 0
+      0 0 0 0 0 1     0 0 0 0 0 0
+
+      0 0 0 0 0 0     0 0 1 0 0 0
+      0 0 0 0 0 0     0 0 0 1 0 0
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -195,70 +195,70 @@ end
 eqninx = 3;
 nreseqn = 3;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0     -1  0  0  0  0  0
-        0  1  0  0  0  0      0 -1  0  0  0  0
-        0  0  1  0  0  0      0  0 -1  0  0  0
-        0  0  0  1  0  0      0  0  0 -1  0  0
-        0  0  0  0  1  0      0  0  0  0 -1  0
-        0  0  0  0  0  1      0  0  0  0  0 -1
-
-        0 0 0 0 0 0     0 0 0 1 0 0
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0     -1  0  0  0  0  0
+      0  1  0  0  0  0      0 -1  0  0  0  0
+      0  0  1  0  0  0      0  0 -1  0  0  0
+      0  0  0  1  0  0      0  0  0 -1  0  0
+      0  0  0  0  1  0      0  0  0  0 -1  0
+      0  0  0  0  0  1      0  0  0  0  0 -1
+
+      0 0 0 0 0 0     0 0 0 1 0 0
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 1 0 0     0 0 0 0 0 0
-        0 0 0 0 1 0     0 0 0 0 0 0
-        0 0 0 0 0 1     0 0 0 0 0 0
-
-        0 0 0 0 0 0     0 0 0 1 0 0
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
-
-    %==== For freely time-varying A+ for only the first 6 lags.
-    %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
-    %  nlagsno0 = 6;   % Number of lags to be nonzero.
-    %  for si=1:nStates
-    %     for ki = 1:lags-nlagsno0
-    %        for kj=1:nvar
-    %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
-    %        end
-    %     end
-    %  end
-    %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    %  for si=1:nStates-1
-    %     for ki=[2*nvar+1:kvar-1]
-    %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-    %     end
-    %  end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 1 0 0     0 0 0 0 0 0
+      0 0 0 0 1 0     0 0 0 0 0 0
+      0 0 0 0 0 1     0 0 0 0 0 0
+
+      0 0 0 0 0 0     0 0 0 1 0 0
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
+
+   %==== For freely time-varying A+ for only the first 6 lags.
+   %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
+   %  nlagsno0 = 6;   % Number of lags to be nonzero.
+   %  for si=1:nStates
+   %     for ki = 1:lags-nlagsno0
+   %        for kj=1:nvar
+   %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
+   %        end
+   %     end
+   %  end
+   %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   %  for si=1:nStates-1
+   %     for ki=[2*nvar+1:kvar-1]
+   %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+   %     end
+   %  end
 end
 
 
@@ -266,49 +266,49 @@ end
 eqninx = 4;
 nreseqn = 2;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0     -1  0  0  0  0  0
-        0  1  0  0  0  0      0 -1  0  0  0  0
-        0  0  1  0  0  0      0  0 -1  0  0  0
-        0  0  0  1  0  0      0  0  0 -1  0  0
-        0  0  0  0  1  0      0  0  0  0 -1  0
-        0  0  0  0  0  1      0  0  0  0  0 -1
-
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0     -1  0  0  0  0  0
+      0  1  0  0  0  0      0 -1  0  0  0  0
+      0  0  1  0  0  0      0  0 -1  0  0  0
+      0  0  0  1  0  0      0  0  0 -1  0  0
+      0  0  0  0  1  0      0  0  0  0 -1  0
+      0  0  0  0  0  1      0  0  0  0  0 -1
+
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 0 1 0     0 0 0 0 0 0
-        0 0 0 0 0 1     0 0 0 0 0 0
-
-        0 0 0 0 0 0     0 0 0 0 1 0
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 0 1 0     0 0 0 0 0 0
+      0 0 0 0 0 1     0 0 0 0 0 0
+
+      0 0 0 0 0 0     0 0 0 0 1 0
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -316,46 +316,46 @@ end
 eqninx = 5;
 nreseqn = 1;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0     -1  0  0  0  0  0
-        0  1  0  0  0  0      0 -1  0  0  0  0
-        0  0  1  0  0  0      0  0 -1  0  0  0
-        0  0  0  1  0  0      0  0  0 -1  0  0
-        0  0  0  0  1  0      0  0  0  0 -1  0
-        0  0  0  0  0  1      0  0  0  0  0 -1
-
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0     -1  0  0  0  0  0
+      0  1  0  0  0  0      0 -1  0  0  0  0
+      0  0  1  0  0  0      0  0 -1  0  0  0
+      0  0  0  1  0  0      0  0  0 -1  0  0
+      0  0  0  0  1  0      0  0  0  0 -1  0
+      0  0  0  0  0  1      0  0  0  0  0 -1
+
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 0 0 1     0 0 0 0 0 0
-
-        0 0 0 0 0 0     0 0 0 0 0 1
-                   ];
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 0 0 1     0 0 0 0 0 0
+
+      0 0 0 0 0 0     0 0 0 0 0 1
+                         ];
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -363,38 +363,38 @@ end
 eqninx = 6;
 nreseqn = 0;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0     -1  0  0  0  0  0
-        0  1  0  0  0  0      0 -1  0  0  0  0
-        0  0  1  0  0  0      0  0 -1  0  0  0
-        0  0  0  1  0  0      0  0  0 -1  0  0
-        0  0  0  0  1  0      0  0  0  0 -1  0
-        0  0  0  0  0  1      0  0  0  0  0 -1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0     -1  0  0  0  0  0
+      0  1  0  0  0  0      0 -1  0  0  0  0
+      0  0  1  0  0  0      0  0 -1  0  0  0
+      0  0  0  1  0  0      0  0  0 -1  0  0
+      0  0  0  0  1  0      0  0  0  0 -1  0
+      0  0  0  0  0  1      0  0  0  0  0 -1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -448,8 +448,8 @@ end
 
 
 for ki=1:nvar   %  initializing loop for each equation
-    Ui{ki} = null(Qi(:,:,ki));
-    Vi{ki} = null(Ri(:,:,ki));
-    n0(ki) = size(Ui{ki},2);
-    np(ki) = size(Vi{ki},2);
+   Ui{ki} = null(Qi(:,:,ki));
+   Vi{ki} = null(Ri(:,:,ki));
+   n0(ki) = size(Ui{ki},2);
+   np(ki) = size(Vi{ki},2);
 end
diff --git a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol7v.m b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol7v.m
index eb2e80c695..de818ab905 100644
--- a/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol7v.m
+++ b/tests/ms-sbvar/archive-files/ftd_2s_caseall_upperchol7v.m
@@ -49,7 +49,7 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free D+ parameters in ith equation in all states.
 
 if (nargin==3)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 end
 
 
@@ -59,10 +59,10 @@ k = kvar*nStates;  % Maximum number of lagged and exogenous variables in each eq
 
 Qi = zeros(n,n,nvar);   % 3rd dim: nvar contemporaneous equations.
 Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
-                         % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
-                         %        0 means no restriction.
-                         %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
-                         %        1 (only 1) means that the corresponding parameter is restricted to 0.
+   % Row corresponds to equation with nvar variables for state 1, ..., nvar variables for state nState.
+   %        0 means no restriction.
+   %        1 and -1 or any other number means the linear combination of the corresponding parameters is restricted to 0.
+   %        1 (only 1) means that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -77,63 +77,63 @@ Ri = zeros(k,k,nvar);    % 1st and 2nd dims: lagged and exogenous equations.
 eqninx = 1;
 nreseqn = 6;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-
-        0 0 0 0 0 0 0       0 1 0 0 0 0 0
-        0 0 0 0 0 0 0       0 0 1 0 0 0 0
-        0 0 0 0 0 0 0       0 0 0 1 0 0 0
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+
+      0 0 0 0 0 0 0       0 1 0 0 0 0 0
+      0 0 0 0 0 0 0       0 0 1 0 0 0 0
+      0 0 0 0 0 0 0       0 0 0 1 0 0 0
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 1 0 0 0 0 0    0 0 0 0 0 0 0
-        0 0 1 0 0 0 0    0 0 0 0 0 0 0
-        0 0 0 1 0 0 0    0 0 0 0 0 0 0
-        0 0 0 0 1 0 0    0 0 0 0 0 0 0
-        0 0 0 0 0 1 0    0 0 0 0 0 0 0
-        0 0 0 0 0 0 1    0 0 0 0 0 0 0
-
-        0 0 0 0 0 0 0       0 1 0 0 0 0 0
-        0 0 0 0 0 0 0       0 0 1 0 0 0 0
-        0 0 0 0 0 0 0       0 0 0 1 0 0 0
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 1 0 0 0 0 0    0 0 0 0 0 0 0
+      0 0 1 0 0 0 0    0 0 0 0 0 0 0
+      0 0 0 1 0 0 0    0 0 0 0 0 0 0
+      0 0 0 0 1 0 0    0 0 0 0 0 0 0
+      0 0 0 0 0 1 0    0 0 0 0 0 0 0
+      0 0 0 0 0 0 1    0 0 0 0 0 0 0
+
+      0 0 0 0 0 0 0       0 1 0 0 0 0 0
+      0 0 0 0 0 0 0       0 0 1 0 0 0 0
+      0 0 0 0 0 0 0       0 0 0 1 0 0 0
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -141,60 +141,60 @@ end
 eqninx = 2;
 nreseqn = 5;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-
-        0 0 0 0 0 0 0       0 0 1 0 0 0 0
-        0 0 0 0 0 0 0       0 0 0 1 0 0 0
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+
+      0 0 0 0 0 0 0       0 0 1 0 0 0 0
+      0 0 0 0 0 0 0       0 0 0 1 0 0 0
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 1 0 0 0 0        0 0 0 0 0 0 0
-        0 0 0 1 0 0 0        0 0 0 0 0 0 0
-        0 0 0 0 1 0 0        0 0 0 0 0 0 0
-        0 0 0 0 0 1 0        0 0 0 0 0 0 0
-        0 0 0 0 0 0 1        0 0 0 0 0 0 0
-
-        0 0 0 0 0 0 0       0 0 1 0 0 0 0
-        0 0 0 0 0 0 0       0 0 0 1 0 0 0
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+       0 0 1 0 0 0 0        0 0 0 0 0 0 0
+       0 0 0 1 0 0 0        0 0 0 0 0 0 0
+       0 0 0 0 1 0 0        0 0 0 0 0 0 0
+       0 0 0 0 0 1 0        0 0 0 0 0 0 0
+       0 0 0 0 0 0 1        0 0 0 0 0 0 0
+
+      0 0 0 0 0 0 0       0 0 1 0 0 0 0
+      0 0 0 0 0 0 0       0 0 0 1 0 0 0
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_*.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -202,57 +202,57 @@ end
 eqninx = 3;
 nreseqn = 4;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-
-        0 0 0 0 0 0 0       0 0 0 1 0 0 0
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+
+      0 0 0 0 0 0 0       0 0 0 1 0 0 0
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 1 0 0 0       0 0 0 0 0 0 0
-        0 0 0 0 1 0 0       0 0 0 0 0 0 0
-        0 0 0 0 0 1 0       0 0 0 0 0 0 0
-        0 0 0 0 0 0 1       0 0 0 0 0 0 0
-
-        0 0 0 0 0 0 0       0 0 0 1 0 0 0
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 1 0 0 0       0 0 0 0 0 0 0
+      0 0 0 0 1 0 0       0 0 0 0 0 0 0
+      0 0 0 0 0 1 0       0 0 0 0 0 0 0
+      0 0 0 0 0 0 1       0 0 0 0 0 0 0
+
+      0 0 0 0 0 0 0       0 0 0 1 0 0 0
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -261,71 +261,71 @@ end
 eqninx = 4;
 nreseqn = 3;  % Number of linear restrictions for A0(:,eqninx) for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 0 1 0 0       0 0 0 0 0 0 0
-        0 0 0 0 0 1 0       0 0 0 0 0 0 0
-        0 0 0 0 0 0 1       0 0 0 0 0 0 0
-
-        0 0 0 0 0 0 0       0 0 0 0 1 0 0
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
-
-    %==== For freely time-varying A+ for only the first 6 lags.
-    %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
-    %  nlagsno0 = 6;   % Number of lags to be nonzero.
-    %  for si=1:nStates
-    %     for ki = 1:lags-nlagsno0
-    %        for kj=1:nvar
-    %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
-    %        end
-    %     end
-    %  end
-    %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    %  for si=1:nStates-1
-    %     for ki=[2*nvar+1:kvar-1]
-    %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-    %     end
-    %  end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 0 1 0 0       0 0 0 0 0 0 0
+      0 0 0 0 0 1 0       0 0 0 0 0 0 0
+      0 0 0 0 0 0 1       0 0 0 0 0 0 0
+
+      0 0 0 0 0 0 0       0 0 0 0 1 0 0
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_3s_case3a.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
+
+   %==== For freely time-varying A+ for only the first 6 lags.
+   %====       Lagged restrictions: zeros on all lags except the first 6 lags in the MS equation.
+   %  nlagsno0 = 6;   % Number of lags to be nonzero.
+   %  for si=1:nStates
+   %     for ki = 1:lags-nlagsno0
+   %        for kj=1:nvar
+   %           Ri(kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,kvar*(si-1)+nlagsno0*nvar+nvar*(ki-1)+kj,2) = 1;
+   %        end
+   %     end
+   %  end
+   %**** For constant D+_s except the first two lags and the constant term.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   %  for si=1:nStates-1
+   %     for ki=[2*nvar+1:kvar-1]
+   %        Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+   %     end
+   %  end
 end
 
 
@@ -333,50 +333,50 @@ end
 eqninx = 5;
 nreseqn = 2;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 0 0 1 0        0 0 0 0 0 0 0
-        0 0 0 0 0 0 1        0 0 0 0 0 0 0
-
-        0 0 0 0 0 0 0       0 0 0 0 0 1 0
-        0 0 0 0 0 0 0       0 0 0 0 0 0 1
-                   ];
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 0 0 1 0        0 0 0 0 0 0 0
+      0 0 0 0 0 0 1        0 0 0 0 0 0 0
+
+      0 0 0 0 0 0 0       0 0 0 0 0 1 0
+      0 0 0 0 0 0 0       0 0 0 0 0 0 1
+                         ];
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -384,47 +384,47 @@ end
 eqninx = 6;
 nreseqn = 1;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-
-        0 0 0 0 0 0 0             0 0 0 0 0 0 1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+
+      0 0 0 0 0 0 0             0 0 0 0 0 0 1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:nreseqn*nStates,:,eqninx) = [
-        0 0 0 0 0 0 1             0 0 0 0 0 0 0
-
-        0 0 0 0 0 0 0             0 0 0 0 0 0 1
-                   ];
-    %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For time-varying A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:nreseqn*nStates,:,eqninx) = [
+      0 0 0 0 0 0 1             0 0 0 0 0 0 0
+
+      0 0 0 0 0 0 0             0 0 0 0 0 0 1
+                         ];
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -432,39 +432,39 @@ end
 eqninx = 7;
 nreseqn = 0;  % Number of linear restrictions for the equation for each state.
 if (indxEqnTv_m(eqninx, 2)<=2)
-    %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
-    Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
-        1  0  0  0  0  0  0     -1  0  0  0  0  0  0
-        0  1  0  0  0  0  0      0 -1  0  0  0  0  0
-        0  0  1  0  0  0  0      0  0 -1  0  0  0  0
-        0  0  0  1  0  0  0      0  0  0 -1  0  0  0
-        0  0  0  0  1  0  0      0  0  0  0 -1  0  0
-        0  0  0  0  0  1  0      0  0  0  0  0 -1  0
-        0  0  0  0  0  0  1      0  0  0  0  0  0 -1
-                   ];
-    %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    for si=1:nStates-1
-        for ki=1:kvar
-            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-        end
-    end
+   %**** For constant A0_s.    In the order of [a0j(1),...,a0j(nStates)] for the 2nd dim of Qi.
+   Qi(1:(nStates-1)*nvar+nreseqn,:,eqninx) = [
+      1  0  0  0  0  0  0     -1  0  0  0  0  0  0
+      0  1  0  0  0  0  0      0 -1  0  0  0  0  0
+      0  0  1  0  0  0  0      0  0 -1  0  0  0  0
+      0  0  0  1  0  0  0      0  0  0 -1  0  0  0
+      0  0  0  0  1  0  0      0  0  0  0 -1  0  0
+      0  0  0  0  0  1  0      0  0  0  0  0 -1  0
+      0  0  0  0  0  0  1      0  0  0  0  0  0 -1
+                         ];
+   %**** For constant D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   for si=1:nStates-1
+      for ki=1:kvar
+         Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+      end
+   end
 else    % Time-varying equations at least for A0_s.  For D+_s, constant-parameter equations in general.
-        %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
-    if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
-        for si=1:nStates-1
-            for ki=1:kvar
-                Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
-            end
-        end
-    else
-        error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
-    end
+   %**** For D+_s.  In the order of [aj+(1),...,aj+(nStates)] for the 2nd dim of Ri.
+   if (indxEqnTv_m(eqninx, 2)==3)    % For constant D+** except the constant term.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar-1   % -1: no restrictions on the constant term, which is freely time-varying.
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   elseif (indxEqnTv_m(eqninx, 2)==4)    % For constant D+**.  In the order of [dj**(1),...,dj**(nStates)] for the 2nd dim of Ri.
+      for si=1:nStates-1
+         for ki=1:kvar
+            Ri(kvar*(si-1)+ki,[kvar*(si-1)+ki si*kvar+ki],eqninx) = [1 -1];
+         end
+      end
+   else
+      error('.../ftd_2s_caseall_simszha5v.m:  Have not got time to deal with the simple case indxEqnTv_m(eqninx, 2)=5.')
+   end
 end
 
 
@@ -518,8 +518,8 @@ end
 
 
 for ki=1:nvar   %  initializing loop for each equation
-    Ui{ki} = null(Qi(:,:,ki));
-    Vi{ki} = null(Ri(:,:,ki));
-    n0(ki) = size(Ui{ki},2);
-    np(ki) = size(Vi{ki},2);
+   Ui{ki} = null(Qi(:,:,ki));
+   Vi{ki} = null(Ri(:,:,ki));
+   n0(ki) = size(Ui{ki},2);
+   np(ki) = size(Vi{ki},2);
 end
diff --git a/tests/ms-sbvar/archive-files/ftd_RSvensson_4v.m b/tests/ms-sbvar/archive-files/ftd_RSvensson_4v.m
index 2c9f434475..2b24a786ab 100644
--- a/tests/ms-sbvar/archive-files/ftd_RSvensson_4v.m
+++ b/tests/ms-sbvar/archive-files/ftd_RSvensson_4v.m
@@ -1,4 +1,4 @@
-function [Ui,Vi,n0,np,ixmC0Pres] = ftd_RSvensson_4v(lags,nvar,nexo,indxC0Pres)
+function [Ui,Vi,n0,np,ixmC0Pres] = ftd_reac_function_4v(lags,nvar,nexo,indxC0Pres)
 %  vlist = [ff+ch fh dpgdp ffr)
 %
 %    Exporting orthonormal matrices for the deterministic linear restrictions (equation by equation)
@@ -50,17 +50,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -75,13 +75,13 @@ Qi(1:3,:,1) = [
     0 1 0 0
     0 0 1 0
     0 0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:2,:,2) = [
     0 0 1 0
     0 0 0 1
-              ];
+        ];
 
 %======== The third equation =========== NOTE THAT WE FORBID A
 %CONTEMPORANEOUS IMPACT OF OUTPUTON PRICES TO AVOID A CONSTRAINT THAT
@@ -90,7 +90,7 @@ Qi(1:3,:,3) = [
     1 0 0 0
     0 1 0 0
     0 0 0 1
-              ];
+        ];
 
 %======== The fourth equation ===========
 
@@ -98,34 +98,34 @@ Qi(1:3,:,3) = [
 % Restrictions on the A+ in order to focus strictly on the reaction fucntion
 
 % indicates free parameterers X i
-%       Ap = [
+%	Ap = [
 %      X  X    X  X
-%          X  X    X  X
+%	   X  X    X  X
 %     -a1 -b1  X  X
 %      a1 b1   0  X  (1st lag)
 %      X  X    X  X
-%          X  X    X  X
+%	   X  X    X  X
 %     -a2 -b2  X  X
 %      b2  b2  0  X  (2nd lag)
 %      X   0   X  X
-%          X  X    X  X
+%	   X  X    X  X
 %     -a3 -b3  X  X
 %      a3  a3  0  X  (3rd lag)
 %      X  X    X  X
-%          X  X    X  X
+%	   X  X    X  X
 %     -a4 -b4  X  X
 %      a4  b4  0  X  (4th lag)
 %      X  X    X  X  (constant terms)
-%                         ];
+%			  ];
 
 k=nvar*lags+nexo;
 Ri = zeros(k,k,nvar);
 % constraints on IS curve /conso+corporate investment
 for nv=1:2
-    for ll=1:lags
-        Ri(ll,3+lags*(ll-1),nv)=1;
-        Ri(ll,4+lags*(ll-1),nv)=1;
-    end
+for ll=1:lags
+Ri(ll,3+lags*(ll-1),nv)=1;
+Ri(ll,4+lags*(ll-1),nv)=1;
+end
 end
 
 % constraints on IS curve /conso+corporate investment only on the long run
@@ -140,15 +140,15 @@ end
 
 % constraints on Ph curve / inflation does not react to interest rates
 for ll=1:lags
-    Ri(ll,4+lags*(ll-1),3)=1;
+Ri(ll,4+lags*(ll-1),3)=1;
 end
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -159,30 +159,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_cholesky.m b/tests/ms-sbvar/archive-files/ftd_cholesky.m
index 7c89c38eab..42126015ab 100644
--- a/tests/ms-sbvar/archive-files/ftd_cholesky.m
+++ b/tests/ms-sbvar/archive-files/ftd_cholesky.m
@@ -47,17 +47,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -69,146 +69,146 @@ Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
 %The restrictions considered here are in the following form where X means unrestricted:
 %  A0 = [
 %      X  0  X  X
-%                0  X  X  X
-%                0  0  X  X
-%                0  0  0  X
-%                       ];
-%       Ap = [
+%		 0  X  X  X
+%		 0  0  X  X
+%		 0  0  0  X
+%			];
+%	Ap = [
 %      X  0  X  X
-%                0  X  X  X
+%		 0  X  X  X
 %      0  0  X  X
 %      0  0  X  X  (1st lag)
 %      X  0  X  X
-%                0  X  X  X
+%		 0  X  X  X
 %      0  0  X  X
 %      0  0  X  X  (2nd lag)
 %      X  0  X  X
-%                0  X  X  X
+%		 0  X  X  X
 %      0  0  X  X
 %      0  0  X  X  (3rd lag)
 %      X  0  X  X
-%                0  X  X  X
+%		 0  X  X  X
 %      0  0  X  X
 %      0  0  X  X  (4th lag)
 %      0  X  0  0  (constant terms)
-%                       ];
+%			];
 
 if (0)
-    %------------------------ Lower triangular A0 ------------------------------
-    %======== The first equation ===========
-
-
-    %======== The second equation ===========
-    Qi(1:1,:,2) = [
-        1 0 0 0
-                  ];
-
-    %======== The third equation ===========
-    Qi(1:2,:,3) = [
-        1 0 0 0
-        0 1 0 0
-                  ];
-
-    %======== The fourth equation ===========
-    Qi(1:3,:,4) = [
-        1 0 0 0
-        0 1 0 0
-        0 0 1 0
-                  ];
+	%------------------------ Lower triangular A0 ------------------------------
+	%======== The first equation ===========
+
+
+	%======== The second equation ===========
+	Qi(1:1,:,2) = [
+	   1 0 0 0
+	        ];
+
+	%======== The third equation ===========
+	Qi(1:2,:,3) = [
+	   1 0 0 0
+	   0 1 0 0
+	        ];
+
+	%======== The fourth equation ===========
+	Qi(1:3,:,4) = [
+	   1 0 0 0
+	   0 1 0 0
+	   0 0 1 0
+	        ];
 else
-    %------------------------ Upper triangular A0 ------------------------------
-    %======== The first equation ===========
-    Qi(2:4,:,1) = [
-        0 1 0 0
-        0 0 1 0
-        0 0 0 1
-                  ];
-
-    %======== The second equation ===========
-    Qi([1 3:4],:,2) = [
-        1 0 0 0
-        0 0 1 0
-        0 0 0 1
-                      ];
-
-    %======== The third equation ===========
-    Qi(4:4,:,3) = [
-        0 0 0 1
-                  ];
-
-    %======== The fourth equation ===========
+	%------------------------ Upper triangular A0 ------------------------------
+	%======== The first equation ===========
+	Qi(2:4,:,1) = [
+	   0 1 0 0
+	   0 0 1 0
+	   0 0 0 1
+	        ];
+
+	%======== The second equation ===========
+   Qi([1 3:4],:,2) = [
+      1 0 0 0
+      0 0 1 0
+	   0 0 0 1
+	        ];
+
+	%======== The third equation ===========
+	Qi(4:4,:,3) = [
+	   0 0 0 1
+	        ];
+
+	%======== The fourth equation ===========
 end
 
 
 %-------------------------- Lag restrictions. ------------------------------------------
 if (1)
-    %--- Lag restrictions.
-    indxeqn = 1;   %Which equation.
-    nrestrs = (nvar-1)*lags+1;  %Number of restrictions.
-    vars_restr = [2:nvar];  %Variables that are restricted:  id, ik, and y.
-    blags = zeros(nrestrs,k);  %k=nvar*lags+1
-    cnt = 0;
-    for ki = 1:lags
-        for kj=vars_restr
-            cnt = cnt+1;
-            blags(cnt,nvar*(ki-1)+kj) = 1;
-        end
-    end
-    %--- Keep constant zero.
-    cnt = cnt+1;
-    blags(cnt,end) = 1;  %Constant = 0.
-    if cnt~=nrestrs
-        error('Check lagged restrictions in 1st equation!')
-    end
-    Ri(1:nrestrs,:,indxeqn) = blags;
-
-    %--- Lag restrictions.
-    indxeqn = 2;   %Which equation.
-    nrestrs = (nvar-1)*lags;  %Number of restrictions.
-    vars_restr = [1 3:nvar];  %Variables that are restricted:  id, ik, and y.
-    blags = zeros(nrestrs,k);  %k=nvar*lags+1
-    cnt = 0;
-    for ki = 1:lags
-        for kj=vars_restr
-            cnt = cnt+1;
-            blags(cnt,nvar*(ki-1)+kj) = 1;
-        end
-    end
-    Ri(1:nrestrs,:,indxeqn) = blags;
-
-    %--- Lag restrictions.
-    indxeqn = 3;   %Which equation.
-    nrestrs = 1;  %Number of restrictions.
-    blags = zeros(nrestrs,k);
-    cnt = 0;
-    %--- Keep constant zero.
-    cnt = cnt+1;
-    blags(cnt,end) = 1;  %Constant = 0.
-    if cnt~=nrestrs
-        error('Check lagged restrictions in 1st equation!')
-    end
-    Ri(1:nrestrs,:,indxeqn) = blags;
-
-    %--- Lag restrictions.
-    indxeqn = 4;   %Which equation.
-    nrestrs = 1;  %Number of restrictions.
-    blags = zeros(nrestrs,k);
-    cnt = 0;
-    %--- Keep constant zero.
-    cnt = cnt+1;
-    blags(cnt,end) = 1;  %Constant = 0.
-    if cnt~=nrestrs
-        error('Check lagged restrictions in 1st equation!')
-    end
-    Ri(1:nrestrs,:,indxeqn) = blags;
+	%--- Lag restrictions.
+	indxeqn = 1;   %Which equation.
+	nrestrs = (nvar-1)*lags+1;  %Number of restrictions.
+	vars_restr = [2:nvar];  %Variables that are restricted:  id, ik, and y.
+   blags = zeros(nrestrs,k);  %k=nvar*lags+1
+	cnt = 0;
+	for ki = 1:lags
+	   for kj=vars_restr
+	      cnt = cnt+1;
+	      blags(cnt,nvar*(ki-1)+kj) = 1;
+	   end
+	end
+	%--- Keep constant zero.
+	cnt = cnt+1;
+	blags(cnt,end) = 1;  %Constant = 0.
+	if cnt~=nrestrs
+	   error('Check lagged restrictions in 1st equation!')
+	end
+	Ri(1:nrestrs,:,indxeqn) = blags;
+
+	%--- Lag restrictions.
+	indxeqn = 2;   %Which equation.
+   nrestrs = (nvar-1)*lags;  %Number of restrictions.
+   vars_restr = [1 3:nvar];  %Variables that are restricted:  id, ik, and y.
+   blags = zeros(nrestrs,k);  %k=nvar*lags+1
+   cnt = 0;
+   for ki = 1:lags
+      for kj=vars_restr
+         cnt = cnt+1;
+         blags(cnt,nvar*(ki-1)+kj) = 1;
+      end
+   end
+	Ri(1:nrestrs,:,indxeqn) = blags;
+
+	%--- Lag restrictions.
+	indxeqn = 3;   %Which equation.
+	nrestrs = 1;  %Number of restrictions.
+	blags = zeros(nrestrs,k);
+	cnt = 0;
+	%--- Keep constant zero.
+	cnt = cnt+1;
+	blags(cnt,end) = 1;  %Constant = 0.
+	if cnt~=nrestrs
+	   error('Check lagged restrictions in 1st equation!')
+	end
+	Ri(1:nrestrs,:,indxeqn) = blags;
+
+	%--- Lag restrictions.
+	indxeqn = 4;   %Which equation.
+	nrestrs = 1;  %Number of restrictions.
+	blags = zeros(nrestrs,k);
+	cnt = 0;
+	%--- Keep constant zero.
+	cnt = cnt+1;
+	blags(cnt,end) = 1;  %Constant = 0.
+	if cnt~=nrestrs
+	   error('Check lagged restrictions in 1st equation!')
+	end
+	Ri(1:nrestrs,:,indxeqn) = blags;
 end
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -222,30 +222,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_non_rec_5v.m b/tests/ms-sbvar/archive-files/ftd_non_rec_5v.m
index ba328cb3de..e9fbeb4099 100644
--- a/tests/ms-sbvar/archive-files/ftd_non_rec_5v.m
+++ b/tests/ms-sbvar/archive-files/ftd_non_rec_5v.m
@@ -1,4 +1,4 @@
-function [Ui,Vi,n0,np,ixmC0Pres] = ftd_non_rec_5v(lags,nvar,nexo,indxC0Pres)
+function [Ui,Vi,n0,np,ixmC0Pres] = ftd_upperchol5v(lags,nvar,nexo,indxC0Pres)
 %  vlist = [127 124 93 141 21];    % 1: GDP; 2: GDP deflator 124 (consumption deflator 79); 3: R; 4: M3 141 (M2 140); 5: exchange rate 21.
 %  varlist={'y', 'P', 'R', 'M3', 'Ex'};
 %
@@ -45,17 +45,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -71,20 +71,20 @@ Qi(1:4,:,1) = [
     0 0 1 0 0
     0 0 0 1 0
     0 0 0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:3,:,2) = [
     0 0 1 0 0
     0 0 0 1 0
     0 0 0 0 1
-              ];
+        ];
 
 %======== The third equation ===========
 Qi(1:2,:,3) = [
     0 0 0 1 0
     0 0 0 0 1
-              ];
+        ];
 
 
 %======== The fourth equation ===========
@@ -99,7 +99,7 @@ Qi(1:3,:,5) = [
     1 0 0 0 0
     0 1 0 0 0
     0 0 1 0 0
-              ];
+         ];
 
 
 
@@ -149,10 +149,10 @@ Qi(1:3,:,5) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -163,30 +163,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_simszha5v.m b/tests/ms-sbvar/archive-files/ftd_simszha5v.m
index a48168fc6a..0a0034a9d0 100644
--- a/tests/ms-sbvar/archive-files/ftd_simszha5v.m
+++ b/tests/ms-sbvar/archive-files/ftd_simszha5v.m
@@ -45,17 +45,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -75,30 +75,30 @@ Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
 %   0 0 0 0 1
 %        ];    % Respond to Pcom.
 Qi(1:3,:,2) = [
-    1 0 0 0 0
-    0 0 0 1 0
-    0 0 0 0 1
-              ];    % Not respond to Pcom.
+   1 0 0 0 0
+   0 0 0 1 0
+   0 0 0 0 1
+        ];    % Not respond to Pcom.
 
 %======== The third equation: money demand ===========
 Qi(1,:,3) = [
-    1 0 0 0 0
-            ];
+   1 0 0 0 0
+        ];
 
 %======== The fourth equation: y equation ===========
 Qi(1:4,:,4) = [
-    1 0 0 0 0
-    0 1 0 0 0
-    0 0 1 0 0
-    0 0 0 0 1
-              ];
+   1 0 0 0 0
+   0 1 0 0 0
+   0 0 1 0 0
+   0 0 0 0 1
+        ];
 
 %======== The fifth equation: p equation ===========
 Qi(1:3,:,5) = [
-    1 0 0 0 0
-    0 1 0 0 0
-    0 0 1 0 0
-              ];
+   1 0 0 0 0
+   0 1 0 0 0
+   0 0 1 0 0
+        ];
 
 
 %===== Lagged restrictions in foreign (Granger causing) block
@@ -147,10 +147,10 @@ Qi(1:3,:,5) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -161,30 +161,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_upperchol3v.m b/tests/ms-sbvar/archive-files/ftd_upperchol3v.m
index 4c221df74f..a5c19f79e8 100644
--- a/tests/ms-sbvar/archive-files/ftd_upperchol3v.m
+++ b/tests/ms-sbvar/archive-files/ftd_upperchol3v.m
@@ -44,17 +44,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -69,12 +69,12 @@ Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
 Qi(1:2,:,1) = [
     0 1 0
     0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:1,:,2) = [
     0 0 1
-              ];
+        ];
 
 
 %======== The third equation ===========
@@ -127,10 +127,10 @@ Qi(1:1,:,2) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -141,30 +141,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_upperchol4v.m b/tests/ms-sbvar/archive-files/ftd_upperchol4v.m
index db0b9c371a..aadac9512f 100644
--- a/tests/ms-sbvar/archive-files/ftd_upperchol4v.m
+++ b/tests/ms-sbvar/archive-files/ftd_upperchol4v.m
@@ -45,17 +45,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -70,18 +70,18 @@ Qi(1:3,:,1) = [
     0 1 0 0
     0 0 1 0
     0 0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:2,:,2) = [
     0 0 1 0
     0 0 0 1
-              ];
+        ];
 
 %======== The third equation ===========
 Qi(1:1,:,3) = [
     0 0 0 1
-              ];
+        ];
 
 
 %======== The fourth equation ===========
@@ -135,10 +135,10 @@ Qi(1:1,:,3) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -149,30 +149,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_upperchol5v.m b/tests/ms-sbvar/archive-files/ftd_upperchol5v.m
index 948d0c0d19..b41a60c174 100644
--- a/tests/ms-sbvar/archive-files/ftd_upperchol5v.m
+++ b/tests/ms-sbvar/archive-files/ftd_upperchol5v.m
@@ -45,17 +45,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -71,26 +71,26 @@ Qi(1:4,:,1) = [
     0 0 1 0 0
     0 0 0 1 0
     0 0 0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:3,:,2) = [
     0 0 1 0 0
     0 0 0 1 0
     0 0 0 0 1
-              ];
+        ];
 
 %======== The third equation ===========
 Qi(1:2,:,3) = [
     0 0 0 1 0
     0 0 0 0 1
-              ];
+        ];
 
 
 %======== The fourth equation ===========
 Qi(1:1,:,4) = [
     0 0 0 0 1
-              ];
+         ];
 
 
 %======== The fifth equation ===========
@@ -144,10 +144,10 @@ Qi(1:1,:,4) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -158,30 +158,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_upperchol6v.m b/tests/ms-sbvar/archive-files/ftd_upperchol6v.m
index 462704c240..c6560ffd98 100644
--- a/tests/ms-sbvar/archive-files/ftd_upperchol6v.m
+++ b/tests/ms-sbvar/archive-files/ftd_upperchol6v.m
@@ -45,17 +45,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -72,7 +72,7 @@ Qi(1:5,:,1) = [
     0 0 0 1 0 0
     0 0 0 0 1 0
     0 0 0 0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:4,:,2) = [
@@ -80,27 +80,27 @@ Qi(1:4,:,2) = [
     0 0 0 1 0 0
     0 0 0 0 1 0
     0 0 0 0 0 1
-              ];
+        ];
 
 %======== The third equation ===========
 Qi(1:3,:,3) = [
     0 0 0 1 0 0
     0 0 0 0 1 0
     0 0 0 0 0 1
-              ];
+        ];
 
 
 %======== The fourth equation ===========
 Qi(1:2,:,4) = [
     0 0 0 0 1 0
     0 0 0 0 0 1
-              ];
+         ];
 
 
 %======== The fifth equation ===========
 Qi(1:1,:,5) = [
     0 0 0 0 0 1
-              ];
+         ];
 
 
 %======== The sixth equation ===========
@@ -151,10 +151,10 @@ Qi(1:1,:,5) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -165,30 +165,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/archive-files/ftd_upperchol7v.m b/tests/ms-sbvar/archive-files/ftd_upperchol7v.m
index dc7db34acc..d0dc7969c4 100644
--- a/tests/ms-sbvar/archive-files/ftd_upperchol7v.m
+++ b/tests/ms-sbvar/archive-files/ftd_upperchol7v.m
@@ -45,17 +45,17 @@ n0 = zeros(nvar,1); % ith element represents the number of free A0 parameters in
 np = zeros(nvar,1); % ith element represents the number of free A+ parameters in ith equation
 
 if (nargin==2)
-    nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
+   nexo = 1;  % 1: constant as default where nexo must be a nonnegative integer
 elseif (nargin==3)
-    indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
+   indxC0Pres = 0;  % default is no cross-A0-and-A+ restrictions.
 end
 
 k = lags*nvar+nexo;  % maximum number of lagged and exogenous variables in each equation
 
 Qi = zeros(nvar,nvar,nvar);   % for nvar contemporaneous equations
 Ri = zeros(k,k,nvar);    % for nvar lagged and exogenous equations
-                         % Row corresponds to equation. 0 means no restriction.
-                         %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
+  % Row corresponds to equation. 0 means no restriction.
+  %                              1 means exclusion restriction such that the corresponding parameter is restricted to 0.
 
 %nfvar = 6;   % number of foreign (Granger causing) variables
 %nhvar = nvar-nfvar;  % number of home (affected) variables.
@@ -73,7 +73,7 @@ Qi(1:6,:,1) = [
     0 0 0 0 1 0 0
     0 0 0 0 0 1 0
     0 0 0 0 0 0 1
-              ];
+        ];
 
 %======== The second equation ===========
 Qi(1:5,:,2) = [
@@ -82,7 +82,7 @@ Qi(1:5,:,2) = [
     0 0 0 0 1 0 0
     0 0 0 0 0 1 0
     0 0 0 0 0 0 1
-              ];
+        ];
 
 %======== The third equation ===========
 Qi(1:4,:,3) = [
@@ -90,27 +90,27 @@ Qi(1:4,:,3) = [
     0 0 0 0 1 0 0
     0 0 0 0 0 1 0
     0 0 0 0 0 0 1
-              ];
+        ];
 
 %======== The fourth equation ===========
 Qi(1:3,:,4) = [
     0 0 0 0 1 0 0
     0 0 0 0 0 1 0
     0 0 0 0 0 0 1
-              ];
+        ];
 
 
 %======== The fifth equation ===========
 Qi(1:2,:,5) = [
     0 0 0 0 0 1 0
     0 0 0 0 0 0 1
-              ];
+         ];
 
 
 %======== The sixth equation ===========
 Qi(1:1,:,6) = [
     0 0 0 0 0 0 1
-              ];
+         ];
 
 
 %======== The seventh equation ===========
@@ -161,10 +161,10 @@ Qi(1:1,:,6) = [
 
 
 for n=1:nvar   %  initializing loop for each equation
-    Ui{n} = null(Qi(:,:,n));
-    Vi{n} = null(Ri(:,:,n));
-    n0(n) = size(Ui{n},2);
-    np(n) = size(Vi{n},2);
+   Ui{n} = null(Qi(:,:,n));
+   Vi{n} = null(Ri(:,:,n));
+   n0(n) = size(Ui{n},2);
+   np(n) = size(Vi{n},2);
 end
 
 
@@ -175,30 +175,30 @@ end
 %(2)-------------------------------------------------------------
 %
 if indxC0Pres
-    neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
-    ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
-                                   % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-                                   % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-                                   % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-                                   % 4th: the number s such that f_j(i) = s * a_j(h) holds.
-                                   %** 1st equation
-    ixmC0Pres{1} = [1 2 2 1
-                    1 7 1 1];
-    %** 2nd equation
-    ixmC0Pres{2} = [2 2 2 2];
-    %** 3rd equation
-    ixmC0Pres{3} = [3 7 1 1
-                    3 2 2 1];
-
-
-    %         % 4 columns.
-    %   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
-
-    %           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
-    %           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
-    %           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
-    %           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   neq_cres = 3;   % the number of equations in which cross-A0-A+ restrictions occur.
+   ixmC0Pres = cell(neq_cres,1);  % in each cell representing equation, we have 4 columns:
+           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
+   %** 1st equation
+   ixmC0Pres{1} = [1 2 2 1
+                   1 7 1 1];
+   %** 2nd equation
+   ixmC0Pres{2} = [2 2 2 2];
+   %** 3rd equation
+   ixmC0Pres{3} = [3 7 1 1
+                   3 2 2 1];
+
+
+%         % 4 columns.
+%   ncres = 5;  % manually key in the number of cross-A0-A+ restrictions
+
+%           % 1st: the jth column (equation) of A+ or A0: f_j or a_j
+%           % 2nd: the ith element f_j(i) -- the ith element in the jth column of A+
+%           % 3rd: the hth element a_j(h) -- the hth element in the jth column of A0
+%           % 4th: the number s such that f_j(i) = s * a_j(h) holds.
 else
-    ixmC0Pres = NaN;
+   ixmC0Pres = NaN;
 end
 
diff --git a/tests/ms-sbvar/data.m b/tests/ms-sbvar/data.m
index d8a7c94125..6f738015c7 100644
--- a/tests/ms-sbvar/data.m
+++ b/tests/ms-sbvar/data.m
@@ -1,193 +1,193 @@
 sbvar_data = [
-    -9.3174834887745916e-003,       1.7994658843431877e-002,        2.5699999999999997e-002;
-    7.7668705855149511e-003,        6.0096276044880881e-003,        3.0800000000000001e-002;
-    -1.9541593158383108e-003,       1.1443694953360728e-002,        3.5799999999999998e-002;
-    -7.3230760374594084e-003,       1.6080663886388402e-002,        3.9900000000000005e-002;
-    5.7366104256297845e-003,        9.6254961625830138e-003,        3.9300000000000002e-002;
-    -8.3093609995312789e-003,       1.7721697565065142e-002,        3.7000000000000005e-002;
-    -1.5818734568909143e-002,       1.8802248364432783e-002,        2.9399999999999999e-002;
-    -3.8114188274117389e-002,       1.7753163941062411e-002,        2.3000000000000000e-002;
-    -4.1399862204639426e-002,       4.5389998028741996e-003,        2.0000000000000000e-002;
-    -3.2217707697825837e-002,       7.3753322217300354e-003,        1.7299999999999999e-002;
-    -2.5646357007195419e-002,       1.0583418386522991e-002,        1.6799999999999999e-002;
-    -1.4897222570872337e-002,       1.0366269881014523e-002,        2.4000000000000000e-002;
-    -6.6220480083236666e-003,       2.3042923285839567e-002,        2.4600000000000000e-002;
-    -5.3027079623060303e-003,       1.0468178907987236e-002,        2.6099999999999998e-002;
-    -5.7275387773225717e-003,       1.0815248301383029e-002,        2.8500000000000001e-002;
-    -1.2909019643277730e-002,       1.3963993831495269e-002,        2.9200000000000000e-002;
-    -9.6082193296807006e-003,       1.1306915202373702e-002,        2.9700000000000001e-002;
-    -6.9847294194245180e-003,       4.0554812275257479e-003,        2.9600000000000001e-002;
-    1.8176103434601742e-003,        7.3752799189321649e-003,        3.3300000000000003e-002;
-    -4.5038023245602687e-004,       2.3887283546807359e-002,        3.4500000000000003e-002;
-    1.1624668564948593e-002,        1.4307761419874110e-002,        3.4599999999999999e-002;
-    1.2948656776092804e-002,        1.3154713006571006e-002,        3.4900000000000000e-002;
-    1.6160285046599832e-002,        1.9531653948000383e-002,        3.4599999999999999e-002;
-    8.4081398395898788e-003,        1.8522230201726275e-002,        3.5799999999999998e-002;
-    2.2153370885423129e-002,        1.7709079726716315e-002,        3.9699999999999999e-002;
-    2.4844201757035833e-002,        1.7812125625833675e-002,        4.0800000000000003e-002;
-    3.4050690186470334e-002,        1.7733161216544779e-002,        4.0700000000000000e-002;
-    4.6893307071320223e-002,        2.4854086852623247e-002,        4.1700000000000001e-002;
-    5.9972460768834779e-002,        2.4879959563927745e-002,        4.5599999999999995e-002;
-    5.2289186415585220e-002,        3.7979469553559353e-002,        4.9100000000000005e-002;
-    4.7741188658148914e-002,        3.9049003040727781e-002,        5.4100000000000002e-002;
-    4.4667561574096126e-002,        3.5671179948047138e-002,        5.5599999999999997e-002;
-    4.2427836565945398e-002,        1.9374879269963063e-002,        4.8200000000000000e-002;
-    3.1462874033119093e-002,        2.5309792721300628e-002,        3.9900000000000005e-002;
-    2.8437659950142802e-002,        3.7210113920888466e-002,    3.8900000000000004e-002;
-    2.5156025048538311e-002,        4.4947363315081201e-002,        4.1700000000000001e-002;
-    3.4855619579102992e-002,        4.3766256282161686e-002,        4.7899999999999998e-002;
-    4.1146105898716812e-002,        4.5485089147871749e-002,        5.9800000000000006e-002;
-    3.7608522339491302e-002,        3.9312213398265738e-002,        5.9400000000000001e-002;
-    3.1755688168807694e-002,        5.7147340097736921e-002,        5.9200000000000003e-002;
-    3.7547536338742304e-002,        4.0820102882030529e-002,        6.5700000000000008e-002;
-    3.0780798807969134e-002,        5.4795099957268389e-002,        8.3299999999999999e-002;
-    2.7622883356809069e-002,        5.9674785474016057e-002,        8.9800000000000005e-002;
-    1.3687491471252144e-002,        5.1526594947709725e-002,        8.9399999999999993e-002;
-    3.0365204590552253e-003,        5.7110106004252703e-002,        8.5699999999999998e-002;
-    -3.8946120840908094e-003,       5.8310720503999880e-002,        7.8799999999999995e-002;
-    -3.7031729362304588e-003,       3.2162694194911579e-002,        6.7000000000000004e-002;
-    -2.2953853215847531e-002,       5.2193859691229916e-002,        5.5700000000000000e-002;
-    -3.9774834192911612e-003,       6.1343390594280400e-002,        3.8599999999999995e-002;
-    -6.6430088990969693e-003,       5.4548116487401987e-002,        4.5599999999999995e-002;
-    -6.9966828696923500e-003,       4.0591135320590110e-002,        5.4699999999999999e-002;
-    -1.2347397716578001e-002,       3.2276797966984239e-002,        4.7500000000000001e-002;
-    -2.9473495209533240e-003,       6.7805039825567626e-002,        3.5400000000000001e-002;
-    1.2120764500071601e-002,        2.3686434724627725e-002,        4.2999999999999997e-002;
-    1.3231348379735053e-002,        3.7187744116042420e-002,        4.7400000000000005e-002;
-    2.0987028138604202e-002,        4.7889363970077925e-002,        5.1399999999999994e-002;
-    3.7485754706574781e-002,        5.3965548807981989e-002,        6.5400000000000000e-002;
-    4.0318879693293397e-002,        6.8340638829176292e-002,        7.8200000000000006e-002;
-    2.6218511286559831e-002,        7.8958874043481897e-002,        1.0560000000000000e-001;
-    2.6929695576288992e-002,        7.0997794665009550e-002,        1.0000000000000001e-001;
-    9.4554586277908470e-003,    8.4242699131246379e-002,    9.3200000000000005e-002;
-    3.6174737897027853e-003,        9.1565984601668537e-002,        1.1250000000000000e-001;
-    -1.4685635040370570e-002,       1.2944791465588246e-001,        1.2089999999999999e-001;
-    -2.7095820218557165e-002,       1.2813135610460602e-001,        9.3500000000000000e-002;
-    -4.7490291499844517e-002,       9.5634229266530868e-002,        6.3000000000000000e-002;
-    -4.8493379593802288e-002,       6.0105697293320492e-002,        5.4199999999999998e-002;
-    -3.9943449805699416e-002,       7.6752303729665350e-002,        6.1600000000000002e-002;
-    -3.5077206071779443e-002,       7.2995258807648344e-002,        5.4100000000000002e-002;
-    -2.0906071356066036e-002,       4.5679585226099162e-002,        4.8300000000000003e-002;
-    -2.1531096410072337e-002,       4.3592360792875207e-002,        5.2000000000000005e-002;
-    -2.4735476775209264e-002,       5.5187881222506396e-002,        5.2800000000000000e-002;
-    -2.5561529099840996e-002,       7.0182306554444240e-002,        4.8700000000000000e-002;
-    -2.1575901985043444e-002,       6.8358747781264828e-002,        4.6600000000000003e-002;
-    -1.0282812897440152e-002,       6.5803889922906311e-002,        5.1600000000000000e-002;
-    -9.1324207260257140e-004,       5.6172786341162295e-002,        5.8200000000000002e-002;
-    -9.5486836624303351e-003,       6.9205174325260410e-002,        6.5099999999999991e-002;
-    -1.4957543819619445e-002,       6.8508819756844419e-002,        6.7599999999999993e-002;
-    1.5069561708809687e-002,        7.9300571687745292e-002,        7.2800000000000004e-002;
-    1.6283475252537372e-002,        7.0872150059167804e-002,        8.1000000000000003e-002;
-    2.0908466837013862e-002,        8.4120663761548808e-002,        9.5799999999999996e-002;
-    1.4559374240283418e-002,        7.4654989747748868e-002,        1.0070000000000000e-001;
-    7.4026792768986382e-003,        1.0065048845414548e-001,        1.0180000000000000e-001;
-    6.7867658044900026e-003,        8.4869122045493794e-002,        1.0949999999999999e-001;
-    2.0964569874966088e-003,        8.1073829867721159e-002,        1.3580000000000000e-001;
-    -2.1618734445638665e-003,       9.0701460926355892e-002,        1.5049999999999999e-001;
-    -2.9866760868227260e-002,       9.1306883112545645e-002,        1.2689999999999999e-001;
-    -3.8807200394211705e-002,       9.3833166941218682e-002,        9.8400000000000001e-002;
-    -2.7491967650325577e-002,       1.1718934484063248e-001,        1.5850000000000000e-001;
-    -1.4366396848604523e-002,       1.0830156525255896e-001,        1.6570000000000001e-001;
-    -2.8990249638850329e-002,       7.2488303659308695e-002,        1.7780000000000001e-001;
-    -2.3603799101664436e-002,       7.5735091281379452e-002,        1.7579999999999998e-001;
-    -4.2733757910307091e-002,       7.1783638615472212e-002,        1.3589999999999999e-001;
-    -6.5834256612443909e-002,       5.7815346934783074e-002,        1.4230000000000001e-001;
-    -6.7076173517195414e-002,       5.0774215309779880e-002,        1.4510000000000001e-001;
-    -7.7493754839396800e-002,       5.6543508350202609e-002,        1.1010000000000000e-001;
-    -8.3437100867300273e-002,       4.3285023548542245e-002,        9.2899999999999996e-002;
-    -7.8140443582185526e-002,       3.4701884333945499e-002,        8.6500000000000007e-002;
-    -6.2904972370690260e-002,       2.9380728193572736e-002,        8.8000000000000009e-002;
-    -5.0575674226140066e-002,       4.1378527908603857e-002,        9.4600000000000004e-002;
-    -3.7530293571547801e-002,       2.9492818368749285e-002,        9.4299999999999995e-002;
-    -2.5480519753907416e-002,       5.0489471212566306e-002,        9.6900000000000000e-002;
-    -1.5811147128429681e-002,       3.6455602629870576e-002,        1.0560000000000000e-001;
-    -1.3623195024511148e-002,       3.3023322354348572e-002,        1.1390000000000000e-001;
-    -1.3078242370475834e-002,       2.3921358528453451e-002,        9.2699999999999991e-002;
-    -1.1665978412656486e-002,       4.6889910860992590e-002,    8.4800000000000000e-002;
-    -1.1057518477750605e-002,       2.1095767295774115e-002,    7.9199999999999993e-002;
-    -3.5500769385130582e-003,       1.9350259876930620e-002,    7.9000000000000001e-002;
-    -4.0091273397440119e-003,       2.4435086241793469e-002,    8.1000000000000003e-002;
-    -2.6706581505724358e-003,       2.0699597271832237e-002,        7.8299999999999995e-002;
-    -6.9080484514429941e-003,       1.9443895441419112e-002,        6.9199999999999998e-002;
-    -5.5474687375021148e-003,       2.5823472588566876e-002,        6.2100000000000002e-002;
-    -8.5975304020564636e-003,       2.8570642360117970e-002,        6.2699999999999992e-002;
-    -1.0035881703480243e-002,       3.1152336660817959e-002,        6.2199999999999998e-002;
-    -7.0303958060371485e-003,       2.1687265092285912e-002,        6.6500000000000004e-002;
-    -5.8350389745083220e-003,       3.0295425205495219e-002,        6.8400000000000002e-002;
-    3.7000011882959427e-003,        2.7397559342506872e-002,        6.9199999999999998e-002;
-    8.4384375816348722e-004,        3.3739380042497880e-002,        6.6600000000000006e-002;
-    5.7875193242438172e-003,        3.9850322530345039e-002,        7.1599999999999997e-002;
-    3.4826974951247536e-003,        4.7684800945334560e-002,        7.9800000000000010e-002;
-    9.0205001602736701e-003,        3.2309473053872662e-002,    8.4700000000000011e-002;
-    1.1602002723241966e-002,        4.2437558261487096e-002,        9.4399999999999998e-002;
-    1.0727253531554126e-002,        3.9442307350746830e-002,        9.7299999999999998e-002;
-    1.0478054167251116e-002,        2.9474511048905416e-002,        9.0800000000000006e-002;
-    5.7769411729271525e-003,        2.6619819505881992e-002,        8.6099999999999996e-002;
-    1.0146775956780374e-002,        4.9017285623800477e-002,        8.2500000000000004e-002;
-    5.6961778759188064e-003,        4.7444796184034521e-002,        8.2400000000000001e-002;
-    -1.1072568495222868e-003,       3.6239655982325480e-002,        8.1600000000000006e-002;
-    -1.5465707409310525e-002,       3.1366693341789098e-002,        7.7399999999999997e-002;
-    -2.7250024246535887e-002,       4.7905236749817171e-002,        6.4299999999999996e-002;
-    -2.7337568911169896e-002,       2.5679327033720556e-002,        5.8600000000000006e-002;
-    -2.8996765457870666e-002,       2.7744462882228538e-002,        5.6399999999999999e-002;
-    -3.0694988523064737e-002,       2.0348807487869491e-002,        4.8200000000000000e-002;
-    -2.6687542665930764e-002,       2.6838736648956640e-002,        4.0199999999999993e-002;
-    -2.3361909698373040e-002,       2.0963598977361553e-002,        3.7699999999999997e-002;
-    -1.9843866905633334e-002,       1.7512821090635011e-002,        3.2599999999999997e-002;
-    -1.5118603774070039e-002,       2.1185582236595835e-002,        3.0400000000000000e-002;
-    -2.0197613265910519e-002,       3.1946708550473213e-002,        3.0400000000000000e-002;
-    -2.1520678025641615e-002,       2.1834134877041667e-002,        2.9999999999999999e-002;
-    -2.2826650301176699e-002,       1.8033708065957166e-002,        3.0600000000000002e-002;
-    -1.5976648136103222e-002,       1.9600906791856332e-002,        2.9900000000000003e-002;
-    -1.2481565520511495e-002,       2.5764744780397253e-002,        3.2099999999999997e-002;
-    -6.2498609089072232e-003,       1.7163326403677015e-002,        3.9399999999999998e-002;
-    -7.5419440421207184e-003,       2.4448612633015232e-002,        4.4900000000000002e-002;
-    -2.9008641302628035e-003,       1.9270549031769058e-002,        5.1699999999999996e-002;
-    -7.2102329848391378e-003,       2.6468635791329520e-002,        5.8099999999999999e-002;
-    -1.2589423111688092e-002,       1.4805044409490042e-002,        6.0199999999999997e-002;
-    -1.1715387895728568e-002,       1.7085018789666284e-002,        5.7999999999999996e-002;
-    -1.1777024741238762e-002,       1.9780736678506994e-002,        5.7200000000000001e-002;
-    -1.2215155411272605e-002,       2.4726200999461767e-002,        5.3600000000000002e-002;
-    -3.5465932809213285e-003,       1.3486465713533846e-002,        5.2400000000000002e-002;
-    -2.9219038194341351e-003,       1.9323425037825803e-002,        5.3099999999999994e-002;
-    8.2672938771111149e-004,        1.6730936106534644e-002,        5.2800000000000000e-002;
-    5.2731183513543556e-004,        2.1687064498104203e-002,        5.2800000000000000e-002;
-    7.4708897268216390e-003,        1.3887651948481405e-002,        5.5199999999999999e-002;
-    1.1578449231922860e-002,        1.0535540622131023e-002,        5.5300000000000002e-002;
-    1.0543713785281739e-002,        1.3591721544186308e-002,        5.5099999999999996e-002;
-    1.3043222430857426e-002,        9.7155784328055717e-003,        5.5199999999999999e-002;
-    1.1021797245557963e-002,        7.8485022563632434e-003,        5.5000000000000000e-002;
-    1.3766304579396760e-002,        1.4031942678612408e-002,        5.5300000000000002e-002;
-    2.0010289782806723e-002,        1.1684049976040223e-002,        4.8600000000000004e-002;
-    1.9500810360241871e-002,        1.5486288460806463e-002,        4.7300000000000002e-002;
-    1.8677267947765586e-002,        1.7674602281525287e-002,        4.7500000000000001e-002;
-    2.1068187519647452e-002,        1.3207048148448308e-002,        5.0900000000000001e-002;
-    2.9432867931319606e-002,        1.8614186008366396e-002,        5.3099999999999994e-002;
-    2.2709401609937174e-002,        3.3601370511199269e-002,        5.6799999999999996e-002;
-    2.9063996825298588e-002,        1.9804593863093523e-002,        6.2699999999999992e-002;
-    1.8810297095397388e-002,        1.8609127901011213e-002,        6.5199999999999994e-002;
-    1.4978576794066001e-002,        1.7916238079900726e-002,        6.4699999999999994e-002;
-    4.8316137761403866e-003,        3.2976319868455617e-002,        5.5899999999999998e-002;
-    -9.1822274865016595e-004,       3.1213866380320532e-002,    4.3299999999999998e-002;
-    -1.3163778876048582e-002,       1.5733791887268644e-002,        3.5000000000000003e-002;
-    -1.7841900605217731e-002,       1.6933827369602694e-002,        2.1299999999999999e-002;
-    -1.9532762689722816e-002,       1.6823164543461777e-002,        1.7299999999999999e-002;
-    -2.2376267503108949e-002,       1.5189134545742444e-002,        1.7500000000000002e-002;
-    -2.4570058045892296e-002,       1.5598774847326746e-002,        1.7399999999999999e-002;
-    -3.1885812767447064e-002,       2.2380594713903079e-002,        1.4400000000000000e-002;
-    -3.5301487936340692e-002,       3.0770251840726015e-002,        1.2500000000000001e-002;
-    -3.3809664438850362e-002,       1.1207937615285157e-002,        1.2500000000000001e-002;
-    -2.3738888747095288e-002,       1.8271566479553414e-002,        1.0200000000000001e-002;
-    -2.2389486776477341e-002,       1.8759653895370487e-002,        1.0000000000000000e-002;
-    -1.9372963882339889e-002,       3.6183114349394030e-002,        1.0000000000000000e-002;
-    -1.8172640165300180e-002,       3.8524562683139418e-002,        1.0100000000000000e-002;
-    -1.5851276113677315e-002,       1.4577624436418635e-002,        1.4300000000000000e-002;
-    -1.5145664166732686e-002,       2.7339757365790307e-002,        1.9500000000000000e-002;
-    -1.3284941407389894e-002,       3.0828456732055809e-002,        2.4700000000000003e-002;
-    -1.2679438144379773e-002,       2.5660138484441486e-002,        2.9399999999999999e-002;
-    -1.0133886633141742e-002,       3.3074553498490200e-002,        3.4599999999999999e-002;
-    -1.5055016783550812e-002,       3.0184663811322121e-002,        3.9800000000000002e-002;
-             ];
+-9.3174834887745916e-003,	1.7994658843431877e-002,	2.5699999999999997e-002;
+7.7668705855149511e-003,	6.0096276044880881e-003,	3.0800000000000001e-002;
+-1.9541593158383108e-003,	1.1443694953360728e-002,	3.5799999999999998e-002;
+-7.3230760374594084e-003,	1.6080663886388402e-002,	3.9900000000000005e-002;
+5.7366104256297845e-003,	9.6254961625830138e-003,	3.9300000000000002e-002;
+-8.3093609995312789e-003,	1.7721697565065142e-002,	3.7000000000000005e-002;
+-1.5818734568909143e-002,	1.8802248364432783e-002,	2.9399999999999999e-002;
+-3.8114188274117389e-002,	1.7753163941062411e-002,	2.3000000000000000e-002;
+-4.1399862204639426e-002,	4.5389998028741996e-003,	2.0000000000000000e-002;
+-3.2217707697825837e-002,	7.3753322217300354e-003,	1.7299999999999999e-002;
+-2.5646357007195419e-002,	1.0583418386522991e-002,	1.6799999999999999e-002;
+-1.4897222570872337e-002,	1.0366269881014523e-002,	2.4000000000000000e-002;
+-6.6220480083236666e-003,	2.3042923285839567e-002,	2.4600000000000000e-002;
+-5.3027079623060303e-003,	1.0468178907987236e-002,	2.6099999999999998e-002;
+-5.7275387773225717e-003,	1.0815248301383029e-002,	2.8500000000000001e-002;
+-1.2909019643277730e-002,	1.3963993831495269e-002,	2.9200000000000000e-002;
+-9.6082193296807006e-003,	1.1306915202373702e-002,	2.9700000000000001e-002;
+-6.9847294194245180e-003,	4.0554812275257479e-003,	2.9600000000000001e-002;
+1.8176103434601742e-003,	7.3752799189321649e-003,	3.3300000000000003e-002;
+-4.5038023245602687e-004,	2.3887283546807359e-002,	3.4500000000000003e-002;
+1.1624668564948593e-002,	1.4307761419874110e-002,	3.4599999999999999e-002;
+1.2948656776092804e-002,	1.3154713006571006e-002,	3.4900000000000000e-002;
+1.6160285046599832e-002,	1.9531653948000383e-002,	3.4599999999999999e-002;
+8.4081398395898788e-003,	1.8522230201726275e-002,	3.5799999999999998e-002;
+2.2153370885423129e-002,	1.7709079726716315e-002,	3.9699999999999999e-002;
+2.4844201757035833e-002,	1.7812125625833675e-002,	4.0800000000000003e-002;
+3.4050690186470334e-002,	1.7733161216544779e-002,	4.0700000000000000e-002;
+4.6893307071320223e-002,	2.4854086852623247e-002,	4.1700000000000001e-002;
+5.9972460768834779e-002,	2.4879959563927745e-002,	4.5599999999999995e-002;
+5.2289186415585220e-002,	3.7979469553559353e-002,	4.9100000000000005e-002;
+4.7741188658148914e-002,	3.9049003040727781e-002,	5.4100000000000002e-002;
+4.4667561574096126e-002,	3.5671179948047138e-002,	5.5599999999999997e-002;
+4.2427836565945398e-002,	1.9374879269963063e-002,	4.8200000000000000e-002;
+3.1462874033119093e-002,	2.5309792721300628e-002,	3.9900000000000005e-002;
+2.8437659950142802e-002,	3.7210113920888466e-002,    3.8900000000000004e-002;
+2.5156025048538311e-002,	4.4947363315081201e-002,	4.1700000000000001e-002;
+3.4855619579102992e-002,	4.3766256282161686e-002,	4.7899999999999998e-002;
+4.1146105898716812e-002,	4.5485089147871749e-002,	5.9800000000000006e-002;
+3.7608522339491302e-002,	3.9312213398265738e-002,	5.9400000000000001e-002;
+3.1755688168807694e-002,	5.7147340097736921e-002,	5.9200000000000003e-002;
+3.7547536338742304e-002,	4.0820102882030529e-002,	6.5700000000000008e-002;
+3.0780798807969134e-002,	5.4795099957268389e-002,	8.3299999999999999e-002;
+2.7622883356809069e-002,	5.9674785474016057e-002,	8.9800000000000005e-002;
+1.3687491471252144e-002,	5.1526594947709725e-002,	8.9399999999999993e-002;
+3.0365204590552253e-003,	5.7110106004252703e-002,	8.5699999999999998e-002;
+-3.8946120840908094e-003,	5.8310720503999880e-002,	7.8799999999999995e-002;
+-3.7031729362304588e-003,	3.2162694194911579e-002,	6.7000000000000004e-002;
+-2.2953853215847531e-002,	5.2193859691229916e-002,	5.5700000000000000e-002;
+-3.9774834192911612e-003,	6.1343390594280400e-002,	3.8599999999999995e-002;
+-6.6430088990969693e-003,	5.4548116487401987e-002,	4.5599999999999995e-002;
+-6.9966828696923500e-003,	4.0591135320590110e-002,	5.4699999999999999e-002;
+-1.2347397716578001e-002,	3.2276797966984239e-002,	4.7500000000000001e-002;
+-2.9473495209533240e-003,	6.7805039825567626e-002,	3.5400000000000001e-002;
+1.2120764500071601e-002,	2.3686434724627725e-002,	4.2999999999999997e-002;
+1.3231348379735053e-002,	3.7187744116042420e-002,	4.7400000000000005e-002;
+2.0987028138604202e-002,	4.7889363970077925e-002,	5.1399999999999994e-002;
+3.7485754706574781e-002,	5.3965548807981989e-002,	6.5400000000000000e-002;
+4.0318879693293397e-002,	6.8340638829176292e-002,	7.8200000000000006e-002;
+2.6218511286559831e-002,	7.8958874043481897e-002,	1.0560000000000000e-001;
+2.6929695576288992e-002,	7.0997794665009550e-002,	1.0000000000000001e-001;
+9.4554586277908470e-003,    8.4242699131246379e-002,   	9.3200000000000005e-002;
+3.6174737897027853e-003,	9.1565984601668537e-002,	1.1250000000000000e-001;
+-1.4685635040370570e-002,	1.2944791465588246e-001,	1.2089999999999999e-001;
+-2.7095820218557165e-002,	1.2813135610460602e-001,	9.3500000000000000e-002;
+-4.7490291499844517e-002,	9.5634229266530868e-002,	6.3000000000000000e-002;
+-4.8493379593802288e-002,	6.0105697293320492e-002,	5.4199999999999998e-002;
+-3.9943449805699416e-002,	7.6752303729665350e-002,	6.1600000000000002e-002;
+-3.5077206071779443e-002,	7.2995258807648344e-002,	5.4100000000000002e-002;
+-2.0906071356066036e-002,	4.5679585226099162e-002,	4.8300000000000003e-002;
+-2.1531096410072337e-002,	4.3592360792875207e-002,	5.2000000000000005e-002;
+-2.4735476775209264e-002,	5.5187881222506396e-002,	5.2800000000000000e-002;
+-2.5561529099840996e-002,	7.0182306554444240e-002,	4.8700000000000000e-002;
+-2.1575901985043444e-002,	6.8358747781264828e-002,	4.6600000000000003e-002;
+-1.0282812897440152e-002,	6.5803889922906311e-002,	5.1600000000000000e-002;
+-9.1324207260257140e-004,	5.6172786341162295e-002,	5.8200000000000002e-002;
+-9.5486836624303351e-003,	6.9205174325260410e-002,	6.5099999999999991e-002;
+-1.4957543819619445e-002,	6.8508819756844419e-002,	6.7599999999999993e-002;
+1.5069561708809687e-002,	7.9300571687745292e-002,	7.2800000000000004e-002;
+1.6283475252537372e-002,	7.0872150059167804e-002,	8.1000000000000003e-002;
+2.0908466837013862e-002,	8.4120663761548808e-002,	9.5799999999999996e-002;
+1.4559374240283418e-002,	7.4654989747748868e-002,	1.0070000000000000e-001;
+7.4026792768986382e-003,	1.0065048845414548e-001,	1.0180000000000000e-001;
+6.7867658044900026e-003,	8.4869122045493794e-002,	1.0949999999999999e-001;
+2.0964569874966088e-003,	8.1073829867721159e-002,	1.3580000000000000e-001;
+-2.1618734445638665e-003,	9.0701460926355892e-002,	1.5049999999999999e-001;
+-2.9866760868227260e-002,	9.1306883112545645e-002,	1.2689999999999999e-001;
+-3.8807200394211705e-002,	9.3833166941218682e-002,	9.8400000000000001e-002;
+-2.7491967650325577e-002,	1.1718934484063248e-001,	1.5850000000000000e-001;
+-1.4366396848604523e-002,	1.0830156525255896e-001,	1.6570000000000001e-001;
+-2.8990249638850329e-002,	7.2488303659308695e-002,	1.7780000000000001e-001;
+-2.3603799101664436e-002,	7.5735091281379452e-002,	1.7579999999999998e-001;
+-4.2733757910307091e-002,	7.1783638615472212e-002,	1.3589999999999999e-001;
+-6.5834256612443909e-002,	5.7815346934783074e-002,	1.4230000000000001e-001;
+-6.7076173517195414e-002,	5.0774215309779880e-002,	1.4510000000000001e-001;
+-7.7493754839396800e-002,	5.6543508350202609e-002,	1.1010000000000000e-001;
+-8.3437100867300273e-002,	4.3285023548542245e-002,	9.2899999999999996e-002;
+-7.8140443582185526e-002,	3.4701884333945499e-002,	8.6500000000000007e-002;
+-6.2904972370690260e-002,	2.9380728193572736e-002,	8.8000000000000009e-002;
+-5.0575674226140066e-002,	4.1378527908603857e-002,	9.4600000000000004e-002;
+-3.7530293571547801e-002,	2.9492818368749285e-002,	9.4299999999999995e-002;
+-2.5480519753907416e-002,	5.0489471212566306e-002,	9.6900000000000000e-002;
+-1.5811147128429681e-002,	3.6455602629870576e-002,	1.0560000000000000e-001;
+-1.3623195024511148e-002,	3.3023322354348572e-002,	1.1390000000000000e-001;
+-1.3078242370475834e-002,	2.3921358528453451e-002,	9.2699999999999991e-002;
+-1.1665978412656486e-002,	4.6889910860992590e-002,    8.4800000000000000e-002;
+-1.1057518477750605e-002,	2.1095767295774115e-002,    7.9199999999999993e-002;
+-3.5500769385130582e-003,	1.9350259876930620e-002,    7.9000000000000001e-002;
+-4.0091273397440119e-003,	2.4435086241793469e-002,    8.1000000000000003e-002;
+-2.6706581505724358e-003,	2.0699597271832237e-002,	7.8299999999999995e-002;
+-6.9080484514429941e-003,	1.9443895441419112e-002,	6.9199999999999998e-002;
+-5.5474687375021148e-003,	2.5823472588566876e-002,	6.2100000000000002e-002;
+-8.5975304020564636e-003,	2.8570642360117970e-002,	6.2699999999999992e-002;
+-1.0035881703480243e-002,	3.1152336660817959e-002,	6.2199999999999998e-002;
+-7.0303958060371485e-003,	2.1687265092285912e-002,	6.6500000000000004e-002;
+-5.8350389745083220e-003,	3.0295425205495219e-002,	6.8400000000000002e-002;
+3.7000011882959427e-003,	2.7397559342506872e-002,	6.9199999999999998e-002;
+8.4384375816348722e-004,	3.3739380042497880e-002,	6.6600000000000006e-002;
+5.7875193242438172e-003,	3.9850322530345039e-002,	7.1599999999999997e-002;
+3.4826974951247536e-003,	4.7684800945334560e-002,	7.9800000000000010e-002;
+9.0205001602736701e-003,	3.2309473053872662e-002,    8.4700000000000011e-002;
+1.1602002723241966e-002,	4.2437558261487096e-002,	9.4399999999999998e-002;
+1.0727253531554126e-002,	3.9442307350746830e-002,	9.7299999999999998e-002;
+1.0478054167251116e-002,	2.9474511048905416e-002,	9.0800000000000006e-002;
+5.7769411729271525e-003,	2.6619819505881992e-002,	8.6099999999999996e-002;
+1.0146775956780374e-002,	4.9017285623800477e-002,	8.2500000000000004e-002;
+5.6961778759188064e-003,	4.7444796184034521e-002,	8.2400000000000001e-002;
+-1.1072568495222868e-003,	3.6239655982325480e-002,	8.1600000000000006e-002;
+-1.5465707409310525e-002,	3.1366693341789098e-002,	7.7399999999999997e-002;
+-2.7250024246535887e-002,	4.7905236749817171e-002,	6.4299999999999996e-002;
+-2.7337568911169896e-002,	2.5679327033720556e-002,	5.8600000000000006e-002;
+-2.8996765457870666e-002,	2.7744462882228538e-002,	5.6399999999999999e-002;
+-3.0694988523064737e-002,	2.0348807487869491e-002,	4.8200000000000000e-002;
+-2.6687542665930764e-002,	2.6838736648956640e-002,	4.0199999999999993e-002;
+-2.3361909698373040e-002,	2.0963598977361553e-002,	3.7699999999999997e-002;
+-1.9843866905633334e-002,	1.7512821090635011e-002,	3.2599999999999997e-002;
+-1.5118603774070039e-002,	2.1185582236595835e-002,	3.0400000000000000e-002;
+-2.0197613265910519e-002,	3.1946708550473213e-002,	3.0400000000000000e-002;
+-2.1520678025641615e-002,	2.1834134877041667e-002,	2.9999999999999999e-002;
+-2.2826650301176699e-002,	1.8033708065957166e-002,	3.0600000000000002e-002;
+-1.5976648136103222e-002,	1.9600906791856332e-002,	2.9900000000000003e-002;
+-1.2481565520511495e-002,	2.5764744780397253e-002,	3.2099999999999997e-002;
+-6.2498609089072232e-003,	1.7163326403677015e-002,	3.9399999999999998e-002;
+-7.5419440421207184e-003,	2.4448612633015232e-002,	4.4900000000000002e-002;
+-2.9008641302628035e-003,	1.9270549031769058e-002,	5.1699999999999996e-002;
+-7.2102329848391378e-003,	2.6468635791329520e-002,	5.8099999999999999e-002;
+-1.2589423111688092e-002,	1.4805044409490042e-002,	6.0199999999999997e-002;
+-1.1715387895728568e-002,	1.7085018789666284e-002,	5.7999999999999996e-002;
+-1.1777024741238762e-002,	1.9780736678506994e-002,	5.7200000000000001e-002;
+-1.2215155411272605e-002,	2.4726200999461767e-002,	5.3600000000000002e-002;
+-3.5465932809213285e-003,	1.3486465713533846e-002,	5.2400000000000002e-002;
+-2.9219038194341351e-003,	1.9323425037825803e-002,	5.3099999999999994e-002;
+8.2672938771111149e-004,	1.6730936106534644e-002,	5.2800000000000000e-002;
+5.2731183513543556e-004,	2.1687064498104203e-002,	5.2800000000000000e-002;
+7.4708897268216390e-003,	1.3887651948481405e-002,	5.5199999999999999e-002;
+1.1578449231922860e-002,	1.0535540622131023e-002,	5.5300000000000002e-002;
+1.0543713785281739e-002,	1.3591721544186308e-002,	5.5099999999999996e-002;
+1.3043222430857426e-002,	9.7155784328055717e-003,	5.5199999999999999e-002;
+1.1021797245557963e-002,	7.8485022563632434e-003,	5.5000000000000000e-002;
+1.3766304579396760e-002,	1.4031942678612408e-002,	5.5300000000000002e-002;
+2.0010289782806723e-002,	1.1684049976040223e-002,	4.8600000000000004e-002;
+1.9500810360241871e-002,	1.5486288460806463e-002,	4.7300000000000002e-002;
+1.8677267947765586e-002,	1.7674602281525287e-002,	4.7500000000000001e-002;
+2.1068187519647452e-002,	1.3207048148448308e-002,	5.0900000000000001e-002;
+2.9432867931319606e-002,	1.8614186008366396e-002,	5.3099999999999994e-002;
+2.2709401609937174e-002,	3.3601370511199269e-002,	5.6799999999999996e-002;
+2.9063996825298588e-002,	1.9804593863093523e-002,	6.2699999999999992e-002;
+1.8810297095397388e-002,	1.8609127901011213e-002,	6.5199999999999994e-002;
+1.4978576794066001e-002,	1.7916238079900726e-002,	6.4699999999999994e-002;
+4.8316137761403866e-003,	3.2976319868455617e-002,	5.5899999999999998e-002;
+-9.1822274865016595e-004,	3.1213866380320532e-002,    4.3299999999999998e-002;
+-1.3163778876048582e-002,	1.5733791887268644e-002,	3.5000000000000003e-002;
+-1.7841900605217731e-002,	1.6933827369602694e-002,	2.1299999999999999e-002;
+-1.9532762689722816e-002,	1.6823164543461777e-002,	1.7299999999999999e-002;
+-2.2376267503108949e-002,	1.5189134545742444e-002,	1.7500000000000002e-002;
+-2.4570058045892296e-002,	1.5598774847326746e-002,	1.7399999999999999e-002;
+-3.1885812767447064e-002,	2.2380594713903079e-002,	1.4400000000000000e-002;
+-3.5301487936340692e-002,	3.0770251840726015e-002,	1.2500000000000001e-002;
+-3.3809664438850362e-002,	1.1207937615285157e-002,	1.2500000000000001e-002;
+-2.3738888747095288e-002,	1.8271566479553414e-002,	1.0200000000000001e-002;
+-2.2389486776477341e-002,	1.8759653895370487e-002,	1.0000000000000000e-002;
+-1.9372963882339889e-002,	3.6183114349394030e-002,	1.0000000000000000e-002;
+-1.8172640165300180e-002,	3.8524562683139418e-002,	1.0100000000000000e-002;
+-1.5851276113677315e-002,	1.4577624436418635e-002,	1.4300000000000000e-002;
+-1.5145664166732686e-002,	2.7339757365790307e-002,	1.9500000000000000e-002;
+-1.3284941407389894e-002,	3.0828456732055809e-002,	2.4700000000000003e-002;
+-1.2679438144379773e-002,	2.5660138484441486e-002,	2.9399999999999999e-002;
+-1.0133886633141742e-002,	3.3074553498490200e-002,	3.4599999999999999e-002;
+-1.5055016783550812e-002,	3.0184663811322121e-002, 	3.9800000000000002e-002;
+];
 
 Y = sbvar_data(:, 1);
 Pie = sbvar_data(:, 2);
diff --git a/tests/parallel/data_ca1.m b/tests/parallel/data_ca1.m
index ca003056bd..c28fae1a28 100644
--- a/tests/parallel/data_ca1.m
+++ b/tests/parallel/data_ca1.m
@@ -1,98 +1,98 @@
 data = [0.928467646476  11.8716889412   20  0.418037507392  0.227382377518 ...
-        -0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
-        -0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
-        -0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
-        -0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
-        -0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
-        -0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
-        1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
-        2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
-        1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
-        1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
-        1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
-        1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
-        0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
-        1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
-        1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
-        0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
-        1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
-        1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
-        -0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
-        0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
-        0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
-        -0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
-        2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
-        1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
-        1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
-        1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
-        1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
-        1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
-        0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
-        0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
-        1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
-        0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
-        0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
-        0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
-        0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
-        -0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
-        -0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
-        -0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
-        -1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
-        0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
-        0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
-        0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
-        -0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
-        0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
-        0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
-        0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
-        0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
-        0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
-        0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
-        0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
-        1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
-        1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
-        1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
-        0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
-        0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
-        -0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
-        0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
-        0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
-        0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
-        0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
-        1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
-        0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
-        0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
-        1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
-        1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
-        0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
-        1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
-        0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
-        1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
-        1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
-        1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
-        1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
-        1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
-        1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
-        1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
-        0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
-        1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
-        0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
-        0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
-        0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
-        -0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
-        0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
-        1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
-        1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
-        0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
-       ]; 
-
+-0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
+-0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
+-0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
+-0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
+-0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
+-0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
+1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
+2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
+1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
+1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
+1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
+1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
+0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
+1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
+1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
+0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
+1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
+1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
+-0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
+0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
+0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
+-0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
+2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
+1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
+1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
+1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
+1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
+1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
+0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
+0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
+1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
+0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
+0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
+0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
+0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
+-0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
+-0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
+-0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
+-1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
+0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
+0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
+0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
+-0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
+0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
+0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
+0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
+0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
+0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
+0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
+0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
+1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
+1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
+1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
+0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
+0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
+-0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
+0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
+0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
+0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
+0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
+1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
+0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
+0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
+1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
+1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
+0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
+1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
+0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
+1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
+1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
+1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
+1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
+1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
+1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
+1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
+0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
+1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
+0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
+0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
+0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
+-0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
+0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
+1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
+1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
+0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
+]; 
+ 
 data = reshape(data,5,86)'; 
 y_obs = data(:,1); 
 pie_obs = data(:,2); 
 R_obs = data(:,3); 
 de = data(:,4); 
 dq = data(:,5); 
-
+ 
 %Country: Canada 
 %Sample Range: 1981:2 to 2002:3 
 %Observations: 86 
diff --git a/tests/particle/benchmark.m b/tests/particle/benchmark.m
index ddf74133cd..6531fa3bca 100644
--- a/tests/particle/benchmark.m
+++ b/tests/particle/benchmark.m
@@ -1,153 +1,153 @@
 series = [     1.760105924130475   0.312845989288584   0.472239512216113
-               1.791115550250920   0.315305579629763   0.495435385609039
-               1.751331053949751   0.311989642569820   0.464766630177063
-               1.765929133664154   0.313176251276488   0.475784761647821
-               1.770872676560947   0.313535941672459   0.479277718740513
-               1.748075630214838   0.311640694207934   0.461812669855265
-               1.740886476370027   0.311073006485788   0.456517504298258
-               1.746988485610710   0.311609842604230   0.461340624803336
-               1.808281456868951   0.316539782119637   0.507629282479002
-               1.854947854385870   0.320010198263909   0.541895324334327
-               1.827811476526137   0.317608694730638   0.519624032701902
-               1.879047068282612   0.321359760057394   0.557145907254063
-               1.887936238720303   0.321683176283716   0.561813543154462
-               1.882365288701271   0.320907888275609   0.555461197000685
-               1.890963491380599   0.321242988024427   0.560026873563179
-               1.882743098340623   0.320289640711274   0.551797310779183
-               1.876245428003903   0.319508363989648   0.545106040180286
-               1.899034955459843   0.320980198691605   0.560776758509276
-               1.919897524223688   0.322227856348739   0.574674345449269
-               1.940465687586868   0.323391885583672   0.588076473486549
-               1.946743468303839   0.323448346524082   0.590378789190440
-               1.918157772981919   0.320928920092838   0.566236466080824
-               1.925845147314101   0.321216558537531   0.570201396175100
-               1.950276054315104   0.322717541652949   0.586824950361549
-               1.952915927458601   0.322540993947346   0.586583808819511
-               1.965636934883926   0.323122493559917   0.594038815545898
-               1.972278860444277   0.323231527516691   0.596759621388749
-               1.959399309100668   0.321916338391799   0.584645544633759
-               1.958073327908836   0.321508830194106   0.581624183440973
-               1.936706642470067   0.319634602213589   0.563522208941135
-               1.947132164851317   0.320188564417158   0.569981980824923
-               1.919592010791757   0.317893953785440   0.547555649660018
-               1.894582145436749   0.315863589696844   0.527608826086009
-               1.875328652440384   0.314322533775785   0.512518217710308
-               1.818937674207909   0.309930593995679   0.469772963605365
-               1.842409309222495   0.311897436693824   0.488301677052811
-               1.845447947284471   0.312192107041639   0.490975676211932
-               1.829190530052879   0.310975037205003   0.479016383910071
-               1.851212468593380   0.312780063456632   0.496217792811673
-               1.817833267055856   0.310203236444623   0.471201641902107
-               1.814097651048634   0.310028641358866   0.469129333784112
-               1.808063752653222   0.309676136030093   0.465359164080259
-               1.812053865835763   0.310126209868808   0.469216929060463
-               1.815799385165197   0.310539545366918   0.472785315494855
-               1.798798028758880   0.309298628496020   0.460618548651907
-               1.796971476500592   0.309299647541166   0.460158134508980
-               1.792859811632106   0.309117520299899   0.457969407540741
-               1.802670357795570   0.310047046957601   0.466302337158534
-               1.820354449456020   0.311558370446942   0.480365151317462
-               1.837863518950930   0.312988951978216   0.493967328821185
-               1.819974600115587   0.311600489058620   0.480537413839488
-               1.819271706701453   0.311606389118186   0.480384082633725
-               1.796029494102046   0.309829708408597   0.463237300920444
-               1.775524357691159   0.308313824436222   0.448559541114655
-               1.774854815875979   0.308434688960723   0.449144066862645
-               1.800835802767033   0.310677704459576   0.469765050688536
-               1.786059157721867   0.309590821826591   0.459188017661675
-               1.791551405000660   0.310156043725194   0.464114176691556
-               1.786523594020741   0.309861195621005   0.460986828042084
-               1.804952143362207   0.311441919821646   0.475591467341628
-               1.784480090431664   0.309872669759674   0.460532950060849
-               1.784140477821738   0.309959999276874   0.460985722206660
-               1.792798863056227   0.310761222426831   0.468191678518626
-               1.810747873450371   0.312264562058321   0.482223441024178
-               1.836065173354547   0.314274983408592   0.501492175433812
-               1.834938445492660   0.314139706316670   0.500357204123308
-               1.806164052494138   0.311841299442154   0.478396307371778
-               1.791620538153089   0.310730861290031   0.467698336394830
-               1.772173414017760   0.309256295298234   0.453561242440342
-               1.812359648762609   0.312589557817234   0.484663233994422
-               1.799780206306195   0.311608460056369   0.475265269172501
-               1.811364242815336   0.312573632439023   0.484300778401714
-               1.806180627845691   0.312178076723633   0.480478570801151
-               1.820046807592720   0.313298422774191   0.491109285086001
-               1.804568707455205   0.312065809617281   0.479359179539144
-               1.778702229794904   0.310038401087946   0.460068807524478
-               1.753649470369830   0.308120981940320   0.441860777634412
-               1.762068124424802   0.308974588046040   0.449247521833160
-               1.758856007155504   0.308854726469356   0.447693105953493
-               1.755433459009933   0.308720641041879   0.446000172507877
-               1.779715943854885   0.310825716005938   0.465178127643472
-               1.783930656673236   0.311234452750944   0.468790547227773
-               1.786393861473134   0.311487455757189   0.470991209360008
-               1.812898088968145   0.313635733468485   0.491256411174780
-               1.797000942820567   0.312346799207385   0.479078496049043
-               1.807708490475648   0.313210619724172   0.487246468090725
-               1.820545018487566   0.314204773496048   0.496832484203625
-               1.814116326762029   0.313647239601944   0.491664078190780
-               1.815926310618496   0.313758727958057   0.492837457825446
-               1.793643825095235   0.311961730422198   0.475822245177027
-               1.772611874266904   0.310310656389495   0.460168156652974
-               1.773842053215969   0.310499043015798   0.461642812402857
-               1.785642136192052   0.311526453631286   0.471032222071789
-               1.829627605677892   0.315044478550508   0.504474308367718
-               1.815474499865232   0.313850063604634   0.493282068447158
-               1.816739274169429   0.313910944956201   0.493994123075643
-               1.813254431983305   0.313595577041968   0.491112183202942
-               1.777865207201645   0.310754679633359   0.464261094025897
-               1.769595829699111   0.310163842241233   0.458485858065570
-               1.738659830875185   0.307745681157472   0.435795806472776
-               1.753436721676202   0.309129771430515   0.447999836470890
-               1.738481436021817   0.308039101942578   0.437545017347768
-               1.740721029687560   0.308389115201939   0.440245658063711
-               1.732029327854716   0.307829919218540   0.434648762458203
-               1.737881122071139   0.308481963044799   0.440093163154560
-               1.728349104083563   0.307847119795516   0.433830656073788
-               1.737427954717117   0.308761979466418   0.441680792447009
-               1.750442947374700   0.309959966873872   0.452290462457059
-               1.779708864329036   0.312413921952660   0.474876889887843
-               1.775517700307935   0.312080924290991   0.471738746822015
-               1.738514480440751   0.309096953236020   0.443991465279803
-               1.724939674799569   0.308103998655976   0.434532905394758
-               1.748639894643620   0.310202459511950   0.453294130844291
-               1.730755612953242   0.308820365538791   0.440340001996458
-               1.747650308897352   0.310332409785786   0.453823831757850
-               1.749916699862329   0.310591600424986   0.455980263561499
-               1.774426772869005   0.312637115042041   0.474818879600935
-               1.740468164509070   0.309876282879142   0.449208911368321
-               1.737549008596557   0.309727704615865   0.447559410722363
-               1.717860431453982   0.308201819817147   0.433340786017471
-               1.767957927064596   0.312440621914469   0.471904911234585
-               1.781541660272785   0.313526179152300   0.482105532880402
-               1.804344557934195   0.315294209577413   0.499025051607507
-               1.784390243718790   0.313599070228016   0.483320723495016
-               1.775311536722649   0.312826632807963   0.476202483262179
-               1.769910016585468   0.312375180855473   0.472029256009528
-               1.788150491156262   0.313835100220238   0.485763549426003
-               1.782208569646677   0.313306245996605   0.480957924899580
-               1.793299392486021   0.314155939009175   0.489106667914307
-               1.756885968603183   0.311168062389533   0.461287567602054
-               1.750759539703974   0.310714859720743   0.456944873825189
-               1.736951131154746   0.309648094136421   0.446925313549972
-               1.711160587304450   0.307618648711839   0.428144813997209
-               1.720963686450892   0.308600975424972   0.436526291240511
-               1.726695519089401   0.309207201827563   0.441636496567855
-               1.728089508420109   0.309432993463704   0.443352306847972
-               1.706713941073114   0.307765747865817   0.427915961562161
-               1.726924471697119   0.309600667916548   0.444058294820935
-               1.733588015863146   0.310242486127838   0.449633093256537
-               1.729174707935853   0.309950688669380   0.446740897858215
-               1.730286135569681   0.310122869634148   0.448060312437253
-               1.726601265171260   0.309893747429677   0.445735020251979
-               1.698421870820049   0.307636786323920   0.425068312709748
-               1.695448780500048   0.307550916364643   0.423804837967207
-               1.683650854279764   0.306723382060783   0.415936535399100
-               1.669913985903250   0.305753527158022   0.406787487941312
-               1.653878134082938   0.304611079255971   0.396118930676138
-               1.648446560982758   0.304410745365111   0.393617956062407
-               1.619912950387850   0.302205289654123   0.373881240161860
-               1.639388896456292   0.304249793143430   0.390462851630105] ;
+   1.791115550250920   0.315305579629763   0.495435385609039
+   1.751331053949751   0.311989642569820   0.464766630177063
+   1.765929133664154   0.313176251276488   0.475784761647821
+   1.770872676560947   0.313535941672459   0.479277718740513
+   1.748075630214838   0.311640694207934   0.461812669855265
+   1.740886476370027   0.311073006485788   0.456517504298258
+   1.746988485610710   0.311609842604230   0.461340624803336
+   1.808281456868951   0.316539782119637   0.507629282479002
+   1.854947854385870   0.320010198263909   0.541895324334327
+   1.827811476526137   0.317608694730638   0.519624032701902
+   1.879047068282612   0.321359760057394   0.557145907254063
+   1.887936238720303   0.321683176283716   0.561813543154462
+   1.882365288701271   0.320907888275609   0.555461197000685
+   1.890963491380599   0.321242988024427   0.560026873563179
+   1.882743098340623   0.320289640711274   0.551797310779183
+   1.876245428003903   0.319508363989648   0.545106040180286
+   1.899034955459843   0.320980198691605   0.560776758509276
+   1.919897524223688   0.322227856348739   0.574674345449269
+   1.940465687586868   0.323391885583672   0.588076473486549
+   1.946743468303839   0.323448346524082   0.590378789190440
+   1.918157772981919   0.320928920092838   0.566236466080824
+   1.925845147314101   0.321216558537531   0.570201396175100
+   1.950276054315104   0.322717541652949   0.586824950361549
+   1.952915927458601   0.322540993947346   0.586583808819511
+   1.965636934883926   0.323122493559917   0.594038815545898
+   1.972278860444277   0.323231527516691   0.596759621388749
+   1.959399309100668   0.321916338391799   0.584645544633759
+   1.958073327908836   0.321508830194106   0.581624183440973
+   1.936706642470067   0.319634602213589   0.563522208941135
+   1.947132164851317   0.320188564417158   0.569981980824923
+   1.919592010791757   0.317893953785440   0.547555649660018
+   1.894582145436749   0.315863589696844   0.527608826086009
+   1.875328652440384   0.314322533775785   0.512518217710308
+   1.818937674207909   0.309930593995679   0.469772963605365
+   1.842409309222495   0.311897436693824   0.488301677052811
+   1.845447947284471   0.312192107041639   0.490975676211932
+   1.829190530052879   0.310975037205003   0.479016383910071
+   1.851212468593380   0.312780063456632   0.496217792811673
+   1.817833267055856   0.310203236444623   0.471201641902107
+   1.814097651048634   0.310028641358866   0.469129333784112
+   1.808063752653222   0.309676136030093   0.465359164080259
+   1.812053865835763   0.310126209868808   0.469216929060463
+   1.815799385165197   0.310539545366918   0.472785315494855
+   1.798798028758880   0.309298628496020   0.460618548651907
+   1.796971476500592   0.309299647541166   0.460158134508980
+   1.792859811632106   0.309117520299899   0.457969407540741
+   1.802670357795570   0.310047046957601   0.466302337158534
+   1.820354449456020   0.311558370446942   0.480365151317462
+   1.837863518950930   0.312988951978216   0.493967328821185
+   1.819974600115587   0.311600489058620   0.480537413839488
+   1.819271706701453   0.311606389118186   0.480384082633725
+   1.796029494102046   0.309829708408597   0.463237300920444
+   1.775524357691159   0.308313824436222   0.448559541114655
+   1.774854815875979   0.308434688960723   0.449144066862645
+   1.800835802767033   0.310677704459576   0.469765050688536
+   1.786059157721867   0.309590821826591   0.459188017661675
+   1.791551405000660   0.310156043725194   0.464114176691556
+   1.786523594020741   0.309861195621005   0.460986828042084
+   1.804952143362207   0.311441919821646   0.475591467341628
+   1.784480090431664   0.309872669759674   0.460532950060849
+   1.784140477821738   0.309959999276874   0.460985722206660
+   1.792798863056227   0.310761222426831   0.468191678518626
+   1.810747873450371   0.312264562058321   0.482223441024178
+   1.836065173354547   0.314274983408592   0.501492175433812
+   1.834938445492660   0.314139706316670   0.500357204123308
+   1.806164052494138   0.311841299442154   0.478396307371778
+   1.791620538153089   0.310730861290031   0.467698336394830
+   1.772173414017760   0.309256295298234   0.453561242440342
+   1.812359648762609   0.312589557817234   0.484663233994422
+   1.799780206306195   0.311608460056369   0.475265269172501
+   1.811364242815336   0.312573632439023   0.484300778401714
+   1.806180627845691   0.312178076723633   0.480478570801151
+   1.820046807592720   0.313298422774191   0.491109285086001
+   1.804568707455205   0.312065809617281   0.479359179539144
+   1.778702229794904   0.310038401087946   0.460068807524478
+   1.753649470369830   0.308120981940320   0.441860777634412
+   1.762068124424802   0.308974588046040   0.449247521833160
+   1.758856007155504   0.308854726469356   0.447693105953493
+   1.755433459009933   0.308720641041879   0.446000172507877
+   1.779715943854885   0.310825716005938   0.465178127643472
+   1.783930656673236   0.311234452750944   0.468790547227773
+   1.786393861473134   0.311487455757189   0.470991209360008
+   1.812898088968145   0.313635733468485   0.491256411174780
+   1.797000942820567   0.312346799207385   0.479078496049043
+   1.807708490475648   0.313210619724172   0.487246468090725
+   1.820545018487566   0.314204773496048   0.496832484203625
+   1.814116326762029   0.313647239601944   0.491664078190780
+   1.815926310618496   0.313758727958057   0.492837457825446
+   1.793643825095235   0.311961730422198   0.475822245177027
+   1.772611874266904   0.310310656389495   0.460168156652974
+   1.773842053215969   0.310499043015798   0.461642812402857
+   1.785642136192052   0.311526453631286   0.471032222071789
+   1.829627605677892   0.315044478550508   0.504474308367718
+   1.815474499865232   0.313850063604634   0.493282068447158
+   1.816739274169429   0.313910944956201   0.493994123075643
+   1.813254431983305   0.313595577041968   0.491112183202942
+   1.777865207201645   0.310754679633359   0.464261094025897
+   1.769595829699111   0.310163842241233   0.458485858065570
+   1.738659830875185   0.307745681157472   0.435795806472776
+   1.753436721676202   0.309129771430515   0.447999836470890
+   1.738481436021817   0.308039101942578   0.437545017347768
+   1.740721029687560   0.308389115201939   0.440245658063711
+   1.732029327854716   0.307829919218540   0.434648762458203
+   1.737881122071139   0.308481963044799   0.440093163154560
+   1.728349104083563   0.307847119795516   0.433830656073788
+   1.737427954717117   0.308761979466418   0.441680792447009
+   1.750442947374700   0.309959966873872   0.452290462457059
+   1.779708864329036   0.312413921952660   0.474876889887843
+   1.775517700307935   0.312080924290991   0.471738746822015
+   1.738514480440751   0.309096953236020   0.443991465279803
+   1.724939674799569   0.308103998655976   0.434532905394758
+   1.748639894643620   0.310202459511950   0.453294130844291
+   1.730755612953242   0.308820365538791   0.440340001996458
+   1.747650308897352   0.310332409785786   0.453823831757850
+   1.749916699862329   0.310591600424986   0.455980263561499
+   1.774426772869005   0.312637115042041   0.474818879600935
+   1.740468164509070   0.309876282879142   0.449208911368321
+   1.737549008596557   0.309727704615865   0.447559410722363
+   1.717860431453982   0.308201819817147   0.433340786017471
+   1.767957927064596   0.312440621914469   0.471904911234585
+   1.781541660272785   0.313526179152300   0.482105532880402
+   1.804344557934195   0.315294209577413   0.499025051607507
+   1.784390243718790   0.313599070228016   0.483320723495016
+   1.775311536722649   0.312826632807963   0.476202483262179
+   1.769910016585468   0.312375180855473   0.472029256009528
+   1.788150491156262   0.313835100220238   0.485763549426003
+   1.782208569646677   0.313306245996605   0.480957924899580
+   1.793299392486021   0.314155939009175   0.489106667914307
+   1.756885968603183   0.311168062389533   0.461287567602054
+   1.750759539703974   0.310714859720743   0.456944873825189
+   1.736951131154746   0.309648094136421   0.446925313549972
+   1.711160587304450   0.307618648711839   0.428144813997209
+   1.720963686450892   0.308600975424972   0.436526291240511
+   1.726695519089401   0.309207201827563   0.441636496567855
+   1.728089508420109   0.309432993463704   0.443352306847972
+   1.706713941073114   0.307765747865817   0.427915961562161
+   1.726924471697119   0.309600667916548   0.444058294820935
+   1.733588015863146   0.310242486127838   0.449633093256537
+   1.729174707935853   0.309950688669380   0.446740897858215
+   1.730286135569681   0.310122869634148   0.448060312437253
+   1.726601265171260   0.309893747429677   0.445735020251979
+   1.698421870820049   0.307636786323920   0.425068312709748
+   1.695448780500048   0.307550916364643   0.423804837967207
+   1.683650854279764   0.306723382060783   0.415936535399100
+   1.669913985903250   0.305753527158022   0.406787487941312
+   1.653878134082938   0.304611079255971   0.396118930676138
+   1.648446560982758   0.304410745365111   0.393617956062407
+   1.619912950387850   0.302205289654123   0.373881240161860
+   1.639388896456292   0.304249793143430   0.390462851630105] ;
 
 set_dynare_seed('default');
 
diff --git a/tests/particle/extreme.m b/tests/particle/extreme.m
index cf22bc161c..c6a7dba26e 100644
--- a/tests/particle/extreme.m
+++ b/tests/particle/extreme.m
@@ -1,153 +1,153 @@
 series = [  1.831805242058402   0.326183687045750   0.571394980772413
-            1.984702489138465   0.335169748463059   0.670420465974991
-            1.797086108881765   0.323738578123985   0.547308667595199
-            1.868444017934854   0.328080679826740   0.593052853366243
-            1.895360226929111   0.329595817929623   0.609928225756056
-            1.790832321540929   0.323045792420179   0.541464341531705
-            1.760361113136238   0.321043326280900   0.521508650424371
-            1.790915969739093   0.322955490721488   0.540943037175086
-            2.094179862755653   0.340746414276014   0.739070344706716
-            2.351323603033167   0.353813072593956   0.910247160484619
-            2.210203726655083   0.345882571920415   0.814539583358436
-            2.502764243167320   0.360529072208579   1.010034424820335
-            2.569208789183717   0.362428841518866   1.055534562597981
-            2.547595154425792   0.360952177511515   1.039047992042150
-            2.609146531246866   0.363696577503416   1.078846711754488
-            2.571616001378042   0.361498291257734   1.051509986784717
-            2.541891024016321   0.360071155104088   1.028624099377237
-            2.689409275114334   0.366815600832908   1.128105032869184
-            2.836542116534716   0.372524050373151   1.229814150394072
-            2.989371778822207   0.378100564290163   1.336372695875410
-            3.053527484610819   0.379663367671839   1.381646099750626
-            2.881583926807516   0.371937515643922   1.259734111646857
-            2.937243454748999   0.375283171360020   1.293755438734926
-            3.118203726771490   0.382439157449350   1.420284000580079
-            3.162221425436911   0.382978730072962   1.452879778911405
-            3.270131116244304   0.387045130060735   1.528307700189284
-            3.342461488854179   0.389086673292955   1.580437828600709
-            3.273192452854725   0.385774052536333   1.531120751032252
-            3.275458381986319   0.386357608290016   1.529824198671000
-            3.140839718197673   0.380646875429989   1.433095635793685
-            3.219561570532605   0.384603663097986   1.485897119680615
-            3.046020484023621   0.376619364484571   1.363233558132235
-            2.875797146770958   0.369735139885355   1.238996996305890
-            2.749622178822991   0.364254301976450   1.147444649402347
-            2.392412920492719   0.346784183865998   0.894670846513585
-            2.538569352588205   0.354489172654320   0.995609156305664
-            2.568582116289918   0.355797653561804   1.017051641895211
-            2.473671797066097   0.350928176810026   0.950257635346841
-            2.620458952999331   0.358256344008751   1.053181588833955
-            2.417877040613256   0.347870025062447   0.911027320823617
-            2.397670314991495   0.346921694035742   0.896082963087687
-            2.366883065577286   0.345289845529682   0.874408874120826
-            2.398421161488027   0.346918229004658   0.896452534897949
-            2.429022432917506   0.348458911692765   0.917940360480214
-            2.329480001673114   0.343218039531235   0.848090572728616
-            2.323778203248307   0.342928605968239   0.843955176095121
-            2.304540951504139   0.341899250525543   0.830468123386457
-            2.371683909087846   0.345441636785679   0.877514351279621
-            2.490195690751581   0.351506590301081   0.960838542863225
-            2.611493982190879   0.357442690934199   1.046618170917642
-            2.503405760920729   0.351887256856341   0.970703524500816
-            2.502374477458479   0.351865505580769   0.969514474424414
-            2.359478710434038   0.344470328092121   0.868876338341471
-            2.235614401552562   0.337896673011709   0.781763976906244
-            2.237065512060965   0.337998138421979   0.782823153982811
-            2.405249293222310   0.346934628008361   0.900834255435682
-            2.317208444296528   0.342286974469216   0.839012239040374
-            2.356353796613430   0.344364397044866   0.866418340883992
-            2.329623188746103   0.342942028228397   0.847657055734664
-            2.451699791573160   0.349287377428137   0.933477131054643
-            2.326653326931049   0.342720642543720   0.845654324922242
-            2.328176409623511   0.342824741941796   0.846575965562970
-            2.387605984815603   0.345939128892875   0.888332186956944
-            2.508162718702005   0.352082240173918   0.973304394397491
-            2.682098704221850   0.360548632109151   1.096619975241019
-            2.683210187517440   0.360334208336806   1.098196347992521
-            2.495448180812561   0.351002978084749   0.965191387615425
-            2.400677321318541   0.346260011274923   0.897566056014340
-            2.279709427240636   0.339905112366486   0.812280162193439
-            2.543742139352676   0.353571759314430   0.998416614177836
-            2.466804544683231   0.349570487450388   0.944374705292784
-            2.545923232397798   0.353562161906674   1.000133847612044
-            2.516609766492527   0.351998960811952   0.979615171231177
-            2.612598123816773   0.356735709969249   1.047580818676070
-            2.514581877733644   0.351736314350723   0.978472497403178
-            2.346814819442599   0.343151537387364   0.859593502999736
-            2.190061053436186   0.334783668048696   0.749123665788591
-            2.248248190346710   0.337975537211722   0.790133451151325
-            2.231245577955952   0.337099249591117   0.778120306643938
-            2.213620813638347   0.336172963701584   0.765787919679999
-            2.372368622485876   0.344669139219734   0.877475808694303
-            2.402394532412963   0.346236714114806   0.898578702308663
-            2.421632200543405   0.347211723112796   0.912182166100545
-            2.600814823475984   0.356206951763316   1.039020125139189
-            2.499717430182296   0.351010191098421   0.967897548419094
-            2.572211042595633   0.354659119526649   1.018967108776286
-            2.663557373274198   0.359030754462987   1.084127294941044
-            2.624508384540186   0.356972637699486   1.056848324055082
-            2.638578391882532   0.357631581496546   1.066764536958948
-            2.490619544707827   0.350219619250241   0.961836430307891
-            2.351499685312523   0.343126531712676   0.862944429125821
-            2.361744409273265   0.343693557597678   0.870045243822348
-            2.442494968080141   0.347873202461086   0.927160968018594
-            2.745123805313629   0.362770643020118   1.142349343426111
-            2.655499503705102   0.358132929197389   1.079779897215503
-            2.663850696079126   0.358574973979539   1.085379958290025
-            2.642540272757401   0.357462408799286   1.070401889504760
-            2.404037994048185   0.345491588561572   0.900884395443159
-            2.348769349405146   0.342712258600463   0.861219163642359
-            2.151645849089095   0.332135094769575   0.722080451054128
-            2.252343203542463   0.337640454116440   0.793256172150181
-            2.158313350236808   0.332590653949928   0.726803768436609
-            2.177375300770910   0.333675009914873   0.740364253592691
-            2.125333870619463   0.330857624626525   0.703750112206580
-            2.166601866570710   0.333192210611845   0.732859178568121
-            2.108843923653465   0.330052027456209   0.692243810014626
-            2.170141182101418   0.333505871231270   0.735409067431057
-            2.254451075620278   0.338167643418567   0.794516594921980
-            2.446506792318999   0.348291161505242   0.929849297341202
-            2.420231514001146   0.346916032088861   0.911318264635804
-            2.181800682169253   0.334237425269950   0.743319742477540
-            2.099742314313267   0.329709128744430   0.685953130712018
-            2.253483605428042   0.338209143902201   0.794027010792921
-            2.139849820112224   0.332063175615470   0.714018808416182
-            2.250143469020041   0.338136253085361   0.791600043424550
-            2.264735780708348   0.338979274263224   0.801680191863518
-            2.425121660100526   0.347436401511180   0.914625338218002
-            2.206590644219017   0.335830510968584   0.760892479739662
-            2.189826738892797   0.334948331690477   0.749202347672420
-            2.069051029835663   0.328235256714593   0.664845519474291
-            2.391186717627713   0.345755663706005   0.891100361136644
-            2.478723828708481   0.350304667654797   0.952470631759343
-            2.633589418757750   0.357943374909926   1.062259709272963
-            2.501720459872961   0.351218582106388   0.969405568955396
-            2.438825464623843   0.348074452736294   0.924486170126454
-            2.402956953910124   0.346226899680829   0.899047137304136
-            2.524642865536631   0.352419486777799   0.985020882838327
-            2.486592708507011   0.350410839822111   0.958347818799192
-            2.561198294838873   0.354135408220830   1.011115336262727
-            2.320611782924737   0.341730318797737   0.841256200313256
-            2.279686641907904   0.339623952830723   0.812097446193594
-            2.192677970879956   0.334934939278205   0.750983611681066
-            2.034253696137675   0.326074943710870   0.640293522184461
-            2.100411653364924   0.329874859982984   0.687004183670506
-            2.136363142365890   0.331978934678318   0.712025267361496
-            2.145765618417357   0.332571647651874   0.718576738965439
-            2.015355353786295   0.325223748826715   0.627682513187217
-            2.144497911280442   0.332597163880719   0.718235199174144
-            2.184419901142909   0.334907791330299   0.745855884353715
-            2.156941988546521   0.333440304455754   0.726637490761326
-            2.164896092557094   0.333922888423381   0.732317236030551
-            2.142495889557134   0.332723978543999   0.716747302318746
-            1.972335146672318   0.323009944472129   0.598611382636265
-            1.960032978731420   0.322337700909600   0.590822458953444
-            1.892736021185325   0.318399928224863   0.544712037197812
-            1.817727518077365   0.313890597043592   0.493800641801013
-            1.732818354432900   0.308638151751227   0.436587334970866
-            1.709712053275818   0.307294092052731   0.421979569450315
-            1.560777278572816   0.297457158767192   0.322157189475494
-            1.678355925543266   0.305618851041591   0.403484108249424] ;
+   1.984702489138465   0.335169748463059   0.670420465974991
+   1.797086108881765   0.323738578123985   0.547308667595199
+   1.868444017934854   0.328080679826740   0.593052853366243
+   1.895360226929111   0.329595817929623   0.609928225756056
+   1.790832321540929   0.323045792420179   0.541464341531705
+   1.760361113136238   0.321043326280900   0.521508650424371
+   1.790915969739093   0.322955490721488   0.540943037175086
+   2.094179862755653   0.340746414276014   0.739070344706716
+   2.351323603033167   0.353813072593956   0.910247160484619
+   2.210203726655083   0.345882571920415   0.814539583358436
+   2.502764243167320   0.360529072208579   1.010034424820335
+   2.569208789183717   0.362428841518866   1.055534562597981
+   2.547595154425792   0.360952177511515   1.039047992042150
+   2.609146531246866   0.363696577503416   1.078846711754488
+   2.571616001378042   0.361498291257734   1.051509986784717
+   2.541891024016321   0.360071155104088   1.028624099377237
+   2.689409275114334   0.366815600832908   1.128105032869184
+   2.836542116534716   0.372524050373151   1.229814150394072
+   2.989371778822207   0.378100564290163   1.336372695875410
+   3.053527484610819   0.379663367671839   1.381646099750626
+   2.881583926807516   0.371937515643922   1.259734111646857
+   2.937243454748999   0.375283171360020   1.293755438734926
+   3.118203726771490   0.382439157449350   1.420284000580079
+   3.162221425436911   0.382978730072962   1.452879778911405
+   3.270131116244304   0.387045130060735   1.528307700189284
+   3.342461488854179   0.389086673292955   1.580437828600709
+   3.273192452854725   0.385774052536333   1.531120751032252
+   3.275458381986319   0.386357608290016   1.529824198671000
+   3.140839718197673   0.380646875429989   1.433095635793685
+   3.219561570532605   0.384603663097986   1.485897119680615
+   3.046020484023621   0.376619364484571   1.363233558132235
+   2.875797146770958   0.369735139885355   1.238996996305890
+   2.749622178822991   0.364254301976450   1.147444649402347
+   2.392412920492719   0.346784183865998   0.894670846513585
+   2.538569352588205   0.354489172654320   0.995609156305664
+   2.568582116289918   0.355797653561804   1.017051641895211
+   2.473671797066097   0.350928176810026   0.950257635346841
+   2.620458952999331   0.358256344008751   1.053181588833955
+   2.417877040613256   0.347870025062447   0.911027320823617
+   2.397670314991495   0.346921694035742   0.896082963087687
+   2.366883065577286   0.345289845529682   0.874408874120826
+   2.398421161488027   0.346918229004658   0.896452534897949
+   2.429022432917506   0.348458911692765   0.917940360480214
+   2.329480001673114   0.343218039531235   0.848090572728616
+   2.323778203248307   0.342928605968239   0.843955176095121
+   2.304540951504139   0.341899250525543   0.830468123386457
+   2.371683909087846   0.345441636785679   0.877514351279621
+   2.490195690751581   0.351506590301081   0.960838542863225
+   2.611493982190879   0.357442690934199   1.046618170917642
+   2.503405760920729   0.351887256856341   0.970703524500816
+   2.502374477458479   0.351865505580769   0.969514474424414
+   2.359478710434038   0.344470328092121   0.868876338341471
+   2.235614401552562   0.337896673011709   0.781763976906244
+   2.237065512060965   0.337998138421979   0.782823153982811
+   2.405249293222310   0.346934628008361   0.900834255435682
+   2.317208444296528   0.342286974469216   0.839012239040374
+   2.356353796613430   0.344364397044866   0.866418340883992
+   2.329623188746103   0.342942028228397   0.847657055734664
+   2.451699791573160   0.349287377428137   0.933477131054643
+   2.326653326931049   0.342720642543720   0.845654324922242
+   2.328176409623511   0.342824741941796   0.846575965562970
+   2.387605984815603   0.345939128892875   0.888332186956944
+   2.508162718702005   0.352082240173918   0.973304394397491
+   2.682098704221850   0.360548632109151   1.096619975241019
+   2.683210187517440   0.360334208336806   1.098196347992521
+   2.495448180812561   0.351002978084749   0.965191387615425
+   2.400677321318541   0.346260011274923   0.897566056014340
+   2.279709427240636   0.339905112366486   0.812280162193439
+   2.543742139352676   0.353571759314430   0.998416614177836
+   2.466804544683231   0.349570487450388   0.944374705292784
+   2.545923232397798   0.353562161906674   1.000133847612044
+   2.516609766492527   0.351998960811952   0.979615171231177
+   2.612598123816773   0.356735709969249   1.047580818676070
+   2.514581877733644   0.351736314350723   0.978472497403178
+   2.346814819442599   0.343151537387364   0.859593502999736
+   2.190061053436186   0.334783668048696   0.749123665788591
+   2.248248190346710   0.337975537211722   0.790133451151325
+   2.231245577955952   0.337099249591117   0.778120306643938
+   2.213620813638347   0.336172963701584   0.765787919679999
+   2.372368622485876   0.344669139219734   0.877475808694303
+   2.402394532412963   0.346236714114806   0.898578702308663
+   2.421632200543405   0.347211723112796   0.912182166100545
+   2.600814823475984   0.356206951763316   1.039020125139189
+   2.499717430182296   0.351010191098421   0.967897548419094
+   2.572211042595633   0.354659119526649   1.018967108776286
+   2.663557373274198   0.359030754462987   1.084127294941044
+   2.624508384540186   0.356972637699486   1.056848324055082
+   2.638578391882532   0.357631581496546   1.066764536958948
+   2.490619544707827   0.350219619250241   0.961836430307891
+   2.351499685312523   0.343126531712676   0.862944429125821
+   2.361744409273265   0.343693557597678   0.870045243822348
+   2.442494968080141   0.347873202461086   0.927160968018594
+   2.745123805313629   0.362770643020118   1.142349343426111
+   2.655499503705102   0.358132929197389   1.079779897215503
+   2.663850696079126   0.358574973979539   1.085379958290025
+   2.642540272757401   0.357462408799286   1.070401889504760
+   2.404037994048185   0.345491588561572   0.900884395443159
+   2.348769349405146   0.342712258600463   0.861219163642359
+   2.151645849089095   0.332135094769575   0.722080451054128
+   2.252343203542463   0.337640454116440   0.793256172150181
+   2.158313350236808   0.332590653949928   0.726803768436609
+   2.177375300770910   0.333675009914873   0.740364253592691
+   2.125333870619463   0.330857624626525   0.703750112206580
+   2.166601866570710   0.333192210611845   0.732859178568121
+   2.108843923653465   0.330052027456209   0.692243810014626
+   2.170141182101418   0.333505871231270   0.735409067431057
+   2.254451075620278   0.338167643418567   0.794516594921980
+   2.446506792318999   0.348291161505242   0.929849297341202
+   2.420231514001146   0.346916032088861   0.911318264635804
+   2.181800682169253   0.334237425269950   0.743319742477540
+   2.099742314313267   0.329709128744430   0.685953130712018
+   2.253483605428042   0.338209143902201   0.794027010792921
+   2.139849820112224   0.332063175615470   0.714018808416182
+   2.250143469020041   0.338136253085361   0.791600043424550
+   2.264735780708348   0.338979274263224   0.801680191863518
+   2.425121660100526   0.347436401511180   0.914625338218002
+   2.206590644219017   0.335830510968584   0.760892479739662
+   2.189826738892797   0.334948331690477   0.749202347672420
+   2.069051029835663   0.328235256714593   0.664845519474291
+   2.391186717627713   0.345755663706005   0.891100361136644
+   2.478723828708481   0.350304667654797   0.952470631759343
+   2.633589418757750   0.357943374909926   1.062259709272963
+   2.501720459872961   0.351218582106388   0.969405568955396
+   2.438825464623843   0.348074452736294   0.924486170126454
+   2.402956953910124   0.346226899680829   0.899047137304136
+   2.524642865536631   0.352419486777799   0.985020882838327
+   2.486592708507011   0.350410839822111   0.958347818799192
+   2.561198294838873   0.354135408220830   1.011115336262727
+   2.320611782924737   0.341730318797737   0.841256200313256
+   2.279686641907904   0.339623952830723   0.812097446193594
+   2.192677970879956   0.334934939278205   0.750983611681066
+   2.034253696137675   0.326074943710870   0.640293522184461
+   2.100411653364924   0.329874859982984   0.687004183670506
+   2.136363142365890   0.331978934678318   0.712025267361496
+   2.145765618417357   0.332571647651874   0.718576738965439
+   2.015355353786295   0.325223748826715   0.627682513187217
+   2.144497911280442   0.332597163880719   0.718235199174144
+   2.184419901142909   0.334907791330299   0.745855884353715
+   2.156941988546521   0.333440304455754   0.726637490761326
+   2.164896092557094   0.333922888423381   0.732317236030551
+   2.142495889557134   0.332723978543999   0.716747302318746
+   1.972335146672318   0.323009944472129   0.598611382636265
+   1.960032978731420   0.322337700909600   0.590822458953444
+   1.892736021185325   0.318399928224863   0.544712037197812
+   1.817727518077365   0.313890597043592   0.493800641801013
+   1.732818354432900   0.308638151751227   0.436587334970866
+   1.709712053275818   0.307294092052731   0.421979569450315
+   1.560777278572816   0.297457158767192   0.322157189475494
+   1.678355925543266   0.305618851041591   0.403484108249424] ;
 
 set_dynare_seed('default');
 
diff --git a/tests/particle/risky.m b/tests/particle/risky.m
index 33c64573ad..4d0b7a8299 100644
--- a/tests/particle/risky.m
+++ b/tests/particle/risky.m
@@ -1,153 +1,153 @@
 series = [  1.831805242058402   0.326183687045750   0.571394980772413
-            1.984702489138465   0.335169748463059   0.670420465974991
-            1.797086108881765   0.323738578123985   0.547308667595199
-            1.868444017934854   0.328080679826740   0.593052853366243
-            1.895360226929111   0.329595817929623   0.609928225756056
-            1.790832321540929   0.323045792420179   0.541464341531705
-            1.760361113136238   0.321043326280900   0.521508650424371
-            1.790915969739093   0.322955490721488   0.540943037175086
-            2.094179862755653   0.340746414276014   0.739070344706716
-            2.351323603033167   0.353813072593956   0.910247160484619
-            2.210203726655083   0.345882571920415   0.814539583358436
-            2.502764243167320   0.360529072208579   1.010034424820335
-            2.569208789183717   0.362428841518866   1.055534562597981
-            2.547595154425792   0.360952177511515   1.039047992042150
-            2.609146531246866   0.363696577503416   1.078846711754488
-            2.571616001378042   0.361498291257734   1.051509986784717
-            2.541891024016321   0.360071155104088   1.028624099377237
-            2.689409275114334   0.366815600832908   1.128105032869184
-            2.836542116534716   0.372524050373151   1.229814150394072
-            2.989371778822207   0.378100564290163   1.336372695875410
-            3.053527484610819   0.379663367671839   1.381646099750626
-            2.881583926807516   0.371937515643922   1.259734111646857
-            2.937243454748999   0.375283171360020   1.293755438734926
-            3.118203726771490   0.382439157449350   1.420284000580079
-            3.162221425436911   0.382978730072962   1.452879778911405
-            3.270131116244304   0.387045130060735   1.528307700189284
-            3.342461488854179   0.389086673292955   1.580437828600709
-            3.273192452854725   0.385774052536333   1.531120751032252
-            3.275458381986319   0.386357608290016   1.529824198671000
-            3.140839718197673   0.380646875429989   1.433095635793685
-            3.219561570532605   0.384603663097986   1.485897119680615
-            3.046020484023621   0.376619364484571   1.363233558132235
-            2.875797146770958   0.369735139885355   1.238996996305890
-            2.749622178822991   0.364254301976450   1.147444649402347
-            2.392412920492719   0.346784183865998   0.894670846513585
-            2.538569352588205   0.354489172654320   0.995609156305664
-            2.568582116289918   0.355797653561804   1.017051641895211
-            2.473671797066097   0.350928176810026   0.950257635346841
-            2.620458952999331   0.358256344008751   1.053181588833955
-            2.417877040613256   0.347870025062447   0.911027320823617
-            2.397670314991495   0.346921694035742   0.896082963087687
-            2.366883065577286   0.345289845529682   0.874408874120826
-            2.398421161488027   0.346918229004658   0.896452534897949
-            2.429022432917506   0.348458911692765   0.917940360480214
-            2.329480001673114   0.343218039531235   0.848090572728616
-            2.323778203248307   0.342928605968239   0.843955176095121
-            2.304540951504139   0.341899250525543   0.830468123386457
-            2.371683909087846   0.345441636785679   0.877514351279621
-            2.490195690751581   0.351506590301081   0.960838542863225
-            2.611493982190879   0.357442690934199   1.046618170917642
-            2.503405760920729   0.351887256856341   0.970703524500816
-            2.502374477458479   0.351865505580769   0.969514474424414
-            2.359478710434038   0.344470328092121   0.868876338341471
-            2.235614401552562   0.337896673011709   0.781763976906244
-            2.237065512060965   0.337998138421979   0.782823153982811
-            2.405249293222310   0.346934628008361   0.900834255435682
-            2.317208444296528   0.342286974469216   0.839012239040374
-            2.356353796613430   0.344364397044866   0.866418340883992
-            2.329623188746103   0.342942028228397   0.847657055734664
-            2.451699791573160   0.349287377428137   0.933477131054643
-            2.326653326931049   0.342720642543720   0.845654324922242
-            2.328176409623511   0.342824741941796   0.846575965562970
-            2.387605984815603   0.345939128892875   0.888332186956944
-            2.508162718702005   0.352082240173918   0.973304394397491
-            2.682098704221850   0.360548632109151   1.096619975241019
-            2.683210187517440   0.360334208336806   1.098196347992521
-            2.495448180812561   0.351002978084749   0.965191387615425
-            2.400677321318541   0.346260011274923   0.897566056014340
-            2.279709427240636   0.339905112366486   0.812280162193439
-            2.543742139352676   0.353571759314430   0.998416614177836
-            2.466804544683231   0.349570487450388   0.944374705292784
-            2.545923232397798   0.353562161906674   1.000133847612044
-            2.516609766492527   0.351998960811952   0.979615171231177
-            2.612598123816773   0.356735709969249   1.047580818676070
-            2.514581877733644   0.351736314350723   0.978472497403178
-            2.346814819442599   0.343151537387364   0.859593502999736
-            2.190061053436186   0.334783668048696   0.749123665788591
-            2.248248190346710   0.337975537211722   0.790133451151325
-            2.231245577955952   0.337099249591117   0.778120306643938
-            2.213620813638347   0.336172963701584   0.765787919679999
-            2.372368622485876   0.344669139219734   0.877475808694303
-            2.402394532412963   0.346236714114806   0.898578702308663
-            2.421632200543405   0.347211723112796   0.912182166100545
-            2.600814823475984   0.356206951763316   1.039020125139189
-            2.499717430182296   0.351010191098421   0.967897548419094
-            2.572211042595633   0.354659119526649   1.018967108776286
-            2.663557373274198   0.359030754462987   1.084127294941044
-            2.624508384540186   0.356972637699486   1.056848324055082
-            2.638578391882532   0.357631581496546   1.066764536958948
-            2.490619544707827   0.350219619250241   0.961836430307891
-            2.351499685312523   0.343126531712676   0.862944429125821
-            2.361744409273265   0.343693557597678   0.870045243822348
-            2.442494968080141   0.347873202461086   0.927160968018594
-            2.745123805313629   0.362770643020118   1.142349343426111
-            2.655499503705102   0.358132929197389   1.079779897215503
-            2.663850696079126   0.358574973979539   1.085379958290025
-            2.642540272757401   0.357462408799286   1.070401889504760
-            2.404037994048185   0.345491588561572   0.900884395443159
-            2.348769349405146   0.342712258600463   0.861219163642359
-            2.151645849089095   0.332135094769575   0.722080451054128
-            2.252343203542463   0.337640454116440   0.793256172150181
-            2.158313350236808   0.332590653949928   0.726803768436609
-            2.177375300770910   0.333675009914873   0.740364253592691
-            2.125333870619463   0.330857624626525   0.703750112206580
-            2.166601866570710   0.333192210611845   0.732859178568121
-            2.108843923653465   0.330052027456209   0.692243810014626
-            2.170141182101418   0.333505871231270   0.735409067431057
-            2.254451075620278   0.338167643418567   0.794516594921980
-            2.446506792318999   0.348291161505242   0.929849297341202
-            2.420231514001146   0.346916032088861   0.911318264635804
-            2.181800682169253   0.334237425269950   0.743319742477540
-            2.099742314313267   0.329709128744430   0.685953130712018
-            2.253483605428042   0.338209143902201   0.794027010792921
-            2.139849820112224   0.332063175615470   0.714018808416182
-            2.250143469020041   0.338136253085361   0.791600043424550
-            2.264735780708348   0.338979274263224   0.801680191863518
-            2.425121660100526   0.347436401511180   0.914625338218002
-            2.206590644219017   0.335830510968584   0.760892479739662
-            2.189826738892797   0.334948331690477   0.749202347672420
-            2.069051029835663   0.328235256714593   0.664845519474291
-            2.391186717627713   0.345755663706005   0.891100361136644
-            2.478723828708481   0.350304667654797   0.952470631759343
-            2.633589418757750   0.357943374909926   1.062259709272963
-            2.501720459872961   0.351218582106388   0.969405568955396
-            2.438825464623843   0.348074452736294   0.924486170126454
-            2.402956953910124   0.346226899680829   0.899047137304136
-            2.524642865536631   0.352419486777799   0.985020882838327
-            2.486592708507011   0.350410839822111   0.958347818799192
-            2.561198294838873   0.354135408220830   1.011115336262727
-            2.320611782924737   0.341730318797737   0.841256200313256
-            2.279686641907904   0.339623952830723   0.812097446193594
-            2.192677970879956   0.334934939278205   0.750983611681066
-            2.034253696137675   0.326074943710870   0.640293522184461
-            2.100411653364924   0.329874859982984   0.687004183670506
-            2.136363142365890   0.331978934678318   0.712025267361496
-            2.145765618417357   0.332571647651874   0.718576738965439
-            2.015355353786295   0.325223748826715   0.627682513187217
-            2.144497911280442   0.332597163880719   0.718235199174144
-            2.184419901142909   0.334907791330299   0.745855884353715
-            2.156941988546521   0.333440304455754   0.726637490761326
-            2.164896092557094   0.333922888423381   0.732317236030551
-            2.142495889557134   0.332723978543999   0.716747302318746
-            1.972335146672318   0.323009944472129   0.598611382636265
-            1.960032978731420   0.322337700909600   0.590822458953444
-            1.892736021185325   0.318399928224863   0.544712037197812
-            1.817727518077365   0.313890597043592   0.493800641801013
-            1.732818354432900   0.308638151751227   0.436587334970866
-            1.709712053275818   0.307294092052731   0.421979569450315
-            1.560777278572816   0.297457158767192   0.322157189475494
-            1.678355925543266   0.305618851041591   0.403484108249424] ;
+   1.984702489138465   0.335169748463059   0.670420465974991
+   1.797086108881765   0.323738578123985   0.547308667595199
+   1.868444017934854   0.328080679826740   0.593052853366243
+   1.895360226929111   0.329595817929623   0.609928225756056
+   1.790832321540929   0.323045792420179   0.541464341531705
+   1.760361113136238   0.321043326280900   0.521508650424371
+   1.790915969739093   0.322955490721488   0.540943037175086
+   2.094179862755653   0.340746414276014   0.739070344706716
+   2.351323603033167   0.353813072593956   0.910247160484619
+   2.210203726655083   0.345882571920415   0.814539583358436
+   2.502764243167320   0.360529072208579   1.010034424820335
+   2.569208789183717   0.362428841518866   1.055534562597981
+   2.547595154425792   0.360952177511515   1.039047992042150
+   2.609146531246866   0.363696577503416   1.078846711754488
+   2.571616001378042   0.361498291257734   1.051509986784717
+   2.541891024016321   0.360071155104088   1.028624099377237
+   2.689409275114334   0.366815600832908   1.128105032869184
+   2.836542116534716   0.372524050373151   1.229814150394072
+   2.989371778822207   0.378100564290163   1.336372695875410
+   3.053527484610819   0.379663367671839   1.381646099750626
+   2.881583926807516   0.371937515643922   1.259734111646857
+   2.937243454748999   0.375283171360020   1.293755438734926
+   3.118203726771490   0.382439157449350   1.420284000580079
+   3.162221425436911   0.382978730072962   1.452879778911405
+   3.270131116244304   0.387045130060735   1.528307700189284
+   3.342461488854179   0.389086673292955   1.580437828600709
+   3.273192452854725   0.385774052536333   1.531120751032252
+   3.275458381986319   0.386357608290016   1.529824198671000
+   3.140839718197673   0.380646875429989   1.433095635793685
+   3.219561570532605   0.384603663097986   1.485897119680615
+   3.046020484023621   0.376619364484571   1.363233558132235
+   2.875797146770958   0.369735139885355   1.238996996305890
+   2.749622178822991   0.364254301976450   1.147444649402347
+   2.392412920492719   0.346784183865998   0.894670846513585
+   2.538569352588205   0.354489172654320   0.995609156305664
+   2.568582116289918   0.355797653561804   1.017051641895211
+   2.473671797066097   0.350928176810026   0.950257635346841
+   2.620458952999331   0.358256344008751   1.053181588833955
+   2.417877040613256   0.347870025062447   0.911027320823617
+   2.397670314991495   0.346921694035742   0.896082963087687
+   2.366883065577286   0.345289845529682   0.874408874120826
+   2.398421161488027   0.346918229004658   0.896452534897949
+   2.429022432917506   0.348458911692765   0.917940360480214
+   2.329480001673114   0.343218039531235   0.848090572728616
+   2.323778203248307   0.342928605968239   0.843955176095121
+   2.304540951504139   0.341899250525543   0.830468123386457
+   2.371683909087846   0.345441636785679   0.877514351279621
+   2.490195690751581   0.351506590301081   0.960838542863225
+   2.611493982190879   0.357442690934199   1.046618170917642
+   2.503405760920729   0.351887256856341   0.970703524500816
+   2.502374477458479   0.351865505580769   0.969514474424414
+   2.359478710434038   0.344470328092121   0.868876338341471
+   2.235614401552562   0.337896673011709   0.781763976906244
+   2.237065512060965   0.337998138421979   0.782823153982811
+   2.405249293222310   0.346934628008361   0.900834255435682
+   2.317208444296528   0.342286974469216   0.839012239040374
+   2.356353796613430   0.344364397044866   0.866418340883992
+   2.329623188746103   0.342942028228397   0.847657055734664
+   2.451699791573160   0.349287377428137   0.933477131054643
+   2.326653326931049   0.342720642543720   0.845654324922242
+   2.328176409623511   0.342824741941796   0.846575965562970
+   2.387605984815603   0.345939128892875   0.888332186956944
+   2.508162718702005   0.352082240173918   0.973304394397491
+   2.682098704221850   0.360548632109151   1.096619975241019
+   2.683210187517440   0.360334208336806   1.098196347992521
+   2.495448180812561   0.351002978084749   0.965191387615425
+   2.400677321318541   0.346260011274923   0.897566056014340
+   2.279709427240636   0.339905112366486   0.812280162193439
+   2.543742139352676   0.353571759314430   0.998416614177836
+   2.466804544683231   0.349570487450388   0.944374705292784
+   2.545923232397798   0.353562161906674   1.000133847612044
+   2.516609766492527   0.351998960811952   0.979615171231177
+   2.612598123816773   0.356735709969249   1.047580818676070
+   2.514581877733644   0.351736314350723   0.978472497403178
+   2.346814819442599   0.343151537387364   0.859593502999736
+   2.190061053436186   0.334783668048696   0.749123665788591
+   2.248248190346710   0.337975537211722   0.790133451151325
+   2.231245577955952   0.337099249591117   0.778120306643938
+   2.213620813638347   0.336172963701584   0.765787919679999
+   2.372368622485876   0.344669139219734   0.877475808694303
+   2.402394532412963   0.346236714114806   0.898578702308663
+   2.421632200543405   0.347211723112796   0.912182166100545
+   2.600814823475984   0.356206951763316   1.039020125139189
+   2.499717430182296   0.351010191098421   0.967897548419094
+   2.572211042595633   0.354659119526649   1.018967108776286
+   2.663557373274198   0.359030754462987   1.084127294941044
+   2.624508384540186   0.356972637699486   1.056848324055082
+   2.638578391882532   0.357631581496546   1.066764536958948
+   2.490619544707827   0.350219619250241   0.961836430307891
+   2.351499685312523   0.343126531712676   0.862944429125821
+   2.361744409273265   0.343693557597678   0.870045243822348
+   2.442494968080141   0.347873202461086   0.927160968018594
+   2.745123805313629   0.362770643020118   1.142349343426111
+   2.655499503705102   0.358132929197389   1.079779897215503
+   2.663850696079126   0.358574973979539   1.085379958290025
+   2.642540272757401   0.357462408799286   1.070401889504760
+   2.404037994048185   0.345491588561572   0.900884395443159
+   2.348769349405146   0.342712258600463   0.861219163642359
+   2.151645849089095   0.332135094769575   0.722080451054128
+   2.252343203542463   0.337640454116440   0.793256172150181
+   2.158313350236808   0.332590653949928   0.726803768436609
+   2.177375300770910   0.333675009914873   0.740364253592691
+   2.125333870619463   0.330857624626525   0.703750112206580
+   2.166601866570710   0.333192210611845   0.732859178568121
+   2.108843923653465   0.330052027456209   0.692243810014626
+   2.170141182101418   0.333505871231270   0.735409067431057
+   2.254451075620278   0.338167643418567   0.794516594921980
+   2.446506792318999   0.348291161505242   0.929849297341202
+   2.420231514001146   0.346916032088861   0.911318264635804
+   2.181800682169253   0.334237425269950   0.743319742477540
+   2.099742314313267   0.329709128744430   0.685953130712018
+   2.253483605428042   0.338209143902201   0.794027010792921
+   2.139849820112224   0.332063175615470   0.714018808416182
+   2.250143469020041   0.338136253085361   0.791600043424550
+   2.264735780708348   0.338979274263224   0.801680191863518
+   2.425121660100526   0.347436401511180   0.914625338218002
+   2.206590644219017   0.335830510968584   0.760892479739662
+   2.189826738892797   0.334948331690477   0.749202347672420
+   2.069051029835663   0.328235256714593   0.664845519474291
+   2.391186717627713   0.345755663706005   0.891100361136644
+   2.478723828708481   0.350304667654797   0.952470631759343
+   2.633589418757750   0.357943374909926   1.062259709272963
+   2.501720459872961   0.351218582106388   0.969405568955396
+   2.438825464623843   0.348074452736294   0.924486170126454
+   2.402956953910124   0.346226899680829   0.899047137304136
+   2.524642865536631   0.352419486777799   0.985020882838327
+   2.486592708507011   0.350410839822111   0.958347818799192
+   2.561198294838873   0.354135408220830   1.011115336262727
+   2.320611782924737   0.341730318797737   0.841256200313256
+   2.279686641907904   0.339623952830723   0.812097446193594
+   2.192677970879956   0.334934939278205   0.750983611681066
+   2.034253696137675   0.326074943710870   0.640293522184461
+   2.100411653364924   0.329874859982984   0.687004183670506
+   2.136363142365890   0.331978934678318   0.712025267361496
+   2.145765618417357   0.332571647651874   0.718576738965439
+   2.015355353786295   0.325223748826715   0.627682513187217
+   2.144497911280442   0.332597163880719   0.718235199174144
+   2.184419901142909   0.334907791330299   0.745855884353715
+   2.156941988546521   0.333440304455754   0.726637490761326
+   2.164896092557094   0.333922888423381   0.732317236030551
+   2.142495889557134   0.332723978543999   0.716747302318746
+   1.972335146672318   0.323009944472129   0.598611382636265
+   1.960032978731420   0.322337700909600   0.590822458953444
+   1.892736021185325   0.318399928224863   0.544712037197812
+   1.817727518077365   0.313890597043592   0.493800641801013
+   1.732818354432900   0.308638151751227   0.436587334970866
+   1.709712053275818   0.307294092052731   0.421979569450315
+   1.560777278572816   0.297457158767192   0.322157189475494
+   1.678355925543266   0.305618851041591   0.403484108249424] ;
 
 set_dynare_seed('default');
 
diff --git a/tests/printMakeCheckMatlabErrMsg.m b/tests/printMakeCheckMatlabErrMsg.m
index ef9895d853..a72b55401b 100644
--- a/tests/printMakeCheckMatlabErrMsg.m
+++ b/tests/printMakeCheckMatlabErrMsg.m
@@ -1,9 +1,9 @@
 function printMakeCheckMatlabErrMsg(modfilename, exception)
-fprintf('\n********************************************\n');
-disp('*** DYNARE-TEST-MATLAB ERROR ENCOUNTERED ***');
-disp('********************************************');
-disp(['  WHILE RUNNING MODFILE: ' modfilename]);
-fprintf('\n');
-disp(getReport(exception));
-fprintf('*************************************\n\n\n');
+    fprintf('\n********************************************\n');
+    disp('*** DYNARE-TEST-MATLAB ERROR ENCOUNTERED ***');
+    disp('********************************************');
+    disp(['  WHILE RUNNING MODFILE: ' modfilename]);
+    fprintf('\n');
+    disp(getReport(exception));
+    fprintf('*************************************\n\n\n');
 end
diff --git a/tests/printMakeCheckOctaveErrMsg.m b/tests/printMakeCheckOctaveErrMsg.m
index b64bb4bb0e..84e19d00ed 100644
--- a/tests/printMakeCheckOctaveErrMsg.m
+++ b/tests/printMakeCheckOctaveErrMsg.m
@@ -1,14 +1,14 @@
 function printMakeCheckOctaveErrMsg(modfilename, err)
-printf("\n");
-printf("********************************************\n");
-printf("*** DYNARE-TEST-OCTAVE ERROR ENCOUNTERED ***\n");
-printf("********************************************\n");
-printf("  WHILE RUNNING MODFILE: %s\n", modfilename);
-printf("                    MSG: %s\n", err.message);
-if (isfield(err, 'stack'))
-    printf("                IN FILE: %s\n", err.stack(1).file);
-    printf("            IN FUNCTION: %s\n", err.stack(1).name);
-    printf("     ON LINE and COLUMN: %d and %d\n",err.stack(1).line,err.stack(1).column);
-end
-printf("*************************************\n\n\n");
+    printf("\n");
+    printf("********************************************\n");
+    printf("*** DYNARE-TEST-OCTAVE ERROR ENCOUNTERED ***\n");
+    printf("********************************************\n");
+    printf("  WHILE RUNNING MODFILE: %s\n", modfilename);
+    printf("                    MSG: %s\n", err.message);
+    if (isfield(err, 'stack'))
+        printf("                IN FILE: %s\n", err.stack(1).file);
+        printf("            IN FUNCTION: %s\n", err.stack(1).name);
+        printf("     ON LINE and COLUMN: %d and %d\n",err.stack(1).line,err.stack(1).column);
+    end
+    printf("*************************************\n\n\n");
 end
diff --git a/tests/recursive/data_ca1.m b/tests/recursive/data_ca1.m
index ca003056bd..c28fae1a28 100644
--- a/tests/recursive/data_ca1.m
+++ b/tests/recursive/data_ca1.m
@@ -1,98 +1,98 @@
 data = [0.928467646476  11.8716889412   20  0.418037507392  0.227382377518 ...
-        -0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
-        -0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
-        -0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
-        -0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
-        -0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
-        -0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
-        1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
-        2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
-        1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
-        1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
-        1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
-        1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
-        0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
-        1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
-        1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
-        0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
-        1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
-        1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
-        -0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
-        0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
-        0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
-        -0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
-        2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
-        1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
-        1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
-        1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
-        1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
-        1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
-        0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
-        0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
-        1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
-        0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
-        0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
-        0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
-        0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
-        -0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
-        -0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
-        -0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
-        -1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
-        0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
-        0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
-        0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
-        -0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
-        0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
-        0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
-        0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
-        0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
-        0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
-        0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
-        0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
-        1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
-        1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
-        1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
-        0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
-        0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
-        -0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
-        0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
-        0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
-        0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
-        0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
-        1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
-        0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
-        0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
-        1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
-        1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
-        0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
-        1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
-        0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
-        1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
-        1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
-        1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
-        1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
-        1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
-        1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
-        1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
-        0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
-        1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
-        0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
-        0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
-        0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
-        -0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
-        0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
-        1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
-        1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
-        0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
-       ]; 
-
+-0.705994063083 11.7522582094   21.25   1.09254424511   -1.29488274994 ...
+-0.511895351926 9.68144025625   17.25   -1.66150408407  0.331508393098 ...
+-0.990955971267 10.0890781236   17  1.43016275252   -2.43589670141 ...
+-0.981233061806 12.1094840679   18.25   2.91293288733   -0.790246576864 ...
+-0.882182844512 8.54559460406   15  0.419579139481  0.358729719566 ...
+-0.930893002836 6.19238374422   12.5    -1.48847457959  0.739779938797 ...
+1.53158206947   2.76544271886   11.5    -0.336216769682 0.455559918769 ...
+2.2659052834    5.47418162513   11  0.306436789767  -0.0707985731221 ...
+1.05419803797   6.35698426189   11  0.140700250477  0.620401487202 ...
+1.20161076793   3.4253301593    11  0.461296492351  0.14354323987 ...
+1.73934077971   4.70926070322   11.5    1.35798282982   0.38564694435 ...
+1.71735262584   3.54232079749   12.5    2.9097529155    -0.804308583301 ...
+0.426343657844  3.32719108897   13  1.64214862652   -1.18214664701 ...
+1.67751812324   2.93444727338   11.25   0.344434910651  -1.6529373719 ...
+1.37013301099   4.72303361923   11.75   2.61511526582   0.327684243041 ...
+0.281231073781  4.4893853071    10.5    1.17043449257   1.12855106649 ...
+1.53638992834   3.7325309699    10.25   -0.683947046728 0.11943538737 ...
+1.68081431462   3.34729969129   10  1.41159342106   -1.59065680853 ...
+-0.343321601133 5.05563513564   12  1.75117366498   -2.40127764642 ...
+0.873415608666  3.2779996255    10.25   -1.39895866711  0.0971444398216 ...
+0.26399696544   4.78229419828   9.75    0.0914692438124 0.299310457612 ...
+-0.562233624818 3.88598638237   9.75    -0.0505384765105    0.332826708151 ...
+2.15161914936   3.84859710132   8.75    -3.44811080489  0.789138678784 ...
+1.2345093726    5.62225030942   9.5 -0.366945407434 2.32974981198 ...
+1.62554967459   4.24667132831   10  -0.800958371402 0.0293183770935 ...
+1.33035402527   2.75248979249   9.75    -0.855723113225 0.852493939813 ...
+1.52078814077   3.53415985826   9.75    -3.37963469203  -1.05133958119 ...
+1.16704983697   4.92754079464   10.75   -3.0142303324   0.459907431978 ...
+0.277213572101  4.55532133037   11.75   -0.851995599415 2.03242034852 ...
+0.842215068977  3.11164509647   12.25   -1.08290421696  0.014323281961 ...
+1.05325028606   4.92882647578   13.5    -1.1953883867   0.706764750654 ...
+0.453051253568  6.82998950103   13.5    0.111803656462  0.088462593153 ...
+0.199885995525  5.82643354662   13.5    -0.920501518421 -0.26504958666 ...
+0.137907999624  2.66076369132   13.5    -1.17122929812  -0.995642430514 ...
+0.721949686709  5.70497876823   14.25   1.19378169018   -1.10644839651 ...
+-0.418465249225 3.75861110232   14.75   -1.03131674824  0.188507675831 ...
+-0.644028342116 4.15104788154   13.75   -1.48911756546  0.204560913792 ...
+-0.848213852668 5.65580324027   12.75   0.677011703877  -0.849628054542 ...
+-1.51954076928  11.4866911266   11.25   -0.446024680774 -0.456342350765 ...
+0.265275055215  2.85472749592   9.75    -0.598778202436 -0.907311640831 ...
+0.356162529063  2.29614015658   9.5 -0.46820788432  -1.22130883441 ...
+0.368308864363  -0.539083504685 8   -0.781333991956 0.374007246518 ...
+-0.145751412732 1.61507621789   8.25    3.68291932628   1.32438399845 ...
+0.285457283664  2.14334055993   7   1.42819405379   -0.00818660844123 ...
+0.372390129412  1.60000213334   6.25    0.626106424052  -0.10136772765 ...
+0.382720203063  1.72614243263   7.25    4.89631941021   -1.10060711916 ...
+0.737957515573  2.90430582851   6   -0.0422721010314    0.4178952497 ...
+0.649532581668  0.657135682543  6   0.692066153971  0.422299120276 ...
+0.627159201987  1.70352689913   5.75    2.62066711305   -1.29237304034 ...
+0.905441299817  1.95663197267   5.5 1.5949697565    -0.27115830703 ...
+1.49322577898   -2.08741765309  6.25    1.23027694802   0.418336889527 ...
+1.48750731567   -1.57274121871  8   3.01660550994   -0.893958254365 ...
+1.39783858087   2.22623066426   7   -0.80842319214  1.47625453886 ...
+0.89274836317   1.30378081742   8   -0.249485058661 0.159871204185 ...
+0.920652246088  4.1437741965    9.75    2.8204453623    0.178149239655 ...
+-0.00264276644799   3.07989972052   8.75    -2.56342461535  2.105998353 ...
+0.0198190461681 0.766283759256  8   -1.15838865989  1.56888883418 ...
+0.440050515311  0.127570085801  7.5 0.0400753569995 0.028914333532 ...
+0.129536637901  1.78174141526   6.75    0.959943962785  0.307781224401 ...
+0.398549827172  3.03606770667   6.5 -0.340209794742 0.100979469478 ...
+1.17174775425   0.629625188037  5.75    0.403003686814  0.902394579377 ...
+0.991163981251  2.50862910684   4.75    -1.44963996982  1.16150986945 ...
+0.967603566096  2.12003739013   4.75    0.610846030775  -0.889994896068 ...
+1.14689383604   1.24185011459   4.75    2.01098091308   -1.73846431001 ...
+1.32593824054   0.990713820685  4.75    -0.0955142989332    -0.0369257308362 ...
+0.861135002644  -0.24744943605  6   1.72793107135   -0.691506789639 ...
+1.26870850151   2.09844764887   6.5 1.50720217572   -1.31399187077 ...
+0.260364987715  1.10650139716   6.5 1.13659047496   0.0720441664643 ...
+1.09731242214   0.490796381346  7.25    4.59123894147   -2.14073070763 ...
+1.63792841781   0.612652594286  6.75    1.79604605035   -0.644363995357 ...
+1.48465576034   0.978295808687  6.75    -2.00753620902  1.39437534964 ...
+1.0987608663    4.25212569087   6.25    -2.58901196498  2.56054320803 ...
+1.42592178132   2.76984518311   6.25    0.888195752358  1.03114549274 ...
+1.52958239462   1.31795955491   6.5 -0.902907564082 -0.0952198893776 ...
+1.0170168994    2.14733589918   7   -1.3054866978   2.68803738466 ...
+0.723253652257  3.43552889347   7.5 1.8213700853    0.592593586195 ...
+1.24720806008   3.87383806577   7.5 0.0522300654168 0.988871238698 ...
+0.482531471239  2.67793287032   7.5 2.9693944293    -0.108591166081 ...
+0.154056100439  0.927269031704  6.75    0.119222057561  3.30489209451 ...
+0.0694865769274 6.65916526788   6.25    0.889014476084  -2.83976849035 ...
+-0.121267434867 0.341442615696  5.25    0.323053239216  -3.49289229012 ...
+0.726473690375  -3.5423730964   4   2.19149290449   -3.20855054004 ...
+1.39271709108   2.63121085718   3.75    0.88406577736   0.75622580197 ...
+1.07502077727   5.88578836799   4.25    -2.55088273352  2.89018116374 ...
+0.759049251607  4.24703604223   4.5 0.575687665685  -0.388292506167 ...
+]; 
+ 
 data = reshape(data,5,86)'; 
 y_obs = data(:,1); 
 pie_obs = data(:,2); 
 R_obs = data(:,3); 
 de = data(:,4); 
 dq = data(:,5); 
-
+ 
 %Country: Canada 
 %Sample Range: 1981:2 to 2002:3 
 %Observations: 86 
diff --git a/tests/reporting/ResidTablePage.m b/tests/reporting/ResidTablePage.m
index c4e25e3051..c283429a0d 100644
--- a/tests/reporting/ResidTablePage.m
+++ b/tests/reporting/ResidTablePage.m
@@ -50,7 +50,7 @@ rep = rep.addTable('title', countryName, ...
 
 for i=1:length(seriesNames)
     if (any(strcmp(countryAbbr, otherThree)) && ...
-        any(strcmp(seriesNames{i}{1}, notForOtherThree))) || ...
+            any(strcmp(seriesNames{i}{1}, notForOtherThree))) || ...
             (any(strcmp(countryAbbr, 'US')) && any(strcmp(seriesNames{i}{1}, notForUS))) || ...
             (any(strcmp(countryAbbr, firstThree)) && any(strcmp(seriesNames{i}{1}, notForFirstThree)))
         continue
diff --git a/tests/reporting/runDynareReport.m b/tests/reporting/runDynareReport.m
index c54691fa2c..fe07d3d1c0 100644
--- a/tests/reporting/runDynareReport.m
+++ b/tests/reporting/runDynareReport.m
@@ -202,13 +202,13 @@ rep = rep.addPage('title', {'Jan1 vs Jan2', 'World Oil and Food Prices'}, ...
                   'titleFormat', {'\large\bfseries', '\large'});
 rep = rep.addSection('cols', 1);
 rep = rep.addParagraph('text', 'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.', ...
-                       'cols', 2, ...
-                       'heading', '\textbf{My First Paragraph Has Two Columns}');
+    'cols', 2, ...
+    'heading', '\textbf{My First Paragraph Has Two Columns}');
 
 rep = rep.addSection('cols', 1);
 rep = rep.addParagraph('text', 'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.\newline', ...
-                       'heading', '\textbf{My Next Paragraphs Only Have One}', ...
-                       'indent', false);
+    'heading', '\textbf{My Next Paragraphs Only Have One}', ...
+    'indent', false);
 rep = rep.addParagraph('text', 'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.\newline');
 
 rep = rep.addSection('cols', 2);
diff --git a/tests/run_all_unitary_tests.m b/tests/run_all_unitary_tests.m
index e01aa29502..49ddb307cd 100644
--- a/tests/run_all_unitary_tests.m
+++ b/tests/run_all_unitary_tests.m
@@ -73,14 +73,14 @@ else
     fid = fopen('run_all_unitary_tests.m.trs', 'w+');
 end
 if length(failedtests) > 0
-    fprintf(fid,':test-result: FAIL\n');
-    fprintf(fid,':number-tests: %d\n', counter);
-    fprintf(fid,':number-failed-tests: %d\n', length(failedtests));
-    fprintf(fid,':list-of-failed-tests: %s\n', failedtests{:});
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: %d\n', counter);
+  fprintf(fid,':number-failed-tests: %d\n', length(failedtests));
+  fprintf(fid,':list-of-failed-tests: %s\n', failedtests{:});
 else
-    fprintf(fid,':test-result: PASS\n');
-    fprintf(fid,':number-tests: %d\n', counter);
-    fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: %d\n', counter);
+  fprintf(fid,':number-failed-tests: 0\n');
 end
 fprintf(fid,':elapsed-time: %f\n',0.0);
 fclose(fid);
diff --git a/tests/run_block_byte_tests_matlab.m b/tests/run_block_byte_tests_matlab.m
index 8d6d149740..b3e017c56e 100644
--- a/tests/run_block_byte_tests_matlab.m
+++ b/tests/run_block_byte_tests_matlab.m
@@ -29,7 +29,7 @@ addpath([top_test_dir filesep '..' filesep 'matlab']);
 
 % Test Dynare Version
 if ~strcmp(dynare_version(), getenv('DYNARE_VERSION'))
-    error('Incorrect version of Dynare is being tested')
+  error('Incorrect version of Dynare is being tested')
 end
 
 % Test block_bytecode/ls2003.mod with various combinations of
@@ -134,14 +134,14 @@ delete('wsMat.mat')
 cd(getenv('TOP_TEST_DIR'));
 fid = fopen('run_block_byte_tests_matlab.m.trs', 'w+');
 if size(failedBlock,2) > 0
-    fprintf(fid,':test-result: FAIL\n');
-    fprintf(fid,':number-tests: %d\n', num_block_tests);
-    fprintf(fid,':number-failed-tests: %d\n', size(failedBlock,2));
-    fprintf(fid,':list-of-failed-tests: %s\n', failedBlock{:});
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: %d\n', num_block_tests);
+  fprintf(fid,':number-failed-tests: %d\n', size(failedBlock,2));
+  fprintf(fid,':list-of-failed-tests: %s\n', failedBlock{:});
 else
-    fprintf(fid,':test-result: PASS\n');
-    fprintf(fid,':number-tests: %d\n', num_block_tests);
-    fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: %d\n', num_block_tests);
+  fprintf(fid,':number-failed-tests: 0\n');
 end
 fprintf(fid,':elapsed-time: %f\n', ecput);
 fclose(fid);
diff --git a/tests/run_block_byte_tests_octave.m b/tests/run_block_byte_tests_octave.m
index 2b0890783f..31f8c66b76 100644
--- a/tests/run_block_byte_tests_octave.m
+++ b/tests/run_block_byte_tests_octave.m
@@ -27,7 +27,7 @@ addpath([top_test_dir filesep '..' filesep 'matlab']);
 
 ## Test Dynare Version
 if !strcmp(dynare_version(), getenv("DYNARE_VERSION"))
-  error("Incorrect version of Dynare is being tested")
+    error("Incorrect version of Dynare is being tested")
 endif
 
 ## Ask gnuplot to create graphics in text mode
@@ -42,92 +42,92 @@ num_block_tests = 0;
 cd([top_test_dir filesep 'block_bytecode']);
 tic;
 for blockFlag = 0:1
-  for bytecodeFlag = 0:1
-    default_solve_algo = 2;
-    default_stack_solve_algo = 0;
-    if !blockFlag && !bytecodeFlag
-      solve_algos = 0:4;
-      stack_solve_algos = [0 6];
-    elseif blockFlag && !bytecodeFlag
-      solve_algos = [0:4 6:8];
-      stack_solve_algos = 0:4;
-    else
-      solve_algos = 0:8;
-      stack_solve_algos = 0:5;
-    endif
+    for bytecodeFlag = 0:1
+        default_solve_algo = 2;
+        default_stack_solve_algo = 0;
+        if !blockFlag && !bytecodeFlag
+            solve_algos = 0:4;
+            stack_solve_algos = [0 6];
+        elseif blockFlag && !bytecodeFlag
+            solve_algos = [0:4 6:8];
+            stack_solve_algos = 0:4;
+        else
+            solve_algos = 0:8;
+            stack_solve_algos = 0:5;
+        endif
 
-    sleep(1) # Workaround for strange race condition related to the _static.m file
+        sleep(1) # Workaround for strange race condition related to the _static.m file
 
-    for i = 1:length(solve_algos)
-      num_block_tests = num_block_tests + 1;
-      if !blockFlag && !bytecodeFlag && (i == 1)
-        ## This is the reference simulation path against which all
-        ## other simulations will be tested
-        try
-          old_path = path;
-          save wsOct
-          run_ls2003(blockFlag, bytecodeFlag, solve_algos(i), default_stack_solve_algo)
-          load wsOct
-          path(old_path);
-          y_ref = oo_.endo_simul;
-          save('test.mat','y_ref');
-        catch
-          load wsOct
-          path(old_path);
-          failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'];
-          printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'], lasterror);
-        end_try_catch
-      else
-        try
-          old_path = path;
-          save wsOct
-          run_ls2003(blockFlag, bytecodeFlag, solve_algos(i), default_stack_solve_algo)
-          load wsOct
-          path(old_path);
-          ## Test against the reference simulation path
-          load('test.mat','y_ref');
-          diff = oo_.endo_simul - y_ref;
-          if(abs(diff) > options_.dynatol.x)
-            failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'];
-            differr.message = ["ERROR: simulation path differs from the reference path" ];
-            printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'], differr);
-          endif
-        catch
-          load wsOct
-          e = lasterror(); # The path() command alters the lasterror, because of io package
-          path(old_path);
-          lasterror(e);
-          failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'];
-          printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'], lasterror);
-        end_try_catch
-      endif
-    endfor
-    for i = 1:length(stack_solve_algos)
-      num_block_tests = num_block_tests + 1;
-      try
-        old_path = path;
-        save wsOct
-        run_ls2003(blockFlag, bytecodeFlag, default_solve_algo, stack_solve_algos(i))
-        load wsOct
-        path(old_path);
-        ## Test against the reference simulation path
-        load('test.mat','y_ref');
-        diff = oo_.endo_simul - y_ref;
-        if(abs(diff) > options_.dynatol.x)
-          failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'];
-          differr.message = ["ERROR: simulation path differs from the reference path" ];
-          printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'], differr);
-        endif
-      catch
-        load wsOct
-        e = lasterror(); # The path() command alters the lasterror, because of io package
-        path(old_path);
-        lasterror(e);
-        failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'];
-        printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'], lasterror);
-      end_try_catch
+        for i = 1:length(solve_algos)
+            num_block_tests = num_block_tests + 1;
+            if !blockFlag && !bytecodeFlag && (i == 1)
+                ## This is the reference simulation path against which all
+                ## other simulations will be tested
+                try
+                    old_path = path;
+                    save wsOct
+                    run_ls2003(blockFlag, bytecodeFlag, solve_algos(i), default_stack_solve_algo)
+                    load wsOct
+                    path(old_path);
+                    y_ref = oo_.endo_simul;
+                    save('test.mat','y_ref');
+                catch
+                    load wsOct
+                    path(old_path);
+                    failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'];
+                    printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'], lasterror);
+                end_try_catch
+            else
+                try
+                    old_path = path;
+                    save wsOct
+                    run_ls2003(blockFlag, bytecodeFlag, solve_algos(i), default_stack_solve_algo)
+                    load wsOct
+                    path(old_path);
+                    ## Test against the reference simulation path
+                    load('test.mat','y_ref');
+                    diff = oo_.endo_simul - y_ref;
+                    if(abs(diff) > options_.dynatol.x)
+                        failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'];
+                        differr.message = ["ERROR: simulation path differs from the reference path" ];
+                        printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'], differr);
+                    endif
+                catch
+                    load wsOct
+                    e = lasterror(); # The path() command alters the lasterror, because of io package
+                    path(old_path);
+                    lasterror(e);
+                    failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'];
+                    printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(solve_algos(i)) ',' num2str(default_stack_solve_algo) ')'], lasterror);
+                end_try_catch
+            endif
+        endfor
+        for i = 1:length(stack_solve_algos)
+            num_block_tests = num_block_tests + 1;
+            try
+                old_path = path;
+                save wsOct
+                run_ls2003(blockFlag, bytecodeFlag, default_solve_algo, stack_solve_algos(i))
+                load wsOct
+                path(old_path);
+                ## Test against the reference simulation path
+                load('test.mat','y_ref');
+                diff = oo_.endo_simul - y_ref;
+                if(abs(diff) > options_.dynatol.x)
+                    failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'];
+                    differr.message = ["ERROR: simulation path differs from the reference path" ];
+                    printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'], differr);
+                endif
+            catch
+                load wsOct
+                e = lasterror(); # The path() command alters the lasterror, because of io package
+                path(old_path);
+                lasterror(e);
+                failedBlock{size(failedBlock,2)+1} = ['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'];
+                printMakeCheckOctaveErrMsg(['block_bytecode' filesep 'run_ls2003.m(' num2str(blockFlag) ',' num2str(bytecodeFlag) ',' num2str(default_solve_algo) ',' num2str(stack_solve_algos(i)) ')'], lasterror);
+            end_try_catch
+        endfor
     endfor
-  endfor
 endfor
 ecput = toc;
 delete('wsOct');
diff --git a/tests/run_m_script.m b/tests/run_m_script.m
index 09840efcad..f40fc242c0 100644
--- a/tests/run_m_script.m
+++ b/tests/run_m_script.m
@@ -22,31 +22,31 @@ top_test_dir = getenv('TOP_TEST_DIR');
 cd(directory);
 
 try
-    mscript;
-    testFailed = false;
+  mscript;
+  testFailed = false;
 catch exception
-    printMakeCheckMatlabErrMsg(strtok(getenv('FILESTEM')), exception);
-    testFailed = true;
+  printMakeCheckMatlabErrMsg(strtok(getenv('FILESTEM')), exception);
+  testFailed = true;
 end
 
 cd(top_test_dir);
 name = strtok(getenv('FILESTEM'));
 fid = fopen([name '.m.tls'], 'w');
 if fid < 0
-    wd = pwd
-    filestep = getenv('FILESTEM')
-    error(['ERROR: problem opening file ' name '.m.tls for writing....']);
+  wd = pwd
+  filestep = getenv('FILESTEM')
+  error(['ERROR: problem opening file ' name '.m.tls for writing....']);
 end
 if testFailed
-    fprintf(fid,':test-result: FAIL\n');
-    fprintf(fid,':number-tests: 1\n');
-    fprintf(fid,':number-failed-tests: 1\n');
-    fprintf(fid,':list-of-failed-tests: %s\n', [name '.m']);
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 1\n');
+  fprintf(fid,':list-of-failed-tests: %s\n', [name '.m']);
 else
-    fprintf(fid,':test-result: PASS\n');
-    fprintf(fid,':number-tests: 1\n');
-    fprintf(fid,':number-failed-tests: 0\n');
-    fprintf(fid,':list-of-passed-tests: %s\n', [name '.m']);
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':list-of-passed-tests: %s\n', [name '.m']);
 end
 fclose(fid);
 exit;
\ No newline at end of file
diff --git a/tests/run_o_script.m b/tests/run_o_script.m
index 723df2e1b1..3edba05829 100644
--- a/tests/run_o_script.m
+++ b/tests/run_o_script.m
@@ -11,42 +11,42 @@
 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 ## GNU General Public License for more details.
-    ##
-    ## You should have received a copy of the GNU General Public License
-    ## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
+##
+## You should have received a copy of the GNU General Public License
+## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 
-    load_octave_packages
+load_octave_packages
 
-    top_test_dir = getenv('TOP_TEST_DIR');
-    [mfile, name] = strtok(getenv('FILESTEM'));
+top_test_dir = getenv('TOP_TEST_DIR');
+[mfile, name] = strtok(getenv('FILESTEM'));
 
-    [directory, mscript, ext] = fileparts([top_test_dir '/' mfile]);
-    cd(directory);
+[directory, mscript, ext] = fileparts([top_test_dir '/' mfile]);
+cd(directory);
 
-    try
-        mscript;
-        testFailed = false;
-    catch
-        printMakeCheckOctaveErrMsg(getenv('FILESTEM'), lasterror);
-        testFailed = true;
-        end_try_catch
+try
+  mscript;
+  testFailed = false;
+catch
+  printMakeCheckOctaveErrMsg(getenv('FILESTEM'), lasterror);
+  testFailed = true;
+end_try_catch
 
-        cd(top_test_dir);
-        name = strtok(getenv('FILESTEM'));
-        fid = fopen([name '.o.tls'], 'w+');
-        if testFailed
-            fprintf(fid,':test-result: FAIL\n');
-            fprintf(fid,':number-tests: 1\n');
-            fprintf(fid,':number-failed-tests: 1\n');
-            fprintf(fid,':list-of-failed-tests: %s\n', [name '.m']);
-        else
-            fprintf(fid,':test-result: PASS\n');
-            fprintf(fid,':number-tests: 1\n');
-            fprintf(fid,':number-failed-tests: 0\n');
-            fprintf(fid,':list-of-passed-tests: %s\n', [name '.m']);
-        end
-        fclose(fid);
+cd(top_test_dir);
+name = strtok(getenv('FILESTEM'));
+fid = fopen([name '.o.tls'], 'w+');
+if testFailed
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 1\n');
+  fprintf(fid,':list-of-failed-tests: %s\n', [name '.m']);
+else
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':list-of-passed-tests: %s\n', [name '.m']);
+end
+fclose(fid);
 
-        ## Local variables:
-        ## mode: Octave
-        ## End:
+## Local variables:
+## mode: Octave
+## End:
diff --git a/tests/run_reporting_test_matlab.m b/tests/run_reporting_test_matlab.m
index c716aa4140..00b3356e77 100644
--- a/tests/run_reporting_test_matlab.m
+++ b/tests/run_reporting_test_matlab.m
@@ -21,7 +21,7 @@ addpath([top_test_dir filesep '..' filesep 'matlab']);
 
 % Test Dynare Version
 if ~strcmp(dynare_version(), getenv('DYNARE_VERSION'))
-    error('Incorrect version of Dynare is being tested')
+  error('Incorrect version of Dynare is being tested')
 end
 
 % To add default directories, empty dseries objects
@@ -44,15 +44,15 @@ end
 cd(getenv('TOP_TEST_DIR'));
 fid = fopen('run_reporting_test_matlab.m.trs', 'w+');
 if testFailed
-    fprintf(fid,':test-result: FAIL\n');
-    fprintf(fid,':number-tests: 1\n');
-    fprintf(fid,':number-failed-tests: 1\n');
-    fprintf(fid,':list-of-failed-tests: run_reporting_test_matlab.m\n');
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 1\n');
+  fprintf(fid,':list-of-failed-tests: run_reporting_test_matlab.m\n');
 else
-    fprintf(fid,':test-result: PASS\n');
-    fprintf(fid,':number-tests: 1\n');
-    fprintf(fid,':number-failed-tests: 0\n');
-    fprintf(fid,':list-of-passed-tests: run_reporting_test_matlab.m\n');
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':list-of-passed-tests: run_reporting_test_matlab.m\n');
 end
 fprintf(fid,':elapsed-time: %f\n',0.0);
 fclose(fid);
diff --git a/tests/run_reporting_test_octave.m b/tests/run_reporting_test_octave.m
index abcee07a33..a992b9a468 100644
--- a/tests/run_reporting_test_octave.m
+++ b/tests/run_reporting_test_octave.m
@@ -11,58 +11,58 @@
 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 ## GNU General Public License for more details.
-    ##
-    ## You should have received a copy of the GNU General Public License
-    ## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
+##
+## You should have received a copy of the GNU General Public License
+## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 
-    load_octave_packages
+load_octave_packages
 
-    top_test_dir = getenv('TOP_TEST_DIR');
-    addpath(top_test_dir);
-    addpath([top_test_dir filesep '..' filesep 'matlab']);
+top_test_dir = getenv('TOP_TEST_DIR');
+addpath(top_test_dir);
+addpath([top_test_dir filesep '..' filesep 'matlab']);
 
-    ## Test Dynare Version
-    if !strcmp(dynare_version(), getenv("DYNARE_VERSION"))
-        error("Incorrect version of Dynare is being tested")
-        endif
+## Test Dynare Version
+if !strcmp(dynare_version(), getenv("DYNARE_VERSION"))
+    error("Incorrect version of Dynare is being tested")
+endif
 
-        ## Ask gnuplot to create graphics in text mode
-        ## Note that setenv() was introduced in Octave 3.0.2, for compatibility
-            ## with MATLAB
-            putenv("GNUTERM", "dumb")
+## Ask gnuplot to create graphics in text mode
+## Note that setenv() was introduced in Octave 3.0.2, for compatibility
+## with MATLAB
+putenv("GNUTERM", "dumb")
 
-            ## To add default directories, empty dseries objects
-            dynare_config([], 0);
+## To add default directories, empty dseries objects
+dynare_config([], 0);
 
-            printf("\n***  TESTING:  run_reporting_test_octave.m ***\n");
-            try
-                cd([top_test_dir filesep 'reporting']);
-                db_a = dseries('db_a.csv');
-                db_q = dseries('db_q.csv');
-                dc_a = dseries('dc_a.csv');
-                dc_q = dseries('dc_q.csv');
-                runDynareReport(dc_a, dc_q, db_a, db_q);
-                testFailed = false;
-            catch
-                testFailed = true;
-            end
+printf("\n***  TESTING:  run_reporting_test_octave.m ***\n");
+try
+    cd([top_test_dir filesep 'reporting']);
+    db_a = dseries('db_a.csv');
+    db_q = dseries('db_q.csv');
+    dc_a = dseries('dc_a.csv');
+    dc_q = dseries('dc_q.csv');
+    runDynareReport(dc_a, dc_q, db_a, db_q);
+    testFailed = false;
+catch
+    testFailed = true;
+end
 
-            cd(getenv('TOP_TEST_DIR'));
-            fid = fopen('run_reporting_test_octave.o.trs', 'w+');
-            if testFailed
-                fprintf(fid,':test-result: FAIL\n');
-                fprintf(fid,':number-tests: 1\n');
-                fprintf(fid,':number-failed-tests: 1\n');
-                fprintf(fid,':list-of-failed-tests: run_reporting_test_octave.m\n');
-            else
-                fprintf(fid,':test-result: PASS\n');
-                fprintf(fid,':number-tests: 1\n');
-                fprintf(fid,':number-failed-tests: 0\n');
-                fprintf(fid,':list-of-passed-tests: run_reporting_test_octave.m\n');
-            end
-            fprintf(fid,':elapsed-time: %f\n',0.0);
-            fclose(fid);
+cd(getenv('TOP_TEST_DIR'));
+fid = fopen('run_reporting_test_octave.o.trs', 'w+');
+if testFailed
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 1\n');
+  fprintf(fid,':list-of-failed-tests: run_reporting_test_octave.m\n');
+else
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':list-of-passed-tests: run_reporting_test_octave.m\n');
+end
+fprintf(fid,':elapsed-time: %f\n',0.0);
+fclose(fid);
 
-            ## Local variables:
-            ## mode: Octave
-            ## End:
+## Local variables:
+## mode: Octave
+## End:
diff --git a/tests/run_test_matlab.m b/tests/run_test_matlab.m
index c1922d86ea..7727032f7e 100644
--- a/tests/run_test_matlab.m
+++ b/tests/run_test_matlab.m
@@ -21,7 +21,7 @@ addpath([top_test_dir filesep '..' filesep 'matlab']);
 
 % Test Dynare Version
 if ~strcmp(dynare_version(), getenv('DYNARE_VERSION'))
-    error('Incorrect version of Dynare is being tested')
+  error('Incorrect version of Dynare is being tested')
 end
 
 % Test MOD files listed in Makefile.am
@@ -35,11 +35,11 @@ disp(['***  TESTING: ' modfile ' ***']);
 tic;
 save(['wsMat' testfile '.mat']);
 try
-    dynare([testfile ext], 'console')
-    testFailed = false;
+  dynare([testfile ext], 'console')
+  testFailed = false;
 catch exception
-    printMakeCheckMatlabErrMsg(strtok(getenv('FILESTEM')), exception);
-    testFailed = true;
+  printMakeCheckMatlabErrMsg(strtok(getenv('FILESTEM')), exception);
+  testFailed = true;
 end
 top_test_dir = getenv('TOP_TEST_DIR');
 [modfile, name] = strtok(getenv('FILESTEM'));
@@ -52,20 +52,20 @@ cd(top_test_dir);
 name = strtok(getenv('FILESTEM'));
 fid = fopen([name '.m.trs'], 'w');
 if fid < 0
-    wd = pwd
-    filestep = getenv('FILESTEM')
-    error(['ERROR: problem opening file ' name '.m.trs for writing....']);
+  wd = pwd
+  filestep = getenv('FILESTEM')
+  error(['ERROR: problem opening file ' name '.m.trs for writing....']);
 end
 if testFailed
-    fprintf(fid,':test-result: FAIL\n');
-    fprintf(fid,':number-tests: 1\n');
-    fprintf(fid,':number-failed-tests: 1\n');
-    fprintf(fid,':list-of-failed-tests: %s\n', [name '.mod']);
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 1\n');
+  fprintf(fid,':list-of-failed-tests: %s\n', [name '.mod']);
 else
-    fprintf(fid,':test-result: PASS\n');
-    fprintf(fid,':number-tests: 1\n');
-    fprintf(fid,':number-failed-tests: 0\n');
-    fprintf(fid,':list-of-passed-tests: %s\n', [name '.mod']);
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':list-of-passed-tests: %s\n', [name '.mod']);
 end
 fprintf(fid,':elapsed-time: %f\n', ecput);
 fclose(fid);
diff --git a/tests/run_test_octave.m b/tests/run_test_octave.m
index 21987f11e2..4a7854dda2 100644
--- a/tests/run_test_octave.m
+++ b/tests/run_test_octave.m
@@ -11,70 +11,70 @@
 ## but WITHOUT ANY WARRANTY; without even the implied warranty of
 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 ## GNU General Public License for more details.
-    ##
-    ## You should have received a copy of the GNU General Public License
-    ## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
+##
+## You should have received a copy of the GNU General Public License
+## along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
 
-    ## Implementation notes:
-    ##
-    ## Before every call to Dynare, the contents of the workspace is saved in
-    ## 'wsOct', and reloaded after Dynare has finished (this is necessary since
-    ## Dynare does a 'clear -all').
+## Implementation notes:
+##
+## Before every call to Dynare, the contents of the workspace is saved in
+## 'wsOct', and reloaded after Dynare has finished (this is necessary since
+## Dynare does a 'clear -all').
 
-    load_octave_packages
+load_octave_packages
 
-    top_test_dir = getenv('TOP_TEST_DIR');
-    addpath(top_test_dir);
-    addpath([top_test_dir filesep '..' filesep 'matlab']);
+top_test_dir = getenv('TOP_TEST_DIR');
+addpath(top_test_dir);
+addpath([top_test_dir filesep '..' filesep 'matlab']);
 
-    ## Test Dynare Version
-    if !strcmp(dynare_version(), getenv("DYNARE_VERSION"))
-        error("Incorrect version of Dynare is being tested")
-        endif
+## Test Dynare Version
+if !strcmp(dynare_version(), getenv("DYNARE_VERSION"))
+    error("Incorrect version of Dynare is being tested")
+endif
 
-        ## Ask gnuplot to create graphics in text mode
-        graphics_toolkit gnuplot;
-        setenv("GNUTERM", "dumb");
+## Ask gnuplot to create graphics in text mode
+graphics_toolkit gnuplot;
+setenv("GNUTERM", "dumb");
 
-        ## Test MOD files listed in Makefile.am
-        name = getenv("FILESTEM");
-        [directory, testfile, ext] = fileparts([top_test_dir '/' name]);
-        cd(directory);
+## Test MOD files listed in Makefile.am
+name = getenv("FILESTEM");
+[directory, testfile, ext] = fileparts([top_test_dir '/' name]);
+cd(directory);
 
-        printf("\n***  TESTING: %s ***\n", name);
+printf("\n***  TESTING: %s ***\n", name);
 
-        tic;
-        save(['wsOct' testfile '.mat']);
-        try
-            dynare([testfile ext])
-            testFailed = false;
-        catch
-            printMakeCheckOctaveErrMsg(getenv("FILESTEM"), lasterror);
-            testFailed = true;
-            end_try_catch
-            top_test_dir = getenv('TOP_TEST_DIR');
-            name = getenv("FILESTEM");
-            [directory, testfile, ext] = fileparts([top_test_dir '/' name]);
-            load(['wsOct' testfile '.mat']);
-            ecput = toc;
-            delete(['wsOct' testfile '.mat']);
+tic;
+save(['wsOct' testfile '.mat']);
+try
+  dynare([testfile ext])
+  testFailed = false;
+catch
+  printMakeCheckOctaveErrMsg(getenv("FILESTEM"), lasterror);
+  testFailed = true;
+end_try_catch
+top_test_dir = getenv('TOP_TEST_DIR');
+name = getenv("FILESTEM");
+[directory, testfile, ext] = fileparts([top_test_dir '/' name]);
+load(['wsOct' testfile '.mat']);
+ecput = toc;
+delete(['wsOct' testfile '.mat']);
 
-            cd(top_test_dir);
-            fid = fopen([name '.o.trs'], 'w+');
-            if testFailed
-                fprintf(fid,':test-result: FAIL\n');
-                fprintf(fid,':number-tests: 1\n');
-                fprintf(fid,':number-failed-tests: 1\n');
-                fprintf(fid,':list-of-failed-tests: %s\n', [name '.mod']);
-            else
-                fprintf(fid,':test-result: PASS\n');
-                fprintf(fid,':number-tests: 1\n');
-                fprintf(fid,':number-failed-tests: 0\n');
-                fprintf(fid,':list-of-passed-tests: %s\n', [name '.mod']);
-            end
-            fprintf(fid,':elapsed-time: %f\n', ecput);
-            fclose(fid);
+cd(top_test_dir);
+fid = fopen([name '.o.trs'], 'w+');
+if testFailed
+  fprintf(fid,':test-result: FAIL\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 1\n');
+  fprintf(fid,':list-of-failed-tests: %s\n', [name '.mod']);
+else
+  fprintf(fid,':test-result: PASS\n');
+  fprintf(fid,':number-tests: 1\n');
+  fprintf(fid,':number-failed-tests: 0\n');
+  fprintf(fid,':list-of-passed-tests: %s\n', [name '.mod']);
+end
+fprintf(fid,':elapsed-time: %f\n', ecput);
+fclose(fid);
 
-            ## Local variables:
-            ## mode: Octave
-            ## End:
+## Local variables:
+## mode: Octave
+## End:
diff --git a/tests/shock_decomposition/fsdat_simul.m b/tests/shock_decomposition/fsdat_simul.m
index 159612e577..d4f4a8066f 100644
--- a/tests/shock_decomposition/fsdat_simul.m
+++ b/tests/shock_decomposition/fsdat_simul.m
@@ -1,828 +1,828 @@
 gy_obs          =[
-    1.0030045
-    0.99990934
-    1.0172778
-    0.99464043
-    1.0253423
-    1.0150215
-    0.97772557
-    0.97832186
-    1.0159561
-    1.0085937
-    1.0102649
-    1.0007604
-    1.0112596
-    1.0163279
-    1.0173204
-    1.0103896
-    1.0006493
-    0.99447124
-    1.0196405
-    1.0089304
-    0.99650737
-    1.0139707
-    0.97865842
-    1.0192225
-    0.99139628
-    1.0141362
-    1.0196612
-    0.97483476
-    0.99686151
-    0.99594464
-    1.0000642
-    1.0172243
-    1.0025773
-    0.97199728
-    1.0217815
-    1.0219949
-    0.99490252
-    1.0190728
-    1.0111337
-    1.0003792
-    0.98969164
-    1.010438
-    1.0216309
-    1.0016671
-    1.0357588
-    0.98803787
-    1.0093457
-    1.0177035
-    0.98548204
-    1.0274294
-    1.0141377
-    1.0091174
-    0.96427632
-    1.0083272
-    1.0007882
-    0.99038262
-    1.0031336
-    0.99500213
-    0.98203716
-    0.9889452
-    1.011632
-    0.99451949
-    0.97291047
-    0.98750871
-    0.99992418
-    0.97657318
-    0.99930448
-    1.0008515
-    1.0044064
-    0.98133792
-    1.0091702
-    1.0087023
-    1.0119876
-    1.0143019
-    1.0311061
-    0.99340471
-    1.0057428
-    0.99197259
-    1.0071019
-    0.99448853
-    1.0061819
-    1.0070088
-    0.9950913
-    1.0302318
-    0.9817693
-    1.0072885
-    0.97355282
-    0.98782586
-    1.0136674
-    0.99863956
-    1.0205668
-    0.99611384
-    1.0073805
-    0.99691529
-    1.0089194
-    1.0030467
-    1.0112006
-    1.0260523
-    0.97803331
-    0.99423374
-    1.0043727
-    1.0140173
-    1.0111473
-    0.99524348
-    0.99775943
-    0.9958619
-    0.9982344
-    1.0210212
-    1.0022288
-    1.0014801
-    1.011456
-    1.0124871
-    0.99843599
-    0.99324886
-    0.99912838
-    1.003327
-    1.0072071
-    1.0115223
-    1.009266
-    1.0070554
-    1.0129916
-    1.0053413
-    1.0051638
-    0.99212952
-    1.0214422
-    0.98716707
-    0.99905788
-    0.98877357
-    0.98568476
-    0.99767393
-    1.0061791
-    0.98423439
-    0.99492949
-    0.98786999
-    0.99754239
-    1.0168619
-    0.99472384
-    1.0041658
-    0.98123181
-    1.0112882
-    0.99245422
-    1.0010255
-    1.0017799
-    1.0089968
-    1.0072824
-    0.99768475
-    1.0044726
-    1.0118678
-    1.0056385
-    1.0276965
-    1.0025122
-    1.0065161
-    1.0234338
-    0.99760167
-    0.98922272
-    1.0101918
-    1.011615
-    1.0085286
-    1.0074455
-    0.98866757
-    0.99959012
-    1.0129881
-    0.99127881
-    0.97971901
-    1.0185314
-    1.020054
-    1.0132605
-    0.98063643
-    0.99490253
-    1.0101531
-    1.0004526
-    1.0059109
-    0.98974491
-    1.0062391
-    1.0216488
-    0.99398446
-    0.97786609
-    1.0019274
-    0.99587153
-    1.0095881
-    1.0111887
-    0.99457649
-    0.97896734
-    1.000172
-    1.0142951
-    1.0034224
-    1.0037242
-    1.0016059
-    1.016556
-    0.99687023
-    1.0117844
-    1.0059212
-    0.98083159
-    0.98638851
-    1.0128713
-    1.0096232
-    1.0115891
-    1.0011213
-    1.0147105
-    1.0066344
-    1.0164429
-    0.99825038
-    0.99403411
+      1.0030045
+     0.99990934
+      1.0172778
+     0.99464043
+      1.0253423
+      1.0150215
+     0.97772557
+     0.97832186
+      1.0159561
+      1.0085937
+      1.0102649
+      1.0007604
+      1.0112596
+      1.0163279
+      1.0173204
+      1.0103896
+      1.0006493
+     0.99447124
+      1.0196405
+      1.0089304
+     0.99650737
+      1.0139707
+     0.97865842
+      1.0192225
+     0.99139628
+      1.0141362
+      1.0196612
+     0.97483476
+     0.99686151
+     0.99594464
+      1.0000642
+      1.0172243
+      1.0025773
+     0.97199728
+      1.0217815
+      1.0219949
+     0.99490252
+      1.0190728
+      1.0111337
+      1.0003792
+     0.98969164
+       1.010438
+      1.0216309
+      1.0016671
+      1.0357588
+     0.98803787
+      1.0093457
+      1.0177035
+     0.98548204
+      1.0274294
+      1.0141377
+      1.0091174
+     0.96427632
+      1.0083272
+      1.0007882
+     0.99038262
+      1.0031336
+     0.99500213
+     0.98203716
+      0.9889452
+       1.011632
+     0.99451949
+     0.97291047
+     0.98750871
+     0.99992418
+     0.97657318
+     0.99930448
+      1.0008515
+      1.0044064
+     0.98133792
+      1.0091702
+      1.0087023
+      1.0119876
+      1.0143019
+      1.0311061
+     0.99340471
+      1.0057428
+     0.99197259
+      1.0071019
+     0.99448853
+      1.0061819
+      1.0070088
+      0.9950913
+      1.0302318
+      0.9817693
+      1.0072885
+     0.97355282
+     0.98782586
+      1.0136674
+     0.99863956
+      1.0205668
+     0.99611384
+      1.0073805
+     0.99691529
+      1.0089194
+      1.0030467
+      1.0112006
+      1.0260523
+     0.97803331
+     0.99423374
+      1.0043727
+      1.0140173
+      1.0111473
+     0.99524348
+     0.99775943
+      0.9958619
+      0.9982344
+      1.0210212
+      1.0022288
+      1.0014801
+       1.011456
+      1.0124871
+     0.99843599
+     0.99324886
+     0.99912838
+       1.003327
+      1.0072071
+      1.0115223
+       1.009266
+      1.0070554
+      1.0129916
+      1.0053413
+      1.0051638
+     0.99212952
+      1.0214422
+     0.98716707
+     0.99905788
+     0.98877357
+     0.98568476
+     0.99767393
+      1.0061791
+     0.98423439
+     0.99492949
+     0.98786999
+     0.99754239
+      1.0168619
+     0.99472384
+      1.0041658
+     0.98123181
+      1.0112882
+     0.99245422
+      1.0010255
+      1.0017799
+      1.0089968
+      1.0072824
+     0.99768475
+      1.0044726
+      1.0118678
+      1.0056385
+      1.0276965
+      1.0025122
+      1.0065161
+      1.0234338
+     0.99760167
+     0.98922272
+      1.0101918
+       1.011615
+      1.0085286
+      1.0074455
+     0.98866757
+     0.99959012
+      1.0129881
+     0.99127881
+     0.97971901
+      1.0185314
+       1.020054
+      1.0132605
+     0.98063643
+     0.99490253
+      1.0101531
+      1.0004526
+      1.0059109
+     0.98974491
+      1.0062391
+      1.0216488
+     0.99398446
+     0.97786609
+      1.0019274
+     0.99587153
+      1.0095881
+      1.0111887
+     0.99457649
+     0.97896734
+       1.000172
+      1.0142951
+      1.0034224
+      1.0037242
+      1.0016059
+       1.016556
+     0.99687023
+      1.0117844
+      1.0059212
+     0.98083159
+     0.98638851
+      1.0128713
+      1.0096232
+      1.0115891
+      1.0011213
+      1.0147105
+      1.0066344
+      1.0164429
+     0.99825038
+     0.99403411
 
-                 ];
+];
 
 gp_obs          =[
-    1.0079715
-    1.0074573
-    1.0153107
-    1.0152677
-    1.0011653
-    0.99950061
-    1.0328311
-    1.0192317
-    1.009827
-    0.99588916
-    1.007474
-    1.0113061
-    0.98696624
-    0.99978663
-    0.98240542
-    0.98861723
-    0.99008763
-    1.0185076
-    1.0052452
-    0.99447194
-    1.0092685
-    1.01208
-    1.0105237
-    0.98513875
-    1.0165628
-    0.99485934
-    1.0050255
-    1.0140756
-    1.0093128
-    1.0155868
-    1.0107023
-    0.99212762
-    1.0095465
-    1.0028435
-    1.0069437
-    1.0070473
-    1.0145902
-    1.0186922
-    1.0059917
-    1.0113072
-    1.0107386
-    0.99769196
-    0.99793444
-    1.0050791
-    0.98307821
-    1.0107594
-    0.99689982
-    0.98667064
-    0.9991662
-    0.98274722
-    0.98422032
-    0.99393016
-    1.0118567
-    0.99912781
-    1.0023744
-    1.0086662
-    1.0164773
-    1.0169327
-    1.0372478
-    1.0314242
-    1.0004256
-    1.0110541
-    1.0076575
-    1.0119851
-    1.0055188
-    1.0213959
-    1.0234416
-    1.0264917
-    1.0292725
-    1.0385184
-    1.0200999
-    1.0107697
-    1.008583
-    1.0200332
-    1.0030413
-    1.0108659
-    1.0185145
-    1.0168619
-    1.0180462
-    1.0239657
-    1.0205509
-    1.0189973
-    1.0246446
-    1.0135089
-    1.0352973
-    1.0099289
-    1.0266474
-    1.0279829
-    1.0101653
-    1.041216
-    1.0103861
-    1.0114727
-    1.0054605
-    1.0190722
-    1.0114837
-    1.0179213
-    1.006082
-    1.0049696
-    1.0143629
-    0.9971036
-    1.0005602
-    1.0078403
-    1.0240222
-    1.0195063
-    1.0355136
-    1.0218743
-    1.0171331
-    1.0049817
-    1.0140974
-    1.0168431
-    1.0049966
-    1.0045568
-    1.0156414
-    1.0273055
-    1.0197653
-    1.0030624
-    1.0154993
-    0.99782084
-    0.99711648
-    1.014408
-    1.0057417
-    0.99936837
-    1.0096934
-    1.0095138
-    1.0057734
-    1.0114497
-    1.0059784
-    1.0328889
-    1.0098032
-    1.0041114
-    1.0101247
-    1.0181588
-    1.0115712
-    1.0227509
-    1.0065104
-    1.0110902
-    1.0298169
-    1.0089532
-    1.0368733
-    1.0123033
-    1.0060763
-    1.0150937
-    1.0239325
-    0.99555536
-    0.99861271
-    1.0076201
-    0.99941535
-    1.0119522
-    1.0129183
-    0.99288924
-    1.0260784
-    1.0144982
-    1.0121985
-    1.0234916
-    1.02215
-    1.0190118
-    1.0172679
-    1.0118398
-    1.0002123
-    1.0092124
-    1.0071943
-    0.99508468
-    1.0019303
-    1.0030733
-    0.9964198
-    1.0027298
-    0.99797614
-    1.006942
-    0.99793928
-    1.0083214
-    1.0283732
-    1.0111102
-    1.016936
-    1.0229061
-    0.98846454
-    1.0015387
-    1.0201769
-    1.0079822
-    1.0064007
-    1.0095543
-    1.0092207
-    1.0135485
-    1.0198974
-    1.0140252
-    1.0128686
-    1.0092903
-    1.0141974
-    1.0023492
-    0.99731455
-    1.0026598
-    0.99303643
-    1.0036469
-    1.0160975
-    1.0368378
-    1.0139625
-    1.01493
-    1.0113531
-    1.0114548
-    0.99833441
-    0.99648401
-    0.97645361
-    1.0154053
-    1.01703
+      1.0079715
+      1.0074573
+      1.0153107
+      1.0152677
+      1.0011653
+     0.99950061
+      1.0328311
+      1.0192317
+       1.009827
+     0.99588916
+       1.007474
+      1.0113061
+     0.98696624
+     0.99978663
+     0.98240542
+     0.98861723
+     0.99008763
+      1.0185076
+      1.0052452
+     0.99447194
+      1.0092685
+        1.01208
+      1.0105237
+     0.98513875
+      1.0165628
+     0.99485934
+      1.0050255
+      1.0140756
+      1.0093128
+      1.0155868
+      1.0107023
+     0.99212762
+      1.0095465
+      1.0028435
+      1.0069437
+      1.0070473
+      1.0145902
+      1.0186922
+      1.0059917
+      1.0113072
+      1.0107386
+     0.99769196
+     0.99793444
+      1.0050791
+     0.98307821
+      1.0107594
+     0.99689982
+     0.98667064
+      0.9991662
+     0.98274722
+     0.98422032
+     0.99393016
+      1.0118567
+     0.99912781
+      1.0023744
+      1.0086662
+      1.0164773
+      1.0169327
+      1.0372478
+      1.0314242
+      1.0004256
+      1.0110541
+      1.0076575
+      1.0119851
+      1.0055188
+      1.0213959
+      1.0234416
+      1.0264917
+      1.0292725
+      1.0385184
+      1.0200999
+      1.0107697
+       1.008583
+      1.0200332
+      1.0030413
+      1.0108659
+      1.0185145
+      1.0168619
+      1.0180462
+      1.0239657
+      1.0205509
+      1.0189973
+      1.0246446
+      1.0135089
+      1.0352973
+      1.0099289
+      1.0266474
+      1.0279829
+      1.0101653
+       1.041216
+      1.0103861
+      1.0114727
+      1.0054605
+      1.0190722
+      1.0114837
+      1.0179213
+       1.006082
+      1.0049696
+      1.0143629
+      0.9971036
+      1.0005602
+      1.0078403
+      1.0240222
+      1.0195063
+      1.0355136
+      1.0218743
+      1.0171331
+      1.0049817
+      1.0140974
+      1.0168431
+      1.0049966
+      1.0045568
+      1.0156414
+      1.0273055
+      1.0197653
+      1.0030624
+      1.0154993
+     0.99782084
+     0.99711648
+       1.014408
+      1.0057417
+     0.99936837
+      1.0096934
+      1.0095138
+      1.0057734
+      1.0114497
+      1.0059784
+      1.0328889
+      1.0098032
+      1.0041114
+      1.0101247
+      1.0181588
+      1.0115712
+      1.0227509
+      1.0065104
+      1.0110902
+      1.0298169
+      1.0089532
+      1.0368733
+      1.0123033
+      1.0060763
+      1.0150937
+      1.0239325
+     0.99555536
+     0.99861271
+      1.0076201
+     0.99941535
+      1.0119522
+      1.0129183
+     0.99288924
+      1.0260784
+      1.0144982
+      1.0121985
+      1.0234916
+        1.02215
+      1.0190118
+      1.0172679
+      1.0118398
+      1.0002123
+      1.0092124
+      1.0071943
+     0.99508468
+      1.0019303
+      1.0030733
+      0.9964198
+      1.0027298
+     0.99797614
+       1.006942
+     0.99793928
+      1.0083214
+      1.0283732
+      1.0111102
+       1.016936
+      1.0229061
+     0.98846454
+      1.0015387
+      1.0201769
+      1.0079822
+      1.0064007
+      1.0095543
+      1.0092207
+      1.0135485
+      1.0198974
+      1.0140252
+      1.0128686
+      1.0092903
+      1.0141974
+      1.0023492
+     0.99731455
+      1.0026598
+     0.99303643
+      1.0036469
+      1.0160975
+      1.0368378
+      1.0139625
+        1.01493
+      1.0113531
+      1.0114548
+     0.99833441
+     0.99648401
+     0.97645361
+      1.0154053
+        1.01703
 
-                 ];
+];
 
 Y_obs           =[
-    1
-    0.99690484
-    1.0111781
-    1.0028141
-    1.0251518
-    1.0371688
-    1.0118899
-    0.98720726
-    1.0001589
-    1.0057481
-    1.0130085
-    1.0107643
-    1.0190194
-    1.0323428
-    1.0466587
-    1.0540438
-    1.0516886
-    1.0431553
-    1.0597913
-    1.0657172
-    1.0592201
-    1.0701863
-    1.0458402
-    1.0620582
-    1.0504499
-    1.0615817
-    1.0782384
-    1.0500687
-    1.0439257
-    1.0368658
-    1.0339255
-    1.0481453
-    1.0477181
-    1.0167109
-    1.0354878
-    1.0544782
-    1.0463762
-    1.0624445
-    1.0705737
-    1.0679484
-    1.0546356
-    1.0620691
-    1.0806955
-    1.0793581
-    1.1121124
-    1.0971458
-    1.1034869
-    1.1181859
-    1.1006634
-    1.1250883
-    1.1362214
-    1.1423343
-    1.1036061
-    1.1089288
-    1.1067125
-    1.0940906
-    1.0942197
-    1.0862174
-    1.06525
-    1.0511907
-    1.0598182
-    1.0513331
-    1.0212391
-    1.0057433
-    1.002663
-    0.97623167
-    0.97253165
-    0.97037865
-    0.97178055
-    0.95011397
-    0.95627969
-    0.96197747
-    0.97096053
-    0.98225794
-    1.0103595
-    1.0007597
-    1.003498
-    0.99246608
-    0.99656347
-    0.98804749
-    0.99122491
-    0.99522926
-    0.98731605
-    1.0145434
-    0.99330816
-    0.99759216
-    0.96814048
-    0.95296183
-    0.96362471
-    0.95925977
-    0.97682205
-    0.96993138
-    0.9743074
-    0.96821818
-    0.97413308
-    0.9741753
-    0.98237142
-    1.0054193
-    0.98044807
-    0.9716773
-    0.9730455
-    0.98405828
-    0.99220103
-    0.98444001
-    0.97919493
-    0.97205233
-    0.96728223
-    0.98529893
-    0.98452324
-    0.98299888
-    0.99145042
-    1.000933
-    0.99636447
-    0.98660883
-    0.98273271
-    0.98305518
-    0.98725774
-    0.99577549
-    1.002037
-    1.0060879
-    1.016075
-    1.0184118
-    1.0205711
-    1.0096961
-    1.0281337
-    1.0122963
-    1.0083497
-    0.99411874
-    0.976799
-    0.97146842
-    0.97464304
-    0.95587292
-    0.94779791
-    0.93266339
-    0.92720128
-    0.94105864
-    0.93277798
-    0.93393927
-    0.91216657
-    0.92045028
-    0.9099
-    0.90792098
-    0.90669634
-    0.91268867
-    0.91696661
-    0.91164685
-    0.91311495
-    0.92197825
-    0.92461222
-    0.94930422
-    0.9488119
-    0.95232353
-    0.97275278
-    0.96734995
-    0.95356817
-    0.96075548
-    0.96936594
-    0.97489002
-    0.97933106
-    0.96499412
-    0.96157973
-    0.97156334
-    0.95983765
-    0.93655215
-    0.95207909
-    0.96912862
-    0.97938462
-    0.95701655
-    0.94891457
-    0.95606317
-    0.95351125
-    0.95641767
-    0.94315807
-    0.94639265
-    0.96503697
-    0.95601693
-    0.93087851
-    0.92980141
-    0.92266844
-    0.92925206
-    0.93743628
-    0.92900826
-    0.9049711
-    0.90213859
-    0.91342916
-    0.91384707
-    0.91456681
-    0.91316822
-    0.92671976
-    0.92058549
-    0.92936541
-    0.93228212
-    0.91010921
-    0.89349322
-    0.90336005
-    0.90997873
-    0.91856328
-    0.91668007
-    0.92838606
-    0.932016
-    0.94545438
-    0.94070026
-    0.93172987
+              1
+     0.99690484
+      1.0111781
+      1.0028141
+      1.0251518
+      1.0371688
+      1.0118899
+     0.98720726
+      1.0001589
+      1.0057481
+      1.0130085
+      1.0107643
+      1.0190194
+      1.0323428
+      1.0466587
+      1.0540438
+      1.0516886
+      1.0431553
+      1.0597913
+      1.0657172
+      1.0592201
+      1.0701863
+      1.0458402
+      1.0620582
+      1.0504499
+      1.0615817
+      1.0782384
+      1.0500687
+      1.0439257
+      1.0368658
+      1.0339255
+      1.0481453
+      1.0477181
+      1.0167109
+      1.0354878
+      1.0544782
+      1.0463762
+      1.0624445
+      1.0705737
+      1.0679484
+      1.0546356
+      1.0620691
+      1.0806955
+      1.0793581
+      1.1121124
+      1.0971458
+      1.1034869
+      1.1181859
+      1.1006634
+      1.1250883
+      1.1362214
+      1.1423343
+      1.1036061
+      1.1089288
+      1.1067125
+      1.0940906
+      1.0942197
+      1.0862174
+        1.06525
+      1.0511907
+      1.0598182
+      1.0513331
+      1.0212391
+      1.0057433
+       1.002663
+     0.97623167
+     0.97253165
+     0.97037865
+     0.97178055
+     0.95011397
+     0.95627969
+     0.96197747
+     0.97096053
+     0.98225794
+      1.0103595
+      1.0007597
+       1.003498
+     0.99246608
+     0.99656347
+     0.98804749
+     0.99122491
+     0.99522926
+     0.98731605
+      1.0145434
+     0.99330816
+     0.99759216
+     0.96814048
+     0.95296183
+     0.96362471
+     0.95925977
+     0.97682205
+     0.96993138
+      0.9743074
+     0.96821818
+     0.97413308
+      0.9741753
+     0.98237142
+      1.0054193
+     0.98044807
+      0.9716773
+      0.9730455
+     0.98405828
+     0.99220103
+     0.98444001
+     0.97919493
+     0.97205233
+     0.96728223
+     0.98529893
+     0.98452324
+     0.98299888
+     0.99145042
+       1.000933
+     0.99636447
+     0.98660883
+     0.98273271
+     0.98305518
+     0.98725774
+     0.99577549
+       1.002037
+      1.0060879
+       1.016075
+      1.0184118
+      1.0205711
+      1.0096961
+      1.0281337
+      1.0122963
+      1.0083497
+     0.99411874
+       0.976799
+     0.97146842
+     0.97464304
+     0.95587292
+     0.94779791
+     0.93266339
+     0.92720128
+     0.94105864
+     0.93277798
+     0.93393927
+     0.91216657
+     0.92045028
+         0.9099
+     0.90792098
+     0.90669634
+     0.91268867
+     0.91696661
+     0.91164685
+     0.91311495
+     0.92197825
+     0.92461222
+     0.94930422
+      0.9488119
+     0.95232353
+     0.97275278
+     0.96734995
+     0.95356817
+     0.96075548
+     0.96936594
+     0.97489002
+     0.97933106
+     0.96499412
+     0.96157973
+     0.97156334
+     0.95983765
+     0.93655215
+     0.95207909
+     0.96912862
+     0.97938462
+     0.95701655
+     0.94891457
+     0.95606317
+     0.95351125
+     0.95641767
+     0.94315807
+     0.94639265
+     0.96503697
+     0.95601693
+     0.93087851
+     0.92980141
+     0.92266844
+     0.92925206
+     0.93743628
+     0.92900826
+      0.9049711
+     0.90213859
+     0.91342916
+     0.91384707
+     0.91456681
+     0.91316822
+     0.92671976
+     0.92058549
+     0.92936541
+     0.93228212
+     0.91010921
+     0.89349322
+     0.90336005
+     0.90997873
+     0.91856328
+     0.91668007
+     0.92838606
+       0.932016
+     0.94545438
+     0.94070026
+     0.93172987
 
-                 ];
+];
 
 P_obs           =[
-    1
-    0.99948573
-    1.0068249
-    1.0141211
-    1.0073149
-    0.99884398
-    1.0237035
-    1.0349636
-    1.036819
-    1.0247366
-    1.0242391
-    1.0275737
-    1.0065684
-    0.99838346
-    0.97281734
-    0.95346302
-    0.9355791
-    0.9461152
-    0.94338882
-    0.92988921
-    0.9311862
-    0.93529467
-    0.93784681
-    0.91501401
-    0.92360522
-    0.91049302
-    0.90754698
-    0.91365103
-    0.91499228
-    0.92260749
-    0.92533824
-    0.90949431
-    0.91106924
-    0.90594116
-    0.90491334
-    0.9039891
-    0.91060772
-    0.92132842
-    0.91934854
-    0.92268418
-    0.92545127
-    0.91517169
-    0.90513459
-    0.90224212
-    0.87734878
-    0.88013667
-    0.86906494
-    0.84776403
-    0.83895869
-    0.81373437
-    0.78998314
-    0.77594176
-    0.77982695
-    0.77098321
-    0.76538611
-    0.76608075
-    0.77458654
-    0.78354767
-    0.81282389
-    0.83627649
-    0.82873051
-    0.83181309
-    0.83149903
-    0.83551261
-    0.83305985
-    0.84648418
-    0.86195421
-    0.88047436
-    0.90177533
-    0.93232215
-    0.94445051
-    0.9472487
-    0.94786015
-    0.95992178
-    0.95499149
-    0.95788581
-    0.9684288
-    0.97731917
-    0.98739379
-    1.0033879
-    1.0159673
-    1.0269931
-    1.0436661
-    1.0492034
-    1.0765292
-    1.0784865
-    1.0971624
-    1.1171737
-    1.1193675
-    1.1526119
-    1.1550265
-    1.1585277
-    1.1560166
-    1.1671172
-    1.1706294
-    1.1805791
-    1.1786896
-    1.1756876
-    1.1820789
-    1.171211
-    1.1637997
-    1.1636684
-    1.179719
-    1.1912538
-    1.2187959
-    1.2326986
-    1.2418602
-    1.2388704
-    1.2449963
-    1.2538678
-    1.2508929
-    1.2474781
-    1.255148
-    1.274482
-    1.2862757
-    1.2813665
-    1.2888943
-    1.2787436
-    1.2678886
-    1.274325
-    1.2720952
-    1.263492
-    1.2652139
-    1.2667561
-    1.264558
-    1.2680362
-    1.2660431
-    1.2909605
-    1.2927921
-    1.288932
-    1.2910852
-    1.3012725
-    1.3048721
-    1.3196515
-    1.3181903
-    1.321309
-    1.3431543
-    1.344136
-    1.3730377
-    1.3773695
-    1.3754742
-    1.3825964
-    1.3985574
-    1.3861412
-    1.3767823
-    1.3764309
-    1.3678747
-    1.3718554
-    1.3768022
-    1.3617199
-    1.3798267
-    1.3863533
-    1.3905803
-    1.4061004
-    1.4202788
-    1.4313191
-    1.4406155
-    1.4444837
-    1.4367244
-    1.4379653
-    1.4371881
-    1.4243012
-    1.41826
-    1.4133617
-    1.40181
-    1.3965683
-    1.3865729
-    1.3855433
-    1.3755111
-    1.3758609
-    1.3962625
-    1.3994012
-    1.4083656
-    1.4233002
-    1.4037932
-    1.3973604
-    1.4095657
-    1.4095764
-    1.4080055
-    1.4095882
-    1.4108374
-    1.4164143
-    1.4283402
-    1.4343939
-    1.4392909
-    1.4406097
-    1.4468355
-    1.4412132
-    1.4305562
-    1.4252445
-    1.4103094
-    1.4059847
-    1.4141106
-    1.4429769
-    1.4489679
-    1.4559263
-    1.4593079
-    1.4627911
-    1.453154
-    1.4416665
-    1.4101485
-    1.4175823
-    1.4266407
+              1
+     0.99948573
+      1.0068249
+      1.0141211
+      1.0073149
+     0.99884398
+      1.0237035
+      1.0349636
+       1.036819
+      1.0247366
+      1.0242391
+      1.0275737
+      1.0065684
+     0.99838346
+     0.97281734
+     0.95346302
+      0.9355791
+      0.9461152
+     0.94338882
+     0.92988921
+      0.9311862
+     0.93529467
+     0.93784681
+     0.91501401
+     0.92360522
+     0.91049302
+     0.90754698
+     0.91365103
+     0.91499228
+     0.92260749
+     0.92533824
+     0.90949431
+     0.91106924
+     0.90594116
+     0.90491334
+      0.9039891
+     0.91060772
+     0.92132842
+     0.91934854
+     0.92268418
+     0.92545127
+     0.91517169
+     0.90513459
+     0.90224212
+     0.87734878
+     0.88013667
+     0.86906494
+     0.84776403
+     0.83895869
+     0.81373437
+     0.78998314
+     0.77594176
+     0.77982695
+     0.77098321
+     0.76538611
+     0.76608075
+     0.77458654
+     0.78354767
+     0.81282389
+     0.83627649
+     0.82873051
+     0.83181309
+     0.83149903
+     0.83551261
+     0.83305985
+     0.84648418
+     0.86195421
+     0.88047436
+     0.90177533
+     0.93232215
+     0.94445051
+      0.9472487
+     0.94786015
+     0.95992178
+     0.95499149
+     0.95788581
+      0.9684288
+     0.97731917
+     0.98739379
+      1.0033879
+      1.0159673
+      1.0269931
+      1.0436661
+      1.0492034
+      1.0765292
+      1.0784865
+      1.0971624
+      1.1171737
+      1.1193675
+      1.1526119
+      1.1550265
+      1.1585277
+      1.1560166
+      1.1671172
+      1.1706294
+      1.1805791
+      1.1786896
+      1.1756876
+      1.1820789
+       1.171211
+      1.1637997
+      1.1636684
+       1.179719
+      1.1912538
+      1.2187959
+      1.2326986
+      1.2418602
+      1.2388704
+      1.2449963
+      1.2538678
+      1.2508929
+      1.2474781
+       1.255148
+       1.274482
+      1.2862757
+      1.2813665
+      1.2888943
+      1.2787436
+      1.2678886
+       1.274325
+      1.2720952
+       1.263492
+      1.2652139
+      1.2667561
+       1.264558
+      1.2680362
+      1.2660431
+      1.2909605
+      1.2927921
+       1.288932
+      1.2910852
+      1.3012725
+      1.3048721
+      1.3196515
+      1.3181903
+       1.321309
+      1.3431543
+       1.344136
+      1.3730377
+      1.3773695
+      1.3754742
+      1.3825964
+      1.3985574
+      1.3861412
+      1.3767823
+      1.3764309
+      1.3678747
+      1.3718554
+      1.3768022
+      1.3617199
+      1.3798267
+      1.3863533
+      1.3905803
+      1.4061004
+      1.4202788
+      1.4313191
+      1.4406155
+      1.4444837
+      1.4367244
+      1.4379653
+      1.4371881
+      1.4243012
+        1.41826
+      1.4133617
+        1.40181
+      1.3965683
+      1.3865729
+      1.3855433
+      1.3755111
+      1.3758609
+      1.3962625
+      1.3994012
+      1.4083656
+      1.4233002
+      1.4037932
+      1.3973604
+      1.4095657
+      1.4095764
+      1.4080055
+      1.4095882
+      1.4108374
+      1.4164143
+      1.4283402
+      1.4343939
+      1.4392909
+      1.4406097
+      1.4468355
+      1.4412132
+      1.4305562
+      1.4252445
+      1.4103094
+      1.4059847
+      1.4141106
+      1.4429769
+      1.4489679
+      1.4559263
+      1.4593079
+      1.4627911
+       1.453154
+      1.4416665
+      1.4101485
+      1.4175823
+      1.4266407
 
-                 ];
+];
 
diff --git a/tests/smoother2histval/fsdat_simul.m b/tests/smoother2histval/fsdat_simul.m
index ed7853c80b..face0f579b 100644
--- a/tests/smoother2histval/fsdat_simul.m
+++ b/tests/smoother2histval/fsdat_simul.m
@@ -1,390 +1,390 @@
 gp_obs = [
-    1.0193403
-    1.0345762
-    1.0011701
-    1.0147224
-    1.008392
-    1.0488327
-    1.0153551
-    1.0099775
-    1.0260561
-    1.0172218
-    1.0014374
-    1.0184572
-    1.0179988
-    1.0060339
-    1.0019536
-    0.99179578
-    1.004346
-    1.0345153
-    1.0004432
-    0.98327074
-    1.0007585
-    1.0034378
-    1.010532
-    1.0121367
-    1.0097161
-    1.0166682
-    1.0089513
-    1.0194821
-    1.0192704
-    1.0220258
-    1.020915
-    1.0176156
-    1.0040708
-    1.0157694
-    1.0357484
-    1.0256259
-    1.0240583
-    1.0095152
-    1.0241605
-    1.0115295
-    1.003636
-    1.0222399
-    1.0250969
-    1.0068969
-    1.0009829
-    1.0166179
-    1.0252018
-    1.0211178
-    0.99867851
-    0.99594002
-    0.9908135
-    0.99762919
-    0.99616309
-    1.0058679
-    0.99323315
-    1.0132879
-    0.98718922
-    0.99739822
-    0.97858594
-    0.99128769
-    0.98624299
-    0.98447966
-    1.0013312
-    0.99189504
-    0.98032699
-    0.99332035
-    1.0129565
-    1.0007785
-    1.0218292
-    1.0030419
-    1.0044453
-    1.0156181
-    1.0040112
-    1.0081137
-    1.0261598
-    1.0053686
-    1.0024674
-    0.99883223
-    1.0224791
-    1.0074723
-    1.0037807
-    1.0348866
-    1.0053664
-    1.0140072
-    1.017359
-    1.0013916
-    1.017887
-    1.008987
-    1.011771
-    1.0201455
-    1.0249464
-    1.0159166
-    1.0162718
-    1.0312397
-    1.0108745
-    1.0132205
-    1.0142484
-    1.0178907
-    1.0065039
-    1.0190304
-    1.0034406
-    1.0053556
-    1.012823
-    1.0009983
-    1.0073148
-    1.0247254
-    1.0140215
-    1.0053603
-    1.006169
-    0.994725
-    1.026685
-    1.0012279
-    1.0160733
-    1.0119851
-    1.0148392
-    0.99760076
-    1.0070377
-    1.0066215
-    0.98130614
-    1.0127043
-    1.0203824
-    1.0067477
-    0.99510728
-    1.0188472
-    1.0100108
-    1.0146874
-    1.0118012
-    1.0111904
-    0.97759194
-    0.99081872
-    0.98425915
-    1.0026496
-    0.98587189
-    0.98648329
-    1.0035766
-    1.0094743
-    0.99460644
-    0.9953724
-    1.0194433
-    1.0065039
-    1.0056522
-    1.0160367
-    1.006524
-    1.0092492
-    0.9864426
-    0.98723638
-    0.9994522
-    1.0026778
-    1.0255529
-    1.0030477
-    0.99411719
-    1.0045087
-    0.99375289
-    1.0017609
-    1.0039766
-    0.99976299
-    1.0155671
-    1.0192975
-    1.0135507
-    1.0099869
-    1.0125994
-    1.0050808
-    1.0088531
-    1.0135256
-    1.0322097
-    1.0065808
-    0.99857526
-    1.0008792
-    0.9997691
-    1.02875
-    1.0177818
-    1.0150152
-    1.026416
-    1.0209804
-    1.010633
-    1.009636
-    1.0028257
-    0.9896666
-    1.0094002
-    0.99958414
-    1.0077797
-    0.98933606
-    1.0014885
-    0.99875283
-    1.005051
-    1.016385
-    1.0116282
-    0.99774103
-    1.0101802
-    1.0281101
-    1.0024654
-    1.0174549
-         ];
+      1.0193403
+      1.0345762
+      1.0011701
+      1.0147224
+       1.008392
+      1.0488327
+      1.0153551
+      1.0099775
+      1.0260561
+      1.0172218
+      1.0014374
+      1.0184572
+      1.0179988
+      1.0060339
+      1.0019536
+     0.99179578
+       1.004346
+      1.0345153
+      1.0004432
+     0.98327074
+      1.0007585
+      1.0034378
+       1.010532
+      1.0121367
+      1.0097161
+      1.0166682
+      1.0089513
+      1.0194821
+      1.0192704
+      1.0220258
+       1.020915
+      1.0176156
+      1.0040708
+      1.0157694
+      1.0357484
+      1.0256259
+      1.0240583
+      1.0095152
+      1.0241605
+      1.0115295
+       1.003636
+      1.0222399
+      1.0250969
+      1.0068969
+      1.0009829
+      1.0166179
+      1.0252018
+      1.0211178
+     0.99867851
+     0.99594002
+      0.9908135
+     0.99762919
+     0.99616309
+      1.0058679
+     0.99323315
+      1.0132879
+     0.98718922
+     0.99739822
+     0.97858594
+     0.99128769
+     0.98624299
+     0.98447966
+      1.0013312
+     0.99189504
+     0.98032699
+     0.99332035
+      1.0129565
+      1.0007785
+      1.0218292
+      1.0030419
+      1.0044453
+      1.0156181
+      1.0040112
+      1.0081137
+      1.0261598
+      1.0053686
+      1.0024674
+     0.99883223
+      1.0224791
+      1.0074723
+      1.0037807
+      1.0348866
+      1.0053664
+      1.0140072
+       1.017359
+      1.0013916
+       1.017887
+       1.008987
+       1.011771
+      1.0201455
+      1.0249464
+      1.0159166
+      1.0162718
+      1.0312397
+      1.0108745
+      1.0132205
+      1.0142484
+      1.0178907
+      1.0065039
+      1.0190304
+      1.0034406
+      1.0053556
+       1.012823
+      1.0009983
+      1.0073148
+      1.0247254
+      1.0140215
+      1.0053603
+       1.006169
+       0.994725
+       1.026685
+      1.0012279
+      1.0160733
+      1.0119851
+      1.0148392
+     0.99760076
+      1.0070377
+      1.0066215
+     0.98130614
+      1.0127043
+      1.0203824
+      1.0067477
+     0.99510728
+      1.0188472
+      1.0100108
+      1.0146874
+      1.0118012
+      1.0111904
+     0.97759194
+     0.99081872
+     0.98425915
+      1.0026496
+     0.98587189
+     0.98648329
+      1.0035766
+      1.0094743
+     0.99460644
+      0.9953724
+      1.0194433
+      1.0065039
+      1.0056522
+      1.0160367
+       1.006524
+      1.0092492
+      0.9864426
+     0.98723638
+      0.9994522
+      1.0026778
+      1.0255529
+      1.0030477
+     0.99411719
+      1.0045087
+     0.99375289
+      1.0017609
+      1.0039766
+     0.99976299
+      1.0155671
+      1.0192975
+      1.0135507
+      1.0099869
+      1.0125994
+      1.0050808
+      1.0088531
+      1.0135256
+      1.0322097
+      1.0065808
+     0.99857526
+      1.0008792
+      0.9997691
+        1.02875
+      1.0177818
+      1.0150152
+       1.026416
+      1.0209804
+       1.010633
+       1.009636
+      1.0028257
+      0.9896666
+      1.0094002
+     0.99958414
+      1.0077797
+     0.98933606
+      1.0014885
+     0.99875283
+       1.005051
+       1.016385
+      1.0116282
+     0.99774103
+      1.0101802
+      1.0281101
+      1.0024654
+      1.0174549
+];
 
 gy_obs = [
-    1.0114349
-    0.95979862
-    1.0203958
-    1.0071401
-    1.0539221
-    0.95944922
-    1.0051974
-    1.0354593
-    0.98747321
-    1.02788
-    1.0112772
-    1.0052673
-    1.0104239
-    1.013491
-    1.0066127
-    1.0173802
-    0.98273662
-    0.95581791
-    1.0353011
-    1.0346887
-    0.9785853
-    1.0039954
-    0.99275146
-    1.0031733
-    1.0276747
-    0.978159
-    0.98248359
-    1.0192328
-    0.99057865
-    0.99776689
-    0.98890201
-    1.0163644
-    1.0300873
-    0.96109456
-    0.98850646
-    1.0115635
-    1.0010548
-    0.98951687
-    0.98151347
-    1.0106021
-    1.0310697
-    0.990769
-    0.97940286
-    1.0279158
-    1.0070844
-    0.97456591
-    1.0235486
-    0.99211813
-    0.99808011
-    1.0038972
-    1.0178385
-    1.0008656
-    1.0012176
-    1.0120603
-    1.0277974
-    0.95512181
-    1.0341867
-    1.0291133
-    1.0062875
-    0.99385308
-    1.0518127
-    1.0167908
-    0.97311489
-    1.0324251
-    1.0185255
-    0.98698556
-    0.97985038
-    1.0220522
-    0.98358428
-    1.0085008
-    1.0095106
-    0.96544852
-    1.0014508
-    0.99673838
-    0.9703847
-    1.0245765
-    1.0031506
-    1.009074
-    0.98601129
-    0.99799441
-    1.0078514
-    0.98192982
-    1.0371426
-    0.97563731
-    0.99473616
-    0.99510009
-    0.98135322
-    1.0224481
-    0.99779603
-    0.98590478
-    0.98366338
-    0.99767204
-    1.0208174
-    0.97633411
-    1.0138123
-    1.0032682
-    0.99039426
-    1.0087413
-    1.0285208
-    0.98783907
-    1.0007856
-    1.0265034
-    0.99713746
-    1.0032946
-    1.0027628
-    0.99316893
-    0.99241067
-    0.99845423
-    1.0057718
-    1.029354
-    0.9717329
-    1.0218727
-    0.98185255
-    0.99861261
-    1.0114349
-    1.0052126
-    0.9852852
-    0.99669175
-    1.0131849
-    0.99253202
-    0.98255644
-    1.0164264
-    1.0070027
-    0.99306997
-    1.004557
-    0.99064231
-    1.0100364
-    0.99857545
-    1.0365648
-    1.0323947
-    0.99584546
-    0.98641189
-    1.0200377
-    1.0167671
-    0.99615647
-    1.0067481
-    1.0201624
-    1.0012265
-    0.97564063
-    1.0141995
-    1.0260671
-    0.99697599
-    1.0127951
-    0.98922525
-    1.0268872
-    1.0048837
-    1.0124301
-    1.0020776
-    0.95526625
-    0.98592847
-    1.0303405
-    1.007508
-    1.0041718
-    1.0039668
-    1.0119603
-    1.0153073
-    0.99318888
-    0.96711969
-    0.99946578
-    1.0307262
-    0.97737468
-    1.0029169
-    1.0148043
-    0.97950296
-    0.97038701
-    1.010492
-    1.0087364
-    0.99717614
-    1.0375848
-    0.94419511
-    0.98325812
-    1.0350878
-    0.99049883
-    0.98795832
-    1.0191223
-    1.0148155
-    0.97941641
-    1.0395356
-    1.0005804
-    0.99178697
-    1.0024326
-    1.0312638
-    1.0100942
-    0.98526311
-    1.0029873
-    0.9836127
-    0.99747718
-    1.0193064
-    0.99270511
-    0.96646656
-    1.0575586
-    0.98945919
-         ];
+      1.0114349
+     0.95979862
+      1.0203958
+      1.0071401
+      1.0539221
+     0.95944922
+      1.0051974
+      1.0354593
+     0.98747321
+        1.02788
+      1.0112772
+      1.0052673
+      1.0104239
+       1.013491
+      1.0066127
+      1.0173802
+     0.98273662
+     0.95581791
+      1.0353011
+      1.0346887
+      0.9785853
+      1.0039954
+     0.99275146
+      1.0031733
+      1.0276747
+       0.978159
+     0.98248359
+      1.0192328
+     0.99057865
+     0.99776689
+     0.98890201
+      1.0163644
+      1.0300873
+     0.96109456
+     0.98850646
+      1.0115635
+      1.0010548
+     0.98951687
+     0.98151347
+      1.0106021
+      1.0310697
+       0.990769
+     0.97940286
+      1.0279158
+      1.0070844
+     0.97456591
+      1.0235486
+     0.99211813
+     0.99808011
+      1.0038972
+      1.0178385
+      1.0008656
+      1.0012176
+      1.0120603
+      1.0277974
+     0.95512181
+      1.0341867
+      1.0291133
+      1.0062875
+     0.99385308
+      1.0518127
+      1.0167908
+     0.97311489
+      1.0324251
+      1.0185255
+     0.98698556
+     0.97985038
+      1.0220522
+     0.98358428
+      1.0085008
+      1.0095106
+     0.96544852
+      1.0014508
+     0.99673838
+      0.9703847
+      1.0245765
+      1.0031506
+       1.009074
+     0.98601129
+     0.99799441
+      1.0078514
+     0.98192982
+      1.0371426
+     0.97563731
+     0.99473616
+     0.99510009
+     0.98135322
+      1.0224481
+     0.99779603
+     0.98590478
+     0.98366338
+     0.99767204
+      1.0208174
+     0.97633411
+      1.0138123
+      1.0032682
+     0.99039426
+      1.0087413
+      1.0285208
+     0.98783907
+      1.0007856
+      1.0265034
+     0.99713746
+      1.0032946
+      1.0027628
+     0.99316893
+     0.99241067
+     0.99845423
+      1.0057718
+       1.029354
+      0.9717329
+      1.0218727
+     0.98185255
+     0.99861261
+      1.0114349
+      1.0052126
+      0.9852852
+     0.99669175
+      1.0131849
+     0.99253202
+     0.98255644
+      1.0164264
+      1.0070027
+     0.99306997
+       1.004557
+     0.99064231
+      1.0100364
+     0.99857545
+      1.0365648
+      1.0323947
+     0.99584546
+     0.98641189
+      1.0200377
+      1.0167671
+     0.99615647
+      1.0067481
+      1.0201624
+      1.0012265
+     0.97564063
+      1.0141995
+      1.0260671
+     0.99697599
+      1.0127951
+     0.98922525
+      1.0268872
+      1.0048837
+      1.0124301
+      1.0020776
+     0.95526625
+     0.98592847
+      1.0303405
+       1.007508
+      1.0041718
+      1.0039668
+      1.0119603
+      1.0153073
+     0.99318888
+     0.96711969
+     0.99946578
+      1.0307262
+     0.97737468
+      1.0029169
+      1.0148043
+     0.97950296
+     0.97038701
+       1.010492
+      1.0087364
+     0.99717614
+      1.0375848
+     0.94419511
+     0.98325812
+      1.0350878
+     0.99049883
+     0.98795832
+      1.0191223
+      1.0148155
+     0.97941641
+      1.0395356
+      1.0005804
+     0.99178697
+      1.0024326
+      1.0312638
+      1.0100942
+     0.98526311
+      1.0029873
+      0.9836127
+     0.99747718
+      1.0193064
+     0.99270511
+     0.96646656
+      1.0575586
+     0.98945919
+];
 
diff --git a/tests/steady_state/walsh1_old_ss_steadystate.m b/tests/steady_state/walsh1_old_ss_steadystate.m
index 380a4737b0..cc09a2d2f0 100644
--- a/tests/steady_state/walsh1_old_ss_steadystate.m
+++ b/tests/steady_state/walsh1_old_ss_steadystate.m
@@ -12,26 +12,26 @@ check = 0;
 
 
 %% Enter model equations here
-
-pi = thetass-1;
-en = 1/3;
-eR = 1/betta;
-y_k = (1/alphha)*(1/betta-1+delta);
-ek = en*y_k^(-1/(1-alphha));
-ec = ek*(y_k-delta);
-em = ec*(a/(1-a))^(-1/b)*((thetass-betta)/thetass)^(-1/b);
-ey = ek*y_k;
-Xss = a*ec^(1-b)*(1+(a/(1-a))^(-1/b)*((thetass-betta)/thetass)^((b-1)/b));
-Psi = (1-alphha)*(ey/en)*Xss^((b-phi1)/(1-b))*a*ec^(-b)*(1-en)^eta;
-n = log(en);
-k = log(ek);
-m = log(em);
-c = log(ec);
-y = log(ey);
-R = log(eR);
-z = 0;
-u = 0;
-
+ 
+    pi = thetass-1;
+    en = 1/3;
+    eR = 1/betta;
+    y_k = (1/alphha)*(1/betta-1+delta);
+    ek = en*y_k^(-1/(1-alphha));
+    ec = ek*(y_k-delta);
+    em = ec*(a/(1-a))^(-1/b)*((thetass-betta)/thetass)^(-1/b);
+    ey = ek*y_k;
+    Xss = a*ec^(1-b)*(1+(a/(1-a))^(-1/b)*((thetass-betta)/thetass)^((b-1)/b));
+    Psi = (1-alphha)*(ey/en)*Xss^((b-phi1)/(1-b))*a*ec^(-b)*(1-en)^eta;
+    n = log(en);
+    k = log(ek);
+    m = log(em);
+    c = log(ec);
+    y = log(ey);
+    R = log(eR);
+    z = 0;
+    u = 0;
+    
 %% end own model equations
 
 for iter = 1:length(M_.params) %update parameters set in the file
-- 
GitLab