diff --git a/matlab/DsgeSmoother.m b/matlab/DsgeSmoother.m index 31b003ca3d87a3cd86bb5b88942cb7b2e2e042b6..8b3063f6fe906d30895c4d65ae37eb8749dcbbad 100644 --- a/matlab/DsgeSmoother.m +++ b/matlab/DsgeSmoother.m @@ -1,4 +1,4 @@ -function [alphahat,etahat,epsilonhat,ahat,SteadyState,trend_coeff,aK,T,R,P,PK,decomp,trend_addition,state_uncertainty,M_,oo_,options_,bayestopt_] = DsgeSmoother(xparam1,gend,Y,data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_) +function [alphahat,etahat,epsilonhat,ahat,SteadyState,trend_coeff,aK,T,R,P,PK,decomp,trend_addition,state_uncertainty,M_,oo_,bayestopt_] = DsgeSmoother(xparam1,gend,Y,data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_) % Estimation of the smoothed variables and innovations. % % INPUTS @@ -34,7 +34,6 @@ function [alphahat,etahat,epsilonhat,ahat,SteadyState,trend_coeff,aK,T,R,P,PK,de % about the smoothed state (decision-rule order) % o M_ [structure] decribing the model % o oo_ [structure] storing the results -% o options_ [structure] describing the options % o bayestopt_ [structure] describing the priors % % Notes: @@ -105,14 +104,14 @@ if ~options_.smoother_redux oo_.dr.restrict_var_list = bayestopt_.smoother_var_list; oo_.dr.restrict_columns = bayestopt_.smoother_restrict_columns; - [T,R,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_); + [T,R,SteadyState,info,M_,oo_] = dynare_resolve(M_,options_,oo_); %get location of observed variables and requested smoothed variables in %decision rules bayestopt_.mf = bayestopt_.smoother_var_list(bayestopt_.smoother_mf); else - [T,R,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_,'restrict'); + [T,R,SteadyState,info,M_,oo_] = dynare_resolve(M_,options_,oo_,'restrict'); bayestopt_.mf = bayestopt_.mf1; end diff --git a/matlab/PosteriorIRF_core1.m b/matlab/PosteriorIRF_core1.m index 3311c138defbae3e4b730af5b1145df844508e90..fd0b7cea317fbac30852b21e49b270c1692233bd 100644 --- a/matlab/PosteriorIRF_core1.m +++ b/matlab/PosteriorIRF_core1.m @@ -145,7 +145,7 @@ while fpar<B end stock_param(irun2,:) = deep; set_parameters(deep); - [dr,info,M_,options_,oo_] =compute_decision_rules(M_,options_,oo_); + [dr,info,M_,oo_] =compute_decision_rules(M_,options_,oo_); oo_.dr = dr; if info(1) nosaddle = nosaddle + 1; diff --git a/matlab/check.m b/matlab/check.m index 6b5d2388964958e0e76e8111808bb431548108e6..5d99a0b5f18f94259bcefa4d903413dfabdbf0e6 100644 --- a/matlab/check.m +++ b/matlab/check.m @@ -42,7 +42,7 @@ end oo.dr=set_state_space(oo.dr,M,options); -[dr,info,M,options,~] = resol(1,M,options,oo); +[dr,info,M,~] = resol(1,M,options,oo); if info(1) ~= 0 && info(1) ~= 3 && info(1) ~= 4 print_info(info, 0, options); diff --git a/matlab/cli/prior.m b/matlab/cli/prior.m index 95401ba34e11e0df888577fadb4825487fc8d878..3ac6bcaf3976ef98c70810a8fd10c51ccc33da85 100644 --- a/matlab/cli/prior.m +++ b/matlab/cli/prior.m @@ -137,7 +137,7 @@ if ismember('moments', varargin) % Prior simulations (2nd order moments). oo__ = oo_; oo__.dr = set_state_space(oo__.dr, Model, options_); % Solve model - [T,R,~,info,Model , options__ , oo__] = dynare_resolve(Model , options_ ,oo__,'restrict'); + [T,R,~,info,Model , oo__] = dynare_resolve(Model , options_ ,oo__,'restrict'); if ~info(1) info=endogenous_prior_restrictions(T,R,Model , options__ , oo__); end diff --git a/matlab/compute_decision_rules.m b/matlab/compute_decision_rules.m index 4e7d86be9fa34d1a044e9368597c22f7e305ddf1..39674027b14144fa369f28860890426c5706c6df 100644 --- a/matlab/compute_decision_rules.m +++ b/matlab/compute_decision_rules.m @@ -1,4 +1,4 @@ -function [dr,info,M_,options_,oo_] =compute_decision_rules(M_,options_,oo_) +function [dr,info,M_,oo_] =compute_decision_rules(M_,options_,oo_) % function [dr,info,M_,options_,oo_] =compute_decision_rules(M_,options_,oo_) % INPUTS % - M_ [structure] Matlab's structure describing the model (M_). @@ -9,7 +9,6 @@ function [dr,info,M_,options_,oo_] =compute_decision_rules(M_,options_,oo_) % - dr [structure] Reduced form model. % - info [integer] scalar or vector, error code. % - M_ [structure] Matlab's structure describing the model (M_). -% - options_ [structure] Matlab's structure describing the current options (options_). % - oo_ [structure] Matlab's structure containing the results (oo_). % Copyright (C) 2020 Dynare Team @@ -30,7 +29,7 @@ function [dr,info,M_,options_,oo_] =compute_decision_rules(M_,options_,oo_) % along with Dynare. If not, see <https://www.gnu.org/licenses/>. if options_.discretionary_policy - [dr,info,M_,options_,oo_] = discretionary_policy_1(options_.instruments,M_,options_,oo_); + [dr,info,M_,oo_] = discretionary_policy_1(options_.instruments,M_,options_,oo_); else - [dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_); + [dr,info,M_,oo_] = resol(0,M_,options_,oo_); end diff --git a/matlab/discretionary_policy/discretionary_policy_1.m b/matlab/discretionary_policy/discretionary_policy_1.m index fbecac43cdc6304c06170868f0522561f4449976..f909a99b80305c4ea9f41695c52b28de7cd7c03e 100644 --- a/matlab/discretionary_policy/discretionary_policy_1.m +++ b/matlab/discretionary_policy/discretionary_policy_1.m @@ -1,4 +1,4 @@ -function [dr, info, M_, options_, oo_]=discretionary_policy_1(Instruments, M_, options_, oo_) +function [dr, info, M_, oo_]=discretionary_policy_1(Instruments, M_, options_, oo_) % Higher-level function for solving discretionary optimal policy % INPUTS % - Instruments [cell] array containing instrument names @@ -10,7 +10,6 @@ function [dr, info, M_, options_, oo_]=discretionary_policy_1(Instruments, M_, o % - dr [structure] Reduced form model. % - info [integer] scalar or vector, error code. % - M_ [structure] Matlab's structure describing the model (M_). -% - options_ [structure] Matlab's structure describing the current options (options_). % - oo_ [structure] Matlab's structure containing the results (oo_). % Copyright (C) 2007-2020 Dynare Team diff --git a/matlab/dr_block.m b/matlab/dr_block.m index f9efe2609dbeb820b21b5179b925369785e9f010..d5689682920c6e839670e7763ba12eeb4d49d05f 100644 --- a/matlab/dr_block.m +++ b/matlab/dr_block.m @@ -1,5 +1,5 @@ -function [dr,info,M_,options_,oo_] = dr_block(dr,task,M_,options_,oo_,varargin) -% function [dr,info,M_,options_,oo_] = dr_block(dr,task,M_,options_,oo_,varargin) +function [dr,info,M_,oo_] = dr_block(dr,task,M_,options_,oo_,varargin) +% function [dr,info,M_,oo_] = dr_block(dr,task,M_,options_,oo_,varargin) % computes the reduced form solution of a rational expectations block-decomposed model % (first order approximation of the stochastic model around the deterministic steady state). % @@ -26,7 +26,6 @@ function [dr,info,M_,options_,oo_] = dr_block(dr,task,M_,options_,oo_,varargin) % info=5: BK rank condition not satisfied. % info=6: The jacobian matrix evaluated at the steady state is complex. % M_ [matlab structure] -% options_ [matlab structure] % oo_ [matlab structure] % % ALGORITHM diff --git a/matlab/dsge_likelihood.m b/matlab/dsge_likelihood.m index f83c240b071b063a059ece0ba7b1aa7335b59b2c..76f82531181a72edf9a7a7382127996069a61450 100644 --- a/matlab/dsge_likelihood.m +++ b/matlab/dsge_likelihood.m @@ -185,7 +185,7 @@ end %------------------------------------------------------------------------------ % Linearize the model around the deterministic steady state and extract the matrices of the state equation (T and R). -[T,R,SteadyState,info,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults,'restrict'); +[T,R,SteadyState,info,Model,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults,'restrict'); % Return, with endogenous penalty when possible, if dynare_resolve issues an error code (defined in resol). if info(1) @@ -467,7 +467,7 @@ if analytic_derivation AHess = []; iv = DynareResults.dr.restrict_var_list; if nargin<10 || isempty(derivatives_info) - [A,B,nou,nou,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults); + [A,B,nou,nou,Model,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults); if ~isempty(EstimatedParameters.var_exo) indexo=EstimatedParameters.var_exo(:,1); else diff --git a/matlab/dsge_simulated_theoretical_conditional_variance_decomposition.m b/matlab/dsge_simulated_theoretical_conditional_variance_decomposition.m index f52af0bc694a6541f156b28e9be33d59d427031f..df9d7332216b91a167841abd95e2349ffe1fba19 100644 --- a/matlab/dsge_simulated_theoretical_conditional_variance_decomposition.m +++ b/matlab/dsge_simulated_theoretical_conditional_variance_decomposition.m @@ -142,7 +142,7 @@ for file = 1:NumberOfDrawsFiles dr = temp.pdraws{linee,2}; else M_=set_parameters_locally(M_,temp.pdraws{linee,1}); - [dr,info,M_,options_,oo_] = compute_decision_rules(M_,options_,oo_) + [dr,info,M_,oo_] = compute_decision_rules(M_,options_,oo_) end if first_call endo_nbr = M_.endo_nbr; diff --git a/matlab/dsge_simulated_theoretical_correlation.m b/matlab/dsge_simulated_theoretical_correlation.m index c5c8f4fd8d9dc9255b2226070b2dc84ec2b811cd..4082bfb0f0f5dac209f57a747a2967e1a59e51d6 100644 --- a/matlab/dsge_simulated_theoretical_correlation.m +++ b/matlab/dsge_simulated_theoretical_correlation.m @@ -115,7 +115,7 @@ for file = 1:NumberOfDrawsFiles dr = temp.pdraws{linee,2}; else M_=set_parameters_locally(M_,temp.pdraws{linee,1}); - [dr,info,M_,options_,oo_] = compute_decision_rules(M_,options_,oo_); + [dr,info,M_,oo_] = compute_decision_rules(M_,options_,oo_); end if ~options_.pruning tmp = th_autocovariances(dr,ivar,M_,options_,nodecomposition); diff --git a/matlab/dsge_simulated_theoretical_covariance.m b/matlab/dsge_simulated_theoretical_covariance.m index 9c208c3b00068087951bd8b3306a3343f8fa1ec0..65b120d23410798a7787d62ac3435282026a2ef1 100644 --- a/matlab/dsge_simulated_theoretical_covariance.m +++ b/matlab/dsge_simulated_theoretical_covariance.m @@ -113,7 +113,7 @@ for file = 1:NumberOfDrawsFiles dr = temp.pdraws{linee,2}; else M_=set_parameters_locally(M_,temp.pdraws{linee,1}); - [dr,info,M_,options_,oo_] = compute_decision_rules(M_,options_,oo_); + [dr,info,M_,oo_] = compute_decision_rules(M_,options_,oo_); end if ~options_.pruning tmp = th_autocovariances(dr,ivar,M_,options_,nodecomposition); diff --git a/matlab/dsge_simulated_theoretical_variance_decomposition.m b/matlab/dsge_simulated_theoretical_variance_decomposition.m index c44cad61f230c6e690930d0386f9595760dd6652..87af08ff6a4abd9435cef35d2dbe4bb09e51b787 100644 --- a/matlab/dsge_simulated_theoretical_variance_decomposition.m +++ b/matlab/dsge_simulated_theoretical_variance_decomposition.m @@ -141,7 +141,7 @@ for file = 1:NumberOfDrawsFiles dr = temp.pdraws{linee,2}; else M_=set_parameters_locally(M_,temp.pdraws{linee,1}); - [dr,info,M_,options_,oo_] = compute_decision_rules(M_,options_,oo_); + [dr,info,M_,oo_] = compute_decision_rules(M_,options_,oo_); end if file==1 && linee==1 [tmp, stationary_vars] = th_autocovariances(dr,ivar,M_,options_,nodecomposition); diff --git a/matlab/dsge_var_likelihood.m b/matlab/dsge_var_likelihood.m index 70601b32bfc0c1452671fa55a1091ba73a81b7fe..28412b279abb43d76a9c6171e63c26221fee402a 100644 --- a/matlab/dsge_var_likelihood.m +++ b/matlab/dsge_var_likelihood.m @@ -133,7 +133,7 @@ end % Solve the Dsge model and get the matrices of the reduced form solution. T and R are the matrices of the % state equation -[T,R,SteadyState,info,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults,'restrict'); +[T,R,SteadyState,info,Model,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults,'restrict'); % Return, with endogenous penalty when possible, if dynare_resolve issues an error code (defined in resol). if info(1) diff --git a/matlab/dynare_estimation_1.m b/matlab/dynare_estimation_1.m index 38fb563fa6089ee395d6d4162a5d28641a36dbab..0efdf40c68a95aed14a181b2bd12a9523132e58f 100644 --- a/matlab/dynare_estimation_1.m +++ b/matlab/dynare_estimation_1.m @@ -176,7 +176,7 @@ end if isequal(options_.mode_compute,0) && isempty(options_.mode_file) && options_.mh_posterior_mode_estimation==0 if options_.order==1 && ~options_.particle.status if options_.smoother - [atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp,Trend,state_uncertainty,M_,oo_,options_,bayestopt_] = DsgeSmoother(xparam1,gend,transpose(data),data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_); + [atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp,Trend,state_uncertainty,M_,oo_,bayestopt_] = DsgeSmoother(xparam1,gend,transpose(data),data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_); [oo_]=store_smoother_results(M_,oo_,options_,bayestopt_,dataset_,dataset_info,atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,P,PK,decomp,Trend,state_uncertainty); if options_.forecast > 0 oo_.forecast = dyn_forecast(var_list_,M_,options_,oo_,'smoother',dataset_info); @@ -554,7 +554,7 @@ end if (~((any(bayestopt_.pshape > 0) && options_.mh_replic) || (any(bayestopt_.pshape> 0) && options_.load_mh_file)) ... || ~options_.smoother ) && ~options_.partial_information % to be fixed %% ML estimation, or posterior mode without Metropolis-Hastings or Metropolis without Bayesian smoothes variables - [atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp,Trend,state_uncertainty,M_,oo_,options_,bayestopt_] = DsgeSmoother(xparam1,dataset_.nobs,transpose(dataset_.data),dataset_info.missing.aindex,dataset_info.missing.state,M_,oo_,options_,bayestopt_,estim_params_); + [atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp,Trend,state_uncertainty,M_,oo_,bayestopt_] = DsgeSmoother(xparam1,dataset_.nobs,transpose(dataset_.data),dataset_info.missing.aindex,dataset_info.missing.state,M_,oo_,options_,bayestopt_,estim_params_); [oo_,yf]=store_smoother_results(M_,oo_,options_,bayestopt_,dataset_,dataset_info,atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,P,PK,decomp,Trend,state_uncertainty); if ~options_.nograph diff --git a/matlab/dynare_resolve.m b/matlab/dynare_resolve.m index c0d88de978cfd91b84db372a603480fbab34306a..665245e804f0314354e0b7bda25d51ac7b3d2bb2 100644 --- a/matlab/dynare_resolve.m +++ b/matlab/dynare_resolve.m @@ -1,4 +1,4 @@ -function [A,B,ys,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_,mode) +function [A,B,ys,info,M_,oo_] = dynare_resolve(M_,options_,oo_,mode) % function [A,B,ys,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_,mode) % Computes the linear approximation and the matrices A and B of the transition equation. % @@ -14,7 +14,6 @@ function [A,B,ys,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_,mode) % - ys [double] vector of steady state values % - info [double] 4 by 1 vector with exit flag and information % - M_ [structure] Matlab's structure describing the model -% - options_ [structure] Matlab's structure containing the options % - oo_ [structure] Matlab's structure containing the results % Copyright (C) 2001-2021 Dynare Team @@ -34,7 +33,7 @@ function [A,B,ys,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_,mode) % You should have received a copy of the GNU General Public License % along with Dynare. If not, see <https://www.gnu.org/licenses/>. -[dr,info,M_,options_,oo_] =compute_decision_rules(M_,options_,oo_); +[dr,info,M_,oo_] =compute_decision_rules(M_,options_,oo_); if info(1) > 0 A = []; diff --git a/matlab/dynare_sensitivity.m b/matlab/dynare_sensitivity.m index 5d93b7714f0f75e4623c28ab04cc5111122b666f..d4793a04dd9e7906e16b70a08a82e6ef54befd73 100644 --- a/matlab/dynare_sensitivity.m +++ b/matlab/dynare_sensitivity.m @@ -137,7 +137,7 @@ if M_.exo_nbr==0 error('dynare_sensitivity does not support having no varexo in the model. As a workaround you could define a dummy exogenous variable.') end -[make,my,day,punk,M_,options_,oo_] = dynare_resolve(M_,options_,oo_); +[make,my,day,punk,M_,oo_] = dynare_resolve(M_,options_,oo_); options_gsa = set_default_option(options_gsa,'identification',0); if options_gsa.identification diff --git a/matlab/endogenous_prior_restrictions.m b/matlab/endogenous_prior_restrictions.m index f9cb218fe6b1b3e274afee0088a3329cfdf6f4bb..0f0441b1c9af132fb502d4c03791aac210040417 100644 --- a/matlab/endogenous_prior_restrictions.m +++ b/matlab/endogenous_prior_restrictions.m @@ -49,7 +49,7 @@ if ~isempty(endo_prior_restrictions.irf) end varlist = Model.endo_names(DynareResults.dr.order_var); if isempty(T) - [T,R,SteadyState,infox,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults); + [T,R,SteadyState,infox,Model,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults); else % check if T and R are given in the restricted form!!! if size(T,1)<length(varlist) varlist = varlist(DynareResults.dr.restrict_var_list); @@ -63,7 +63,7 @@ if ~isempty(endo_prior_restrictions.irf) end if ~varlistok varlist = Model.endo_names(DynareResults.dr.order_var); - [T,R,SteadyState,infox,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults); + [T,R,SteadyState,infox,Model,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults); end end NT=1; diff --git a/matlab/ep/extended_path_initialization.m b/matlab/ep/extended_path_initialization.m index 9a1b85e47cbdff093b875d3220392ee81cce152f..3946a543a3331b6a33092d436a903f69d1bca0bc 100644 --- a/matlab/ep/extended_path_initialization.m +++ b/matlab/ep/extended_path_initialization.m @@ -78,7 +78,7 @@ dr = struct(); if ep.init DynareOptions.order = 1; DynareResults.dr=set_state_space(dr,DynareModel,DynareOptions); - [dr,Info,DynareModel,DynareOptions,DynareResults] = resol(0,DynareModel,DynareOptions,DynareResults); + [dr,Info,DynareResults] = resol(0,DynareModel,DynareOptions,DynareResults); end % Do not use a minimal number of perdiods for the perfect foresight solver (with bytecode and blocks) diff --git a/matlab/evaluate_smoother.m b/matlab/evaluate_smoother.m index b0ad84864f0ec2569f926d8bc7f0b6086604b37b..699a590f87bbda61c4a4f73fe936da669cb1b884 100644 --- a/matlab/evaluate_smoother.m +++ b/matlab/evaluate_smoother.m @@ -101,7 +101,7 @@ if ischar(parameters) end end -[atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp,Trend,state_uncertainty,M_,oo_,options_,bayestopt_] = ... +[atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp,Trend,state_uncertainty,M_,oo_,bayestopt_] = ... DsgeSmoother(parameters,dataset_.nobs,transpose(dataset_.data),dataset_info.missing.aindex,dataset_info.missing.state,M_,oo_,options_,bayestopt_,estim_params_); [oo_]=store_smoother_results(M_,oo_,options_,bayestopt_,dataset_,dataset_info,atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,P,PK,decomp,Trend,state_uncertainty); diff --git a/matlab/get_perturbation_params_derivs_numerical_objective.m b/matlab/get_perturbation_params_derivs_numerical_objective.m index da0b80e032c64fa21f182928d11595f37494b220..21ab7d0d5e1cb69db3aa999900c9c729d85f4e2d 100644 --- a/matlab/get_perturbation_params_derivs_numerical_objective.m +++ b/matlab/get_perturbation_params_derivs_numerical_objective.m @@ -51,7 +51,7 @@ function [out,info] = get_perturbation_params_derivs_numerical_objective(params, %% Update stderr, corr and model parameters and compute perturbation approximation and steady state with updated parameters M = set_all_parameters(params,estim_params,M); -[~,info,M,options,oo] = compute_decision_rules(M,options,oo); +[~,info,M,oo] = compute_decision_rules(M,options,oo); Sigma_e = M.Sigma_e; if info(1) > 0 diff --git a/matlab/gsa/map_calibration.m b/matlab/gsa/map_calibration.m index 233f5d897ce9e85dc92989287eed72a2ab8bb578..1b5c66e5eda6f41b0e8d221b87a1501c86349948 100644 --- a/matlab/gsa/map_calibration.m +++ b/matlab/gsa/map_calibration.m @@ -102,9 +102,9 @@ if init for j=1:Nsam Model = set_all_parameters(lpmat(j,:)',EstimatedParameters,Model); if nbr_moment_restrictions - [Tt,Rr,SteadyState,info,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults); + [Tt,Rr,SteadyState,info,Model,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults); else - [Tt,Rr,SteadyState,info,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults,'restrict'); + [Tt,Rr,SteadyState,info,Model,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults,'restrict'); end if info(1)==0 [info, info_irf, info_moment, data_irf, data_moment]=endogenous_prior_restrictions(Tt,Rr,Model,DynareOptions,DynareResults); diff --git a/matlab/gsa/stab_map_.m b/matlab/gsa/stab_map_.m index 4677fcba48fd5fa9a5daf60c15138196903e9f87..766963a05932e77641a019d37a457624b2fc7de4 100644 --- a/matlab/gsa/stab_map_.m +++ b/matlab/gsa/stab_map_.m @@ -310,9 +310,9 @@ if fload==0 %try stoch_simul([]); try if ~ isempty(options_.endogenous_prior_restrictions.moment) - [Tt,Rr,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_); + [Tt,Rr,SteadyState,info,M_,oo_] = dynare_resolve(M_,options_,oo_); else - [Tt,Rr,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_,'restrict'); + [Tt,Rr,SteadyState,info,M_,oo_] = dynare_resolve(M_,options_,oo_,'restrict'); end infox(j,1)=info(1); if infox(j,1)==0 && ~exist('T','var') @@ -681,7 +681,7 @@ if length(iunstable)>0 || length(iwrong)>0 end M_ = set_all_parameters(x0,estim_params_,M_); - [oo_.dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_); + [oo_.dr,info,M_,oo_] = resol(0,M_,options_,oo_); % stoch_simul([]); else disp('All parameter values in the specified ranges are not acceptable!') diff --git a/matlab/identification_analysis.m b/matlab/identification_analysis.m index ed206a443bf2a6d629b6017b6a560704fc0bc1fe..fd6c2fef4039679b25b8160d8e5ab85a0d189fa4 100644 --- a/matlab/identification_analysis.m +++ b/matlab/identification_analysis.m @@ -133,7 +133,7 @@ no_identification_minimal = options_ident.no_identification_minimal; no_identification_spectrum = options_ident.no_identification_spectrum; %Compute linear approximation and fill dr structure -[oo_.dr,info,M_,options_,oo_] = compute_decision_rules(M_,options_,oo_); +[oo_.dr,info,M_,oo_] = compute_decision_rules(M_,options_,oo_); if info(1) == 0 %no errors in solution % Compute parameter Jacobians for identification analysis diff --git a/matlab/identification_numerical_objective.m b/matlab/identification_numerical_objective.m index 20af6d528a0af275bdbf261558265b06f5b9528e..c889e7fea43b5c4439b79224a0ca72d209b9d789 100644 --- a/matlab/identification_numerical_objective.m +++ b/matlab/identification_numerical_objective.m @@ -76,7 +76,7 @@ else end %% compute Kalman transition matrices and steady state with updated parameters -[~,info,M,options,oo] = compute_decision_rules(M,options,oo); +[~,info,M,oo] = compute_decision_rules(M,options,oo); options = rmfield(options,'options_ident'); pruned = pruned_state_space_system(M, options, oo.dr, indvar, nlags, useautocorr, 0); diff --git a/matlab/imcforecast.m b/matlab/imcforecast.m index 564420134553ec5239d16b2f69b48ec24c90da48..814672f001eb1afd98c92faff3523be97db1e155 100644 --- a/matlab/imcforecast.m +++ b/matlab/imcforecast.m @@ -126,7 +126,7 @@ if estimated_model qz_criterium_old=options_.qz_criterium; options_=select_qz_criterium_value(options_); options_smoothed_state_uncertainty_old = options_.smoothed_state_uncertainty; - [atT, ~, ~, ~,ys, ~, ~, ~, ~, ~, ~, ~, ~, ~,M_,oo_,options_,bayestopt_] = ... + [atT, ~, ~, ~,ys, ~, ~, ~, ~, ~, ~, ~, ~, ~,M_,oo_,bayestopt_] = ... DsgeSmoother(xparam, gend, data, data_index, missing_value, M_, oo_, options_, bayestopt_, estim_params_); options_.smoothed_state_uncertainty = options_smoothed_state_uncertainty_old; %get constant part @@ -171,7 +171,7 @@ if options_.logged_steady_state %if steady state was previously logged, undo thi options_.logged_steady_state=0; end -[T, R, ys, ~, M_, options_, oo_] = dynare_resolve(M_, options_, oo_); +[T, R, ys, ~, M_, oo_] = dynare_resolve(M_, options_, oo_); if options_.loglinear && isfield(oo_.dr,'ys') && options_.logged_steady_state==0 %log steady state oo_.dr.ys=log_variable(1:M_.endo_nbr,oo_.dr.ys,M_); diff --git a/matlab/method_of_moments/method_of_moments_objective_function.m b/matlab/method_of_moments/method_of_moments_objective_function.m index cd9767c8685840e0e57173d6e14ee4bc99d0ba01..cb069ef1820b40aba1aad04a8c778f8ec9fffa5f 100644 --- a/matlab/method_of_moments/method_of_moments_objective_function.m +++ b/matlab/method_of_moments/method_of_moments_objective_function.m @@ -96,7 +96,7 @@ end %-------------------------------------------------------------------------- % Compute linear approximation around the deterministic steady state -[dr, info, M_, options_mom_, oo_] = resol(0, M_, options_mom_, oo_); +[dr, info, M_, oo_] = resol(0, M_, options_mom_, oo_); % Return, with endogenous penalty when possible, if resol issues an error code if info(1) diff --git a/matlab/minus_logged_prior_density.m b/matlab/minus_logged_prior_density.m index 27e7828937ae3b2f5725121abff5d17833de5863..f3c7f6e528abf8a762f0a02a7910ea7627d0bb4a 100644 --- a/matlab/minus_logged_prior_density.m +++ b/matlab/minus_logged_prior_density.m @@ -122,7 +122,7 @@ end %----------------------------- M_ = set_all_parameters(xparams,EstimatedParams,DynareModel); -[dr,info,DynareModel,DynareOptions,DynareResults] = resol(0,DynareModel,DynareOptions,DynareResults); +[dr,info,DynareModel,DynareResults] = resol(0,DynareModel,DynareOptions,DynareResults); % Return, with endogenous penalty when possible, if dynare_resolve issues an error code (defined in resol). if info(1) diff --git a/matlab/non_linear_dsge_likelihood.m b/matlab/non_linear_dsge_likelihood.m index 1fc2ebad9dacc0d32f3b9521caaa23b769f80609..965f09f6b86ba5d25ae87787b5aeb2bdafd755b6 100644 --- a/matlab/non_linear_dsge_likelihood.m +++ b/matlab/non_linear_dsge_likelihood.m @@ -80,7 +80,7 @@ end %------------------------------------------------------------------------------ % Linearize the model around the deterministic sdteadystate and extract the matrices of the state equation (T and R). -[dr, info, Model, DynareOptions, DynareResults] = resol(0, Model, DynareOptions, DynareResults); +[dr, info, Model, DynareResults] = resol(0, Model, DynareOptions, DynareResults); if info(1) if info(1) == 3 || info(1) == 4 || info(1) == 5 || info(1)==6 ||info(1) == 19 || ... diff --git a/matlab/optimize_prior.m b/matlab/optimize_prior.m index e1790b6584829d009d8fcb404afc126f57f29f52..23a185c9991bf03d70b90c428b1a109409cbfb01 100644 --- a/matlab/optimize_prior.m +++ b/matlab/optimize_prior.m @@ -29,7 +29,7 @@ while look_for_admissible_initial_condition xinit = xparam1+scale*randn(size(xparam1)); if all(xinit(:)>BayesInfo.p3) && all(xinit(:)<BayesInfo.p4) ModelInfo = set_all_parameters(xinit,EstimationInfo,ModelInfo); - [dr,INFO,ModelInfo,DynareOptions,DynareResults] = resol(0,ModelInfo,DynareOptions,DynareResults); + [dr,INFO,ModelInfo,DynareResults] = resol(0,ModelInfo,DynareOptions,DynareResults); if ~INFO(1) look_for_admissible_initial_condition = 0; end diff --git a/matlab/osr1.m b/matlab/osr1.m index fbb87dc935e0a0959f02be6c2595845d208b04f1..4ccbbdb16954095e14d6c9ebf12e5d965dc3eb8c 100644 --- a/matlab/osr1.m +++ b/matlab/osr1.m @@ -143,7 +143,7 @@ if ~options_.noprint fprintf('Objective function : %16.6g\n\n',f); skipline() end -[oo_.dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_); +[oo_.dr,info,M_,oo_] = resol(0,M_,options_,oo_); if ~info osr_res.error_indicator=0; end \ No newline at end of file diff --git a/matlab/osr_obj.m b/matlab/osr_obj.m index 820e640b35f8aa235377278418931b04ddd8b2ca..694f25f29d5b0bd34dbf4769faef551ed031978f 100644 --- a/matlab/osr_obj.m +++ b/matlab/osr_obj.m @@ -47,7 +47,7 @@ M_.params(i_params) = x; % don't change below until the part where the loss function is computed it_ = M_.maximum_lag+1; -[dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_); +[dr,info,M_,oo_] = resol(0,M_,options_,oo_); if info(1) if info(1) == 3 || info(1) == 4 || info(1) == 5 || info(1)==6 ||info(1) == 19 ||... diff --git a/matlab/particles b/matlab/particles index a5c2c4af4b4aeeb9f4a51860c244d790dac3b8b5..1451bf64a2de2f3e8c78cb91bf4e045732f337ab 160000 --- a/matlab/particles +++ b/matlab/particles @@ -1 +1 @@ -Subproject commit a5c2c4af4b4aeeb9f4a51860c244d790dac3b8b5 +Subproject commit 1451bf64a2de2f3e8c78cb91bf4e045732f337ab diff --git a/matlab/perfect-foresight-models/det_cond_forecast.m b/matlab/perfect-foresight-models/det_cond_forecast.m index 126dc13ceb3e7c06263771c5ae416a87bbb88cda..41e048474760b02d635e1d31dc070c51fc67fb14 100644 --- a/matlab/perfect-foresight-models/det_cond_forecast.m +++ b/matlab/perfect-foresight-models/det_cond_forecast.m @@ -47,7 +47,7 @@ if ~isfield(oo_,'dr') || ~isfield(oo_.dr,'ghx') dr = struct(); oo_.dr=set_state_space(dr,M_,options_); options_.order = 1; - [dr,Info,M_,options_,oo_] = resol(0,M_,options_,oo_); + [dr,Info,M_,oo_] = resol(0,M_,options_,oo_); fprintf('done\n'); end b_surprise = 0; diff --git a/matlab/perfect-foresight-models/perfect_foresight_simulation.m b/matlab/perfect-foresight-models/perfect_foresight_simulation.m index 44a145e49cc56b8921c2bef28b2db85ff4c3799b..8e3d6ff0dc20a47cd9c97ccf7d4bc462e99b98a0 100644 --- a/matlab/perfect-foresight-models/perfect_foresight_simulation.m +++ b/matlab/perfect-foresight-models/perfect_foresight_simulation.m @@ -74,7 +74,7 @@ else end if ~isstruct(compute_linear_solution) && compute_linear_solution - [dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_); + [dr,info,M_,oo_] = resol(0,M_,options_,oo_); elseif isstruct(compute_linear_solution) dr = compute_linear_solution; compute_linear_solution = 1; diff --git a/matlab/prior_posterior_statistics_core.m b/matlab/prior_posterior_statistics_core.m index c4777edee44271fd41ac43fc1eac587416e3d179..a98405d57bf46072288d99b2c012dd75be402b77 100644 --- a/matlab/prior_posterior_statistics_core.m +++ b/matlab/prior_posterior_statistics_core.m @@ -213,17 +213,17 @@ for b=fpar:B M_ = set_all_parameters(deep,estim_params_,M_); if run_smoother - [dr,info,M_,opts_local,oo_] =compute_decision_rules(M_,opts_local,oo_); + [dr,info,M_,oo_] =compute_decision_rules(M_,opts_local,oo_); if ismember(info(1),[3,4]) opts_local.qz_criterium = 1 + (opts_local.qz_criterium-1)*10; %loosen tolerance, useful for big models where BK conditions were tested on restricted state space - [dr,info,M_,opts_local,oo_] =compute_decision_rules(M_,opts_local,oo_); + [dr,info,M_,oo_] =compute_decision_rules(M_,opts_local,oo_); end if info(1) message=get_error_message(info,opts_local); fprintf('\nprior_posterior_statistics: One of the draws failed with the error:\n%s\n',message) fprintf('prior_posterior_statistics: This should not happen. Please contact the developers.\n',message) end - [alphahat,etahat,epsilonhat,alphatilde,SteadyState,trend_coeff,aK,~,~,P,~,~,trend_addition,state_uncertainty,M_,oo_,opts_local,bayestopt_] = ... + [alphahat,etahat,epsilonhat,alphatilde,SteadyState,trend_coeff,aK,~,~,P,~,~,trend_addition,state_uncertainty,M_,oo_,bayestopt_] = ... DsgeSmoother(deep,gend,Y,data_index,missing_value,M_,oo_,opts_local,bayestopt_,estim_params_); stock_trend_coeff(options_.varobs_id,irun(9))=trend_coeff; @@ -354,7 +354,7 @@ for b=fpar:B stock_smoothed_uncert(dr.order_var,dr.order_var,:,irun(13)) = state_uncertainty; end else - [T,R,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_); + [T,R,SteadyState,info,M_,oo_] = dynare_resolve(M_,options_,oo_); end stock_param(irun(5),:) = deep; stock_logpo(irun(5),1) = logpo; diff --git a/matlab/prior_sampler.m b/matlab/prior_sampler.m index a30d5bfe00924c20daf6cc756a3324a05415819c..b15e9d8c0e8c9eb444f312d2d9a29a846c0f024f 100644 --- a/matlab/prior_sampler.m +++ b/matlab/prior_sampler.m @@ -96,7 +96,7 @@ while iteration < NumberOfSimulations loop_indx = loop_indx+1; params = prior_draw(); M_ = set_all_parameters(params,estim_params_,M_); - [T,R,~,INFO,M_,options_,oo_] = dynare_resolve(M_,options_,oo_,'restrict'); + [T,R,~,INFO,M_,oo_] = dynare_resolve(M_,options_,oo_,'restrict'); dr=oo_.dr; if ~INFO(1) INFO=endogenous_prior_restrictions(T,R,M_,options_,oo_); diff --git a/matlab/realtime_shock_decomposition.m b/matlab/realtime_shock_decomposition.m index 23cc5919b4b2e4b9369fd42fb247b045159b6fc0..58f9fbf8e53d75d4d235f3608da5a2ce0f9abd55 100644 --- a/matlab/realtime_shock_decomposition.m +++ b/matlab/realtime_shock_decomposition.m @@ -113,7 +113,7 @@ nobs = options_.nobs; if forecast_ && any(forecast_params) M1=M_; M1.params = forecast_params; - [~,~,~,~,~,~,oo1] = dynare_resolve(M1,options_,oo_); + [~,~,~,~,~,oo1] = dynare_resolve(M1,options_,oo_); end gend0=0; diff --git a/matlab/resol.m b/matlab/resol.m index c98c0d9ccb9d1b5cec76a6b158b80d378d009dc9..f6bf12a5102a7d2541fef0d3b81c4e6d48427ea7 100644 --- a/matlab/resol.m +++ b/matlab/resol.m @@ -1,4 +1,4 @@ -function [dr, info, M, options, oo] = resol(check_flag, M, options, oo) +function [dr, info, M, oo] = resol(check_flag, M, options, oo) % Computes the perturbation based decision rules of the DSGE model (orders 1 to 3) % @@ -12,7 +12,6 @@ function [dr, info, M, options, oo] = resol(check_flag, M, options, oo) % - dr [structure] Reduced form model. % - info [integer] scalar or vector, error code. % - M [structure] Matlab's structure describing the model (M_). -% - options [structure] Matlab's structure describing the current options (options_). % - oo [structure] Matlab's structure containing the results (oo_). % % REMARKS @@ -113,7 +112,7 @@ if options.loglinear end if options.block - [dr,info,M,options,oo] = dr_block(dr,check_flag,M,options,oo); + [dr,info,M,oo] = dr_block(dr,check_flag,M,options,oo); dr.edim = nnz(abs(dr.eigval) > options.qz_criterium); dr.sdim = dr.nd-dr.edim; else diff --git a/matlab/reversed_extended_path.m b/matlab/reversed_extended_path.m index 156b03b30ad8ea5cbe30867531fd17bc3d85db34..38cfdbe3d43703c7b4893b33569228788b6c4506 100644 --- a/matlab/reversed_extended_path.m +++ b/matlab/reversed_extended_path.m @@ -48,7 +48,7 @@ steady_; % Compute the first order perturbation reduced form. old_options_order = options_.order; options_.order = 1; -[dr,info,M_,options_,oo_] = compute_decision_rules(M_,options_,oo_); +[dr,info,M_,oo_] = compute_decision_rules(M_,options_,oo_); oo_.dr = dr; options_.order = old_options_order; diff --git a/matlab/selec_posterior_draws.m b/matlab/selec_posterior_draws.m index 80df5ac9e119441f3301aab89641bfd01eb2d300..8ab7560d4ff7abcc0754e4ade4b2397faaeb722a 100644 --- a/matlab/selec_posterior_draws.m +++ b/matlab/selec_posterior_draws.m @@ -115,7 +115,7 @@ if info pdraws(i,1) = {x2(SampleAddress(i,4),:)}; if info-1 set_parameters(pdraws{i,1}); - [dr,info,M_,options_,oo_] =compute_decision_rules(M_,options_,oo_); + [dr,info,M_,oo_] =compute_decision_rules(M_,options_,oo_); pdraws(i,2) = { dr }; end old_mhfile = mhfile; diff --git a/matlab/simulated_moment_uncertainty.m b/matlab/simulated_moment_uncertainty.m index 73b607a2658fc32536e01ba25193ad403c5d315f..6e6254e2a5082401844364a0a2efa1af0b8c4140 100644 --- a/matlab/simulated_moment_uncertainty.m +++ b/matlab/simulated_moment_uncertainty.m @@ -71,7 +71,7 @@ else logged_steady_state_indicator=0; end -[dr,info,M_,options_,oo_] = compute_decision_rules(M_,options_,oo_); +[dr,info,M_,oo_] = compute_decision_rules(M_,options_,oo_); oo_.dr=dr; if info(1) fprintf('\nsimulated_moment_uncertainty: model could not be solved') diff --git a/matlab/stoch_simul.m b/matlab/stoch_simul.m index 7e144a27db484eb494974012a505f493c815e5bd..d7c635203adf40c7f969303e1bbf620330fb7932 100644 --- a/matlab/stoch_simul.m +++ b/matlab/stoch_simul.m @@ -99,14 +99,14 @@ elseif options_.discretionary_policy if ~options_.order==1 error('discretionary_policy: only linear-quadratic problems can be solved'); end - [~,info,M_,options_,oo_] = discretionary_policy_1(options_.instruments,M_,options_,oo_); + [~,info,M_,oo_] = discretionary_policy_1(options_.instruments,M_,options_,oo_); else if options_.logged_steady_state %if steady state was previously logged, undo this oo_.dr.ys=exp(oo_.dr.ys); oo_.steady_state=exp(oo_.steady_state); options_.logged_steady_state=0; end - [~,info,M_,options_,oo_] = resol(0,M_,options_,oo_); + [~,info,M_,oo_] = resol(0,M_,options_,oo_); end if options_.loglinear && isfield(oo_.dr,'ys') && options_.logged_steady_state==0 %log steady state for correct display of decision rule diff --git a/tests/analytic_derivatives/BrockMirman_PertParamsDerivs.mod b/tests/analytic_derivatives/BrockMirman_PertParamsDerivs.mod index f0a611ffedbcf85aba120c33cdfdbccbc3d8a84a..f1efb410c76fb56f53c07fbf113f717ceaebfc77 100644 --- a/tests/analytic_derivatives/BrockMirman_PertParamsDerivs.mod +++ b/tests/analytic_derivatives/BrockMirman_PertParamsDerivs.mod @@ -433,7 +433,7 @@ for jj = 1:2 xparam1_calib = [xparam1_calib; calib_params(indpmodel)]; M_ = set_all_parameters(xparam1_calib,estim_params_,M_); end - [~,info,M_,options_,oo_] = resol(0,M_, options_, oo_); + [~,info,M_,oo_] = resol(0,M_, options_, oo_); %For convenience we save the objects to compare into oo_.dr. oo_.dr.Yss = oo_.dr.ys(oo_.dr.order_var); oo_.dr.Sigma_e = M_.Sigma_e; diff --git a/tests/analytic_derivatives/burnside_3_order_PertParamsDerivs.mod b/tests/analytic_derivatives/burnside_3_order_PertParamsDerivs.mod index 3ad9f86d075b5801b5f3f862e59a18cc2db02c13..c1279612cdf05387611f9d0198f7d4608babf3bd 100644 --- a/tests/analytic_derivatives/burnside_3_order_PertParamsDerivs.mod +++ b/tests/analytic_derivatives/burnside_3_order_PertParamsDerivs.mod @@ -115,7 +115,7 @@ identification(order=@{ORDER},nograph,no_identification_strength); %make sure everything is computed at prior mean xparam_prior = set_prior(estim_params_,M_,options_); M_ = set_all_parameters(xparam_prior,estim_params_,M_); -[~,info,M_,options_,oo_] = resol(0,M_, options_, oo_); +[~,info,M_,oo_] = resol(0,M_, options_, oo_); indpmodel = estim_params_.param_vals(:,1); indpstderr = estim_params_.var_exo(:,1); diff --git a/tests/kalman_filter_smoother/compare_results_simulation/fs2000.mod b/tests/kalman_filter_smoother/compare_results_simulation/fs2000.mod index 0d2482d77b4e8a999ef37981b2b3700ddb1651a1..4dbc841800135cd5eb56d6a377dc48dd1df8a831 100644 --- a/tests/kalman_filter_smoother/compare_results_simulation/fs2000.mod +++ b/tests/kalman_filter_smoother/compare_results_simulation/fs2000.mod @@ -129,7 +129,7 @@ y0 = [y0; oo_.SmoothedVariables.Mean.(M_.endo_names{endo_iter})(1)]; end; %make sure decision rules were updated -[oo_.dr,info,M_,options_] = resol(0,M_,options_,oo_); +[oo_.dr,info,M_] = resol(0,M_,options_,oo_); dr = oo_.dr; iorder=1; diff --git a/tests/kalman_filter_smoother/compare_results_simulation/fs2000_ML.mod b/tests/kalman_filter_smoother/compare_results_simulation/fs2000_ML.mod index 4dc2d616b5cc393162b06cdad14c10594f361f6c..c6b678699912fd8b1703ecfe76e434534e3fd3ac 100644 --- a/tests/kalman_filter_smoother/compare_results_simulation/fs2000_ML.mod +++ b/tests/kalman_filter_smoother/compare_results_simulation/fs2000_ML.mod @@ -132,7 +132,7 @@ y0 = [y0; oo_.SmoothedVariables.(M_.endo_names{endo_iter})(1)]; end; %make sure decision rules were updated -[oo_.dr,info,M_,options_] = resol(0,M_,options_,oo_); +[oo_.dr,info,M_] = resol(0,M_,options_,oo_); dr = oo_.dr; iorder=1; diff --git a/tests/kalman_filter_smoother/compare_results_simulation/fs2000_ML_loglinear.mod b/tests/kalman_filter_smoother/compare_results_simulation/fs2000_ML_loglinear.mod index 601ba275d8251cce1a13ab189eb88ab717a7fe8a..a67addf782f4465f1bd4d424c8e81341dca19d21 100644 --- a/tests/kalman_filter_smoother/compare_results_simulation/fs2000_ML_loglinear.mod +++ b/tests/kalman_filter_smoother/compare_results_simulation/fs2000_ML_loglinear.mod @@ -132,7 +132,7 @@ y0 = [y0; oo_.SmoothedVariables.(M_.endo_names{endo_iter})(1)]; end; %make sure decision rules were updated -[oo_.dr,info,M_,options_] = resol(0,M_,options_,oo_); +[oo_.dr,info,M_] = resol(0,M_,options_,oo_); dr = oo_.dr; iorder=1; diff --git a/tests/kalman_filter_smoother/compare_results_simulation/fs2000_loglinear.mod b/tests/kalman_filter_smoother/compare_results_simulation/fs2000_loglinear.mod index 7a79cb7edf4cbf1bbbfa5686444e29a04adf183a..8d6ebbf71a00942ba87ef3c5de6ef7a09c9ee385 100644 --- a/tests/kalman_filter_smoother/compare_results_simulation/fs2000_loglinear.mod +++ b/tests/kalman_filter_smoother/compare_results_simulation/fs2000_loglinear.mod @@ -146,7 +146,7 @@ y0 = [y0; oo_.SmoothedVariables.Mean.(M_.endo_names{endo_iter})(1)]; end; %make sure decision rules were updated -[oo_.dr,info,M_,options_] = resol(0,M_,options_,oo_); +[oo_.dr,info,M_] = resol(0,M_,options_,oo_); dr = oo_.dr; iorder=1; diff --git a/tests/kalman_filter_smoother/test_compute_Pinf_Pstar.mod b/tests/kalman_filter_smoother/test_compute_Pinf_Pstar.mod index e2551ef2ca8388ab4c0651d47d67ff54ac2d007b..3836769c7a7972240def3629a7465a54a0bd4d32 100644 --- a/tests/kalman_filter_smoother/test_compute_Pinf_Pstar.mod +++ b/tests/kalman_filter_smoother/test_compute_Pinf_Pstar.mod @@ -95,7 +95,7 @@ calib_smoother(datafile=Data,diffuse_filter); mf = bayestopt_.smoother_var_list(bayestopt_.smoother_mf); Q = M_.Sigma_e; -[T,R,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_); +[T,R,SteadyState,info,M_,oo_] = dynare_resolve(M_,options_,oo_); [Pstar,Pinf] = compute_Pinf_Pstar(mf,T,R,Q,options_.qz_criterium);