diff --git a/doc/dynare.texi b/doc/dynare.texi index 3449c209c37def776cccf40342c3b15cb66d7c85..9e980d681e594bfe660aada6366ecfd7c401a3ef 100644 --- a/doc/dynare.texi +++ b/doc/dynare.texi @@ -3480,6 +3480,7 @@ end; @deffn Command check ; @deffnx Command check (solve_algo = @var{INTEGER}) ; +@anchor{check} @descriptionhead @@ -6345,6 +6346,22 @@ Sets the method for approximating the particle distribution. Possible values for @item cpf_weights = @var{OPTION} @anchor{cpf_weights} Controls the method used to update the weights in conditional particle filter, possible values are @code{amisanotristani} (@cite{Amisano et al (2010)}) or @code{murrayjonesparslow} (@cite{Murray et al. (2013)}). Default value is @code{amisanotristani}. +@item nonlinear_filter_initialization = @var{INTEGER} +@anchor{nonlinear_filter_initialization} Sets the initial condition of the +nonlinear filters. By default the nonlinear filters are initialized with the +unconditional covariance matrix of the state variables, computed with the +reduced form solution of the first order approximation of the model. If +@code{nonlinear_filter_initialization=2}, the nonlinear filter is instead +initialized with a covariance matrix estimated with a stochastic simulation of +the reduced form solution of the second order approximation of the model. Both +these initializations assume that the model is stationary, and cannot be used +if the model has unit roots (which can be seen with the @ref{check} command +prior to estimation). If the model has stochastic trends, user must use +@code{nonlinear_filter_initialization=3}, the filters are then initialized with +an identity matrix for the covariance matrix of the state variables. Default +value is @code{nonlinear_filter_initialization=1} (initialization based on the +first order approximation of the model). + @end table diff --git a/matlab/non_linear_dsge_likelihood.m b/matlab/non_linear_dsge_likelihood.m index 3debf8b7fccc4b7670ab635d1fbdf966e68613b3..57e02a0b7a0a6c0968ebcfbe592c95911fdfd869 100644 --- a/matlab/non_linear_dsge_likelihood.m +++ b/matlab/non_linear_dsge_likelihood.m @@ -316,7 +316,8 @@ switch DynareOptions.particle.initialization StateVectorVariance = cov(y_'); DynareOptions.periods = old_DynareOptionsperiods; clear('old_DynareOptionsperiods','y_'); - case 3% Initial state vector covariance is a diagonal matrix. + case 3% Initial state vector covariance is a diagonal matrix (to be used + % if model has stochastic trends). StateVectorMean = ReducedForm.constant(mf0); StateVectorVariance = DynareOptions.particle.initial_state_prior_std*eye(number_of_state_variables); otherwise diff --git a/matlab/select_qz_criterium_value.m b/matlab/select_qz_criterium_value.m index 09282747ea32c93cb7d3777d3ea7b7c5b8eb2ac8..b2e4225ea1aff9c9798a15b5991ad4d666301daf 100644 --- a/matlab/select_qz_criterium_value.m +++ b/matlab/select_qz_criterium_value.m @@ -36,21 +36,36 @@ function options_=select_qz_criterium_value(options_) % set by default options_.qz_criterium to 1+1e-6 stack = dbstack; -if isequal(options_.lik_init,1) - if isempty(options_.qz_criterium) - options_.qz_criterium = 1-1e-6; - elseif options_.qz_criterium > 1-eps - error([stack(2).file ': option qz_criterium is too large for estimating/smoothing ' ... - 'a stationary model. If your model contains unit roots, use ' ... - 'option diffuse_filter']) +if options_.particle.status + % Non linear filter + if isequal(options_.particle.initialization, 3) + if isempty(options_.qz_criterium) + options_.qz_criterium = 1+1e-6; + else + if options_.qz_criterium <= 1 + fprintf('\n%s:: You set nonlinear_filter_initialization equal to 3, it is assumed that you try to estimate a non stationary model. Resetting it to 1+1e-6.\n', stack(2).file) + options_.qz_criterium = 1+1e-6; + end + end end else - if isempty(options_.qz_criterium) - options_.qz_criterium = 1+1e-6; + % Linear filter + if isequal(options_.lik_init,1) + if isempty(options_.qz_criterium) + options_.qz_criterium = 1-1e-6; + elseif options_.qz_criterium > 1-eps + error([stack(2).file ': option qz_criterium is too large for estimating/smoothing ' ... + 'a stationary model. If your model contains unit roots, use ' ... + 'option diffuse_filter']) + end else - if options_.qz_criterium <= 1 - fprintf('\n%s:: diffuse filter is incompatible with a qz_criterium<=1. Resetting it to 1+1e-6.\n',stack(2).file) + if isempty(options_.qz_criterium) options_.qz_criterium = 1+1e-6; + else + if options_.qz_criterium <= 1 + fprintf('\n%s:: diffuse filter is incompatible with a qz_criterium<=1. Resetting it to 1+1e-6.\n',stack(2).file) + options_.qz_criterium = 1+1e-6; + end end end -end +end \ No newline at end of file diff --git a/preprocessor/DynareBison.yy b/preprocessor/DynareBison.yy index e5f71d6633d99aa324bd866eb7ad39c3bd691978..c495801a03ecbbfb772cddd5ac706ea2636f9993 100644 --- a/preprocessor/DynareBison.yy +++ b/preprocessor/DynareBison.yy @@ -111,7 +111,7 @@ class ParsingDriver; %token MODEL_DIAGNOSTICS MODIFIEDHARMONICMEAN MOMENTS_VARENDO CONTEMPORANEOUS_CORRELATION DIFFUSE_FILTER SUB_DRAWS TAPER_STEPS GEWEKE_INTERVAL RAFTERY_LEWIS_QRS RAFTERY_LEWIS_DIAGNOSTICS MCMC_JUMPING_COVARIANCE MOMENT_CALIBRATION %token NUMBER_OF_PARTICLES RESAMPLING SYSTEMATIC GENERIC RESAMPLING_THRESHOLD RESAMPLING_METHOD KITAGAWA STRATIFIED SMOOTH %token CPF_WEIGHTS AMISANOTRISTANI MURRAYJONESPARSLOW -%token FILTER_ALGORITHM PROPOSAL_APPROXIMATION CUBATURE UNSCENTED MONTECARLO DISTRIBUTION_APPROXIMATION +%token NONLINEAR_FILTER_INITIALIZATION FILTER_ALGORITHM PROPOSAL_APPROXIMATION CUBATURE UNSCENTED MONTECARLO DISTRIBUTION_APPROXIMATION %token <string_val> NAME %token USE_PENALIZED_OBJECTIVE_FOR_HESSIAN INIT_STATE %token NAN_CONSTANT NO_STATIC NOBS NOCONSTANT NODISPLAY NOCORR NODIAGNOSTIC NOFUNCTIONS NO_HOMOTOPY @@ -1818,6 +1818,7 @@ estimation_options : o_datafile | o_resampling_threshold | o_resampling_method | o_filter_algorithm + | o_nonlinear_filter_initialization | o_cpf_weights | o_proposal_approximation | o_distribution_approximation @@ -3085,6 +3086,7 @@ o_resampling_method : RESAMPLING_METHOD EQUAL KITAGAWA {driver.option_num("parti o_cpf_weights : CPF_WEIGHTS EQUAL AMISANOTRISTANI {driver.option_num("particle.cpf_weights_method.amisanotristani", "1"); driver.option_num("particle.cpf_weights_method.murrayjonesparslow", "0"); } | CPF_WEIGHTS EQUAL MURRAYJONESPARSLOW {driver.option_num("particle.cpf_weights_method.amisanotristani", "0"); driver.option_num("particle.cpf_weights_method.murrayjonesparslow", "1"); }; o_filter_algorithm : FILTER_ALGORITHM EQUAL symbol { driver.option_str("particle.filter_algorithm", $3); }; +o_nonlinear_filter_initialization : NONLINEAR_FILTER_INITIALIZATION EQUAL INT_NUMBER { driver.option_num("particle.initialization", $3); }; o_proposal_approximation : PROPOSAL_APPROXIMATION EQUAL CUBATURE {driver.option_num("particle.proposal_approximation.cubature", "1"); driver.option_num("particle.proposal_approximation.unscented", "0"); driver.option_num("particle.proposal_approximation.montecarlo", "0");} | PROPOSAL_APPROXIMATION EQUAL UNSCENTED {driver.option_num("particle.proposal_approximation.cubature", "0"); driver.option_num("particle.proposal_approximation.unscented", "1"); driver.option_num("particle.proposal_approximation.montecarlo", "0");} | PROPOSAL_APPROXIMATION EQUAL MONTECARLO {driver.option_num("particle.proposal_approximation.cubature", "0"); driver.option_num("particle.proposal_approximation.unscented", "0"); driver.option_num("particle.proposal_approximation.montecarlo", "1");} ; diff --git a/preprocessor/DynareFlex.ll b/preprocessor/DynareFlex.ll index 299d31eddaccf8af091a53cde112e86973cd8aef..0a1588c5ae79d33eeb578b6501dcdb9f51dd0c81 100644 --- a/preprocessor/DynareFlex.ll +++ b/preprocessor/DynareFlex.ll @@ -398,6 +398,7 @@ DATE -?[0-9]+([YyAa]|[Mm]([1-9]|1[0-2])|[Qq][1-4]|[Ww]([1-9]{1}|[1-4][0-9]|5[0-2 <DYNARE_STATEMENT>amisanotristani {return token::AMISANOTRISTANI;} <DYNARE_STATEMENT>murrayjonesparslow {return token::MURRAYJONESPARSLOW;} <DYNARE_STATEMENT>filter_algorithm {return token::FILTER_ALGORITHM;} +<DYNARE_STATEMENT>nonlinear_filter_initialization {return token::NONLINEAR_FILTER_INITIALIZATION;} <DYNARE_STATEMENT>proposal_approximation {return token::PROPOSAL_APPROXIMATION;} <DYNARE_STATEMENT>cubature {return token::CUBATURE;} <DYNARE_STATEMENT>unscented {return token::UNSCENTED;}