Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
P
particles
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Archives
particles
Commits
89a94160
Verified
Commit
89a94160
authored
5 years ago
by
Stéphane Adjemian
Browse files
Options
Downloads
Patches
Plain Diff
Allow k order approximation in nonlinear Kalman Filter (nlkf).
Ref. dynare#1673
parent
8eaccada
Loading
Loading
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/nonlinear_kalman_filter.m
+35
-48
35 additions, 48 deletions
src/nonlinear_kalman_filter.m
with
35 additions
and
48 deletions
src/nonlinear_kalman_filter.m
+
35
−
48
View file @
89a94160
function
[
LIK
,
lik
]
=
nonlinear_kalman_filter
(
ReducedForm
,
Y
,
start
,
ParticleOptions
,
ThreadsOptions
)
function
[
LIK
,
lik
]
=
nonlinear_kalman_filter
(
ReducedForm
,
Y
,
start
,
ParticleOptions
,
ThreadsOptions
,
DynareOptions
,
Model
)
% Evaluates the likelihood of a non-linear model approximating the
% Evaluates the likelihood of a non-linear model approximating the
% predictive (prior) and filtered (posterior) densities for state variables
% predictive (prior) and filtered (posterior) densities for state variables
% by a Kalman filter.
% by a Kalman filter.
...
@@ -30,7 +31,8 @@ function [LIK,lik] = nonlinear_kalman_filter(ReducedForm, Y, start, ParticleOpti
...
@@ -30,7 +31,8 @@ function [LIK,lik] = nonlinear_kalman_filter(ReducedForm, Y, start, ParticleOpti
%
%
% NOTES
% NOTES
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright (C) 2009-2017 Dynare Team
% Copyright (C) 2009-2019 Dynare Team
%
%
% This file is part of Dynare.
% This file is part of Dynare.
%
%
...
@@ -47,14 +49,14 @@ function [LIK,lik] = nonlinear_kalman_filter(ReducedForm, Y, start, ParticleOpti
...
@@ -47,14 +49,14 @@ function [LIK,lik] = nonlinear_kalman_filter(ReducedForm, Y, start, ParticleOpti
% You should have received a copy of the GNU General Public License
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent
init_flag
mf0
mf1
nodes
weights
weights_c
persistent
sample_size
number_of_state_variables
number_of_observed_variables
number_of_structural_innovations
% Set default
% Set default
if
isempty
(
start
)
if
isempty
(
start
)
start
=
1
;
start
=
1
;
end
end
if
ReducedForm
.
use_k_order_solver
dr
=
ReducedForm
.
dr
;
else
% Set local state space model (first-order approximation).
% Set local state space model (first-order approximation).
ghx
=
ReducedForm
.
ghx
;
ghx
=
ReducedForm
.
ghx
;
ghu
=
ReducedForm
.
ghu
;
ghu
=
ReducedForm
.
ghu
;
...
@@ -62,33 +64,19 @@ ghu = ReducedForm.ghu;
...
@@ -62,33 +64,19 @@ ghu = ReducedForm.ghu;
ghxx
=
ReducedForm
.
ghxx
;
ghxx
=
ReducedForm
.
ghxx
;
ghuu
=
ReducedForm
.
ghuu
;
ghuu
=
ReducedForm
.
ghuu
;
ghxu
=
ReducedForm
.
ghxu
;
ghxu
=
ReducedForm
.
ghxu
;
if
any
(
any
(
isnan
(
ghx
)))
||
any
(
any
(
isnan
(
ghu
)))
||
any
(
any
(
isnan
(
ghxx
)))
||
any
(
any
(
isnan
(
ghuu
)))
||
any
(
any
(
isnan
(
ghxu
)))
||
...
any
(
any
(
isinf
(
ghx
)))
||
any
(
any
(
isinf
(
ghu
)))
||
any
(
any
(
isinf
(
ghxx
)))
||
any
(
any
(
isinf
(
ghuu
)))
||
any
(
any
(
isinf
(
ghxu
)))
...
any
(
any
(
abs
(
ghx
)
>
1e4
))
||
any
(
any
(
abs
(
ghu
)
>
1e4
))
||
any
(
any
(
abs
(
ghxx
)
>
1e4
))
||
any
(
any
(
abs
(
ghuu
)
>
1e4
))
||
any
(
any
(
abs
(
ghxu
)
>
1e4
))
ghx
ghu
ghxx
ghuu
ghxu
end
end
constant
=
ReducedForm
.
constant
;
constant
=
ReducedForm
.
constant
;
state_variables_steady_state
=
ReducedForm
.
state_variables_steady_state
;
state_variables_steady_state
=
ReducedForm
.
state_variables_steady_state
;
% Set persistent variables.
if
isempty
(
init_flag
)
mf0
=
ReducedForm
.
mf0
;
mf0
=
ReducedForm
.
mf0
;
mf1
=
ReducedForm
.
mf1
;
mf1
=
ReducedForm
.
mf1
;
sample_size
=
size
(
Y
,
2
);
sample_size
=
size
(
Y
,
2
);
number_of_state_variables
=
length
(
mf0
);
number_of_state_variables
=
length
(
mf0
);
number_of_observed_variables
=
length
(
mf1
);
number_of_observed_variables
=
length
(
mf1
);
number_of_structural_innovations
=
length
(
ReducedForm
.
Q
);
number_of_structural_innovations
=
length
(
ReducedForm
.
Q
);
init_flag
=
1
;
end
% compute gaussian quadrature nodes and weights on states and shocks
% compute gaussian quadrature nodes and weights on states and shocks
if
ParticleOptions
.
proposal_approximation
.
montecarlo
if
ParticleOptions
.
proposal_approximation
.
montecarlo
nodes
=
randn
(
ParticleOptions
.
number_of_particles
,
number_of_state_variables
+
number_of_structural_innovations
);
nodes
=
randn
(
ParticleOptions
.
number_of_particles
,
number_of_state_variables
+
number_of_structural_innovations
);
weights
=
1
/
ParticleOptions
.
number_of_particles
;
weights
=
1
/
ParticleOptions
.
number_of_particles
;
...
@@ -120,27 +108,28 @@ lik = NaN(sample_size,1);
...
@@ -120,27 +108,28 @@ lik = NaN(sample_size,1);
LIK
=
NaN
;
LIK
=
NaN
;
for
t
=
1
:
sample_size
for
t
=
1
:
sample_size
xbar
=
[
StateVectorMean
;
zeros
(
number_of_structural_innovations
,
1
)
]
;
xbar
=
[
StateVectorMean
;
zeros
(
number_of_structural_innovations
,
1
)
]
;
sqr_Px
=
[
[
StateVectorVarianceSquareRoot
zeros
(
number_of_state_variables
,
number_of_structural_innovations
)
]
;
sqr_Px
=
[
StateVectorVarianceSquareRoot
zeros
(
number_of_state_variables
,
number_of_structural_innovations
);
[
zeros
(
number_of_structural_innovations
,
number_of_state_variables
)
Q_lower_triangular_cholesky
]
];
zeros
(
number_of_structural_innovations
,
number_of_state_variables
)
Q_lower_triangular_cholesky
];
sigma_points
=
bsxfun
(
@
plus
,
xbar
,
sqr_Px
*
(
nodes
'
));
sigma_points
=
bsxfun
(
@
plus
,
xbar
,
sqr_Px
*
(
nodes
'
));
StateVectors
=
sigma_points
(
1
:
number_of_state_variables
,:);
StateVectors
=
sigma_points
(
1
:
number_of_state_variables
,:);
epsilon
=
sigma_points
(
number_of_state_variables
+
1
:
number_of_state_variables
+
number_of_structural_innovations
,:);
epsilon
=
sigma_points
(
number_of_state_variables
+
1
:
number_of_state_variables
+
number_of_structural_innovations
,:);
yhat
=
bsxfun
(
@
minus
,
StateVectors
,
state_variables_steady_state
);
yhat
=
bsxfun
(
@
minus
,
StateVectors
,
state_variables_steady_state
);
if
ReducedForm
.
use_k_order_solver
tmp
=
local_state_space_iteration_k
(
yhat
,
epsilon
,
dr
,
Model
,
DynareOptions
);
else
tmp
=
local_state_space_iteration_2
(
yhat
,
epsilon
,
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
ThreadsOptions
.
local_state_space_iteration_2
);
tmp
=
local_state_space_iteration_2
(
yhat
,
epsilon
,
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
ThreadsOptions
.
local_state_space_iteration_2
);
end
PredictedStateMean
=
tmp
(
mf0
,:)
*
weights
;
PredictedStateMean
=
tmp
(
mf0
,:)
*
weights
;
PredictedObservedMean
=
tmp
(
mf1
,:)
*
weights
;
PredictedObservedMean
=
tmp
(
mf1
,:)
*
weights
;
if
ParticleOptions
.
proposal_approximation
.
cubature
||
ParticleOptions
.
proposal_approximation
.
montecarlo
if
ParticleOptions
.
proposal_approximation
.
cubature
||
ParticleOptions
.
proposal_approximation
.
montecarlo
PredictedStateMean
=
sum
(
PredictedStateMean
,
2
);
PredictedStateMean
=
sum
(
PredictedStateMean
,
2
);
PredictedObservedMean
=
sum
(
PredictedObservedMean
,
2
);
PredictedObservedMean
=
sum
(
PredictedObservedMean
,
2
);
dState
=
bsxfun
(
@
minus
,
tmp
(
mf0
,:),
PredictedStateMean
)
'.*
sqrt
(
weights
);
dState
=
bsxfun
(
@
minus
,
tmp
(
mf0
,:),
PredictedStateMean
)
'.*
sqrt
(
weights
);
dObserved
=
bsxfun
(
@
minus
,
tmp
(
mf1
,:),
PredictedObservedMean
)
'.*
sqrt
(
weights
);
dObserved
=
bsxfun
(
@
minus
,
tmp
(
mf1
,:),
PredictedObservedMean
)
'.*
sqrt
(
weights
);
big_mat
=
[
dObserved
dState
;
[
H_lower_triangular_cholesky
zeros
(
number_of_observed_variables
,
number_of_state_variables
)]
];
big_mat
=
[
dObserved
dState
;
[
H_lower_triangular_cholesky
zeros
(
number_of_observed_variables
,
number_of_state_variables
)]
];
[
mat1
,
mat
]
=
qr2
(
big_mat
,
0
);
[
~
,
mat
]
=
qr2
(
big_mat
,
0
);
mat
=
mat
'
;
mat
=
mat
'
;
clear
(
'mat1'
);
PredictedObservedVarianceSquareRoot
=
mat
(
1
:
number_of_observed_variables
,
1
:
number_of_observed_variables
);
PredictedObservedVarianceSquareRoot
=
mat
(
1
:
number_of_observed_variables
,
1
:
number_of_observed_variables
);
CovarianceObservedStateSquareRoot
=
mat
(
number_of_observed_variables
+
(
1
:
number_of_state_variables
),
1
:
number_of_observed_variables
);
CovarianceObservedStateSquareRoot
=
mat
(
number_of_observed_variables
+
(
1
:
number_of_state_variables
),
1
:
number_of_observed_variables
);
StateVectorVarianceSquareRoot
=
mat
(
number_of_observed_variables
+
(
1
:
number_of_state_variables
),
number_of_observed_variables
+
(
1
:
number_of_state_variables
));
StateVectorVarianceSquareRoot
=
mat
(
number_of_observed_variables
+
(
1
:
number_of_state_variables
),
number_of_observed_variables
+
(
1
:
number_of_state_variables
));
...
@@ -162,16 +151,14 @@ for t=1:sample_size
...
@@ -162,16 +151,14 @@ for t=1:sample_size
lik
(
t
)
=-
Inf
;
lik
(
t
)
=-
Inf
;
return
return
end
end
[
PredictedObservedVarianceSquareRoot
,
p
]
=
chol
(
PredictedObservedVariance
,
'lower'
);
[
~
,
p
]
=
chol
(
PredictedObservedVariance
,
'lower'
);
if
p
if
p
LIK
=-
Inf
;
LIK
=-
Inf
;
lik
(
t
)
=-
Inf
;
lik
(
t
)
=-
Inf
;
return
return
end
end
end
end
% lik(t) = log( probability2(0,PredictedObservedVarianceSquareRoot,PredictionError) ) ;
lik
(
t
)
=
log
(
sum
(
probability2
(
Y
(:,
t
),
H_lower_triangular_cholesky
,
tmp
(
mf1
,:))
.*
weights
,
1
)
)
;
lik
(
t
)
=
log
(
sum
(
probability2
(
Y
(:,
t
),
H_lower_triangular_cholesky
,
tmp
(
mf1
,:))
.*
weights
,
1
)
)
;
% lik(t) = log(sum(probability2(Y(:,t),PredictedObservedVarianceSquareRoot,tmp(mf1,:)).*weights,1) ) ;
end
end
LIK
=
-
sum
(
lik
(
start
:
end
));
LIK
=
-
sum
(
lik
(
start
:
end
));
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment