Skip to content
Snippets Groups Projects
Verified Commit 313003b1 authored by Stéphane Adjemian's avatar Stéphane Adjemian
Browse files

Allow k order approximation in Gaussian Mixture Filter (gmf).

Ref. dynare#1673
parent 472d755d
No related branches found
No related tags found
No related merge requests found
function IncrementalWeights = gaussian_mixture_densities(obs,StateMuPrior,StateSqrtPPrior,StateWeightsPrior,...
StateMuPost,StateSqrtPPost,StateWeightsPost,...
StateParticles,H,normconst,weigths1,weigths2,ReducedForm,ThreadsOptions)
%
function IncrementalWeights = gaussian_mixture_densities(obs, StateMuPrior, StateSqrtPPrior, StateWeightsPrior, ...
StateMuPost, StateSqrtPPost, StateWeightsPost, StateParticles, H, ...
ReducedForm, ThreadsOptions, DynareOptions, Model)
% Elements to calculate the importance sampling ratio
%
% INPUTS
......@@ -21,7 +21,8 @@ function IncrementalWeights = gaussian_mixture_densities(obs,StateMuPrior,State
%
% NOTES
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright (C) 2009-2017 Dynare Team
% Copyright (C) 2009-2019 Dynare Team
%
% This file is part of Dynare.
%
......@@ -39,19 +40,16 @@ function IncrementalWeights = gaussian_mixture_densities(obs,StateMuPrior,State
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% Compute the density of particles under the prior distribution
[ras,ras,prior] = probability(StateMuPrior,StateSqrtPPrior,StateWeightsPrior,StateParticles) ;
prior = prior' ;
[~, ~, prior] = probability(StateMuPrior, StateSqrtPPrior, StateWeightsPrior, StateParticles);
prior = prior';
% Compute the density of particles under the proposal distribution
[ras,ras,proposal] = probability(StateMuPost,StateSqrtPPost,StateWeightsPost,StateParticles) ;
proposal = proposal' ;
[~, ~, proposal] = probability(StateMuPost, StateSqrtPPost, StateWeightsPost, StateParticles);
proposal = proposal';
% Compute the density of the current observation conditionally to each particle
yt_t_1_i = measurement_equations(StateParticles,ReducedForm,ThreadsOptions) ;
%eta_t_i = bsxfun(@minus,obs,yt_t_1_i)' ;
%yt_t_1 = sum(yt_t_1_i*weigths1,2) ;
%tmp = bsxfun(@minus,yt_t_1_i,yt_t_1) ;
%Pyy = bsxfun(@times,weigths2',tmp)*tmp' + H ;
%sqr_det = sqrt(det(Pyy)) ;
%foo = (eta_t_i/Pyy).*eta_t_i ;
%likelihood = exp(-0.5*sum(foo,2))/(normconst*sqr_det) + 1e-99 ;
likelihood = probability2(obs,sqrt(H),yt_t_1_i) ;
IncrementalWeights = likelihood.*prior./proposal ;
yt_t_1_i = measurement_equations(StateParticles, ReducedForm, ThreadsOptions, DynareOptions, Model);
% likelihood
likelihood = probability2(obs, sqrt(H), yt_t_1_i);
IncrementalWeights = likelihood.*prior./proposal;
This diff is collapsed.
function [StateMuPrior,StateSqrtPPrior,StateWeightsPrior,StateMuPost,StateSqrtPPost,StateWeightsPost] =...
gaussian_mixture_filter_bank(ReducedForm,obs,StateMu,StateSqrtP,StateWeights,...
StructuralShocksMu,StructuralShocksSqrtP,StructuralShocksWeights,...
ObservationShocksMu,ObservationShocksSqrtP,ObservationShocksWeights,...
H,H_lower_triangular_cholesky,normfactO,ParticleOptions,ThreadsOptions)
%
gaussian_mixture_filter_bank(ReducedForm, obs, StateMu, StateSqrtP, StateWeights, ...
StructuralShocksMu, StructuralShocksSqrtP, StructuralShocksWeights, ...
ObservationShocksWeights, H, H_lower_triangular_cholesky, normfactO, ...
ParticleOptions, ThreadsOptions, DynareOptions, Model)
% Computes the proposal with a gaussian approximation for importance
% sampling
% This proposal is a gaussian distribution calculated à la Kalman
......@@ -23,7 +23,8 @@ function [StateMuPrior,StateSqrtPPrior,StateWeightsPrior,StateMuPost,StateSqrtPP
%
% NOTES
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright (C) 2009-2017 Dynare Team
% Copyright (C) 2009-2019 Dynare Team
%
% This file is part of Dynare.
%
......@@ -40,86 +41,73 @@ function [StateMuPrior,StateSqrtPPrior,StateWeightsPrior,StateMuPost,StateSqrtPP
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent init_flag2 mf0 mf1 %nodes3 weights3 weights_c3
persistent number_of_state_variables number_of_observed_variables
persistent number_of_structural_innovations
% Set local state space model (first-order approximation).
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
% Set local state space model (second-order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
if any(any(isnan(ghx))) || any(any(isnan(ghu))) || any(any(isnan(ghxx))) || any(any(isnan(ghuu))) || any(any(isnan(ghxu))) || ...
any(any(isinf(ghx))) || any(any(isinf(ghu))) || any(any(isinf(ghxx))) || any(any(isinf(ghuu))) || any(any(isinf(ghxu))) ...
any(any(abs(ghx)>1e4)) || any(any(abs(ghu)>1e4)) || any(any(abs(ghxx)>1e4)) || any(any(abs(ghuu)>1e4)) || any(any(abs(ghxu)>1e4))
ghx
ghu
ghxx
ghuu
ghxu
if ReducedForm.use_k_order_solver
dr = ReducedForm.dr;
else
% Set local state space model (first-order approximation).
ghx = ReducedForm.ghx;
ghu = ReducedForm.ghu;
% Set local state space model (second-order approximation).
ghxx = ReducedForm.ghxx;
ghuu = ReducedForm.ghuu;
ghxu = ReducedForm.ghxu;
end
constant = ReducedForm.constant;
state_variables_steady_state = ReducedForm.state_variables_steady_state;
% Set persistent variables.
if isempty(init_flag2)
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
init_flag2 = 1;
end
mf0 = ReducedForm.mf0;
mf1 = ReducedForm.mf1;
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(ReducedForm.Q);
numb = number_of_state_variables+number_of_structural_innovations ;
numb = number_of_state_variables+number_of_structural_innovations;
if ParticleOptions.proposal_approximation.cubature
[nodes3,weights3] = spherical_radial_sigma_points(numb);
[nodes3, weights3] = spherical_radial_sigma_points(numb);
weights_c3 = weights3;
elseif ParticleOptions.proposal_approximation.unscented
[nodes3,weights3,weights_c3] = unscented_sigma_points(numb,ParticleOptions);
[nodes3, weights3, weights_c3] = unscented_sigma_points(numb, ParticleOptions);
else
error('Estimation: This approximation for the proposal is not implemented or unknown!')
error('This approximation for the proposal is unknown!')
end
epsilon = bsxfun(@plus,StructuralShocksSqrtP*nodes3(:,number_of_state_variables+1:number_of_state_variables+number_of_structural_innovations)',StructuralShocksMu) ;
StateVectors = bsxfun(@plus,StateSqrtP*nodes3(:,1:number_of_state_variables)',StateMu);
yhat = bsxfun(@minus,StateVectors,state_variables_steady_state);
tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2);
epsilon = bsxfun(@plus, StructuralShocksSqrtP*nodes3(:,number_of_state_variables+1:number_of_state_variables+number_of_structural_innovations)', StructuralShocksMu);
StateVectors = bsxfun(@plus, StateSqrtP*nodes3(:,1:number_of_state_variables)', StateMu);
yhat = bsxfun(@minus, StateVectors, state_variables_steady_state);
if ReducedForm.use_k_order_solver
tmp = local_state_space_iteration_k(yhat, epsilon, dr, Model, DynareOptions);
else
tmp = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, ThreadsOptions.local_state_space_iteration_2);
end
PredictedStateMean = tmp(mf0,:)*weights3;
PredictedObservedMean = tmp(mf1,:)*weights3;
if ParticleOptions.proposal_approximation.cubature
PredictedStateMean = sum(PredictedStateMean,2);
PredictedObservedMean = sum(PredictedObservedMean,2);
dState = (bsxfun(@minus,tmp(mf0,:),PredictedStateMean)').*sqrt(weights3);
dObserved = (bsxfun(@minus,tmp(mf1,:),PredictedObservedMean)').*sqrt(weights3);
PredictedStateMean = sum(PredictedStateMean, 2);
PredictedObservedMean = sum(PredictedObservedMean, 2);
dState = (bsxfun(@minus, tmp(mf0,:), PredictedStateMean)').*sqrt(weights3);
dObserved = (bsxfun(@minus, tmp(mf1,:), PredictedObservedMean)').*sqrt(weights3);
PredictedStateVariance = dState'*dState;
big_mat = [dObserved dState ; [H_lower_triangular_cholesky zeros(number_of_observed_variables,number_of_state_variables)] ];
[mat1,mat] = qr2(big_mat,0);
big_mat = [dObserved, dState ; H_lower_triangular_cholesky, zeros(number_of_observed_variables, number_of_state_variables)];
[~, mat] = qr2(big_mat, 0);
mat = mat';
clear('mat1');
PredictedObservedVarianceSquareRoot = mat(1:number_of_observed_variables,1:number_of_observed_variables);
CovarianceObservedStateSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),1:number_of_observed_variables);
StateVectorVarianceSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),number_of_observed_variables+(1:number_of_state_variables));
PredictedObservedVarianceSquareRoot = mat(1:number_of_observed_variables, 1:number_of_observed_variables);
CovarianceObservedStateSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables), 1:number_of_observed_variables);
StateVectorVarianceSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables), number_of_observed_variables+(1:number_of_state_variables));
iPredictedObservedVarianceSquareRoot = inv(PredictedObservedVarianceSquareRoot);
iPredictedObservedVariance = iPredictedObservedVarianceSquareRoot'*iPredictedObservedVarianceSquareRoot;
sqrdet = 1/sqrt(det(iPredictedObservedVariance));
PredictionError = obs - PredictedObservedMean;
StateVectorMean = PredictedStateMean + CovarianceObservedStateSquareRoot*iPredictedObservedVarianceSquareRoot*PredictionError;
else
dState = bsxfun(@minus,tmp(mf0,:),PredictedStateMean);
dObserved = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean);
dState = bsxfun(@minus, tmp(mf0,:), PredictedStateMean);
dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean);
PredictedStateVariance = dState*diag(weights_c3)*dState';
PredictedObservedVariance = dObserved*diag(weights_c3)*dObserved' + H;
PredictedStateAndObservedCovariance = dState*diag(weights_c3)*dObserved';
sqrdet = sqrt(det(PredictedObservedVariance)) ;
sqrdet = sqrt(det(PredictedObservedVariance));
iPredictedObservedVariance = inv(PredictedObservedVariance);
PredictionError = obs - PredictedObservedMean;
KalmanFilterGain = PredictedStateAndObservedCovariance*iPredictedObservedVariance;
......@@ -130,9 +118,9 @@ else
end
data_lik_GM_g = exp(-0.5*PredictionError'*iPredictedObservedVariance*PredictionError)/abs(normfactO*sqrdet) + 1e-99;
StateMuPrior = PredictedStateMean ;
StateMuPrior = PredictedStateMean;
StateSqrtPPrior = reduced_rank_cholesky(PredictedStateVariance)';
StateWeightsPrior = StateWeights*StructuralShocksWeights;
StateMuPost = StateVectorMean;
StateSqrtPPost = StateVectorVarianceSquareRoot;
StateWeightsPost = StateWeightsPrior*ObservationShocksWeights*data_lik_GM_g ;
StateWeightsPost = StateWeightsPrior*ObservationShocksWeights*data_lik_GM_g;
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment