Skip to content
Snippets Groups Projects
Select Git revision
  • add652918e6dddfaab07998e51a3f6d7388d263a
  • master default
  • fcst_shock_decomp
  • 4.5
  • clang+openmp
  • local_state_space_iteration_k
  • dynamic-striated
  • occbin
  • exo_steady_state
  • filter_initial_state
  • declare_vars_in_model_block
  • exceptions
  • rmExtraExo
  • julia
  • error_msg_undeclared_model_vars
  • static_aux_vars
  • slice
  • aux_func
  • penalty
  • 4.4
  • separateM_
  • 4.5.7
  • 4.5.6
  • 4.5.5
  • 4.5.4
  • 4.5.3
  • 4.5.2
  • 4.5.1
  • 4.5.0
  • 4.4.3
  • 4.4.2
  • 4.4.1
  • 4.4.0
  • 4.4-beta1
  • 4.3.3
  • 4.3.2
  • 4.3.1
  • 4.3.0
  • 4.2.5
  • 4.2.4
  • 4.2.3
41 results

MinimumFeedbackSet.cc

Blame
  • Forked from Dynare / dynare
    Source project has a limited visibility.
    dynare-misc-commands.rst NaN GiB
    .. default-domain:: dynare
    
    .. |br| raw:: html
    
        <br>
    
    ####################
    Dynare misc commands
    ####################
    
    .. command:: prior_function(OPTIONS);
    
        |br| Executes a user-defined function on parameter draws from the prior
        distribution. Dynare returns the results of the computations for
        all draws in an $ndraws$ by $n$ cell array named
        ``oo_.prior_function_results``.
    
        *Options*
    
        .. option:: function = FUNCTION_NAME
    
            The function must have the following header ``output_cell =
            FILENAME(xparam1,M_,options_,oo_,estim_params_,bayestopt_,dataset_,dataset_info)``,
            providing read-only access to all Dynare structures. The only
            output argument allowed is a :math:`1 \times n` cell array,
            which allows for storing any type of output/computations. This
            option is required.
    
        .. option:: sampling_draws = INTEGER
    
            Number of draws used for sampling. Default: 500.
    
    .. command:: posterior_function(OPTIONS);
    
        |br| Same as the :comm:`prior_function` command but for the
        posterior distribution. Results returned in
        ``oo_.posterior_function_results``.
    
        *Options*
    
        .. option:: function = FUNCTION_NAME
    
            See :opt:`prior_function_function <function = FUNCTION_NAME>`.
    
        .. option:: sampling_draws = INTEGER
    
            See :opt:`prior_function_sampling_draws <sampling_draws = INTEGER>`.
    
    .. command:: generate_trace_plots(CHAIN_NUMBER);
    
        |br| Generates trace plots of the MCMC draws for all estimated
        parameters and the posterior density in the specified Markov Chain
        ``CHAIN_NUMBER``.
    
    .. matcomm:: internals FLAG ROUTINENAME[.m]|MODFILENAME
    
        |br| Depending on the value of ``FLAG``, the ``internals`` command
        can be used to run unitary tests specific to a MATLAB/Octave
        routine (if available), to display documentation about a
        MATLAB/Octave routine, or to extract some informations about the
        state of Dynare.
    
        *Flags*
    
        ``--test``
    
            Performs the unitary test associated to ROUTINENAME (if this
            routine exists and if the matlab/octave ``.m`` file has
            unitary test sections).
    
            *Example*
    
                ::
    
                    >> internals --test ROUTINENAME
    
                if ``routine.m`` is not in the current directory, the full
                path has to be given::
    
                >> internals --test ../matlab/fr/ROUTINENAME
    
        ``--info``
    
            Prints on screen the internal documentation of ROUTINENAME (if
            this routine exists and if this routine has a texinfo internal
            documentation header). The path to ``ROUTINENAME`` has to be
            provided, if the routine is not in the current directory.
    
            *Example*
    
                ::
    
                    >> internals --doc ../matlab/fr/ROUTINENAME
    
                At this time, will work properly for only a small number
                of routines. At the top of the (available) MATLAB/Octave
                routines a commented block for the internal documentation
                is written in the GNU texinfo documentation format. This
                block is processed by calling texinfo from
                MATLAB. Consequently, texinfo has to be installed on your
                machine.
    
        ``--display-mh-history``
    
            Displays information about the previously saved MCMC draws
            generated by a ``.mod`` file named MODFILENAME. This file must
            be in the current directory.
    
            *Example*
    
                ::
    
                    >> internals --display-mh-history MODFILENAME
    
        ``--load-mh-history``
    
            |br| Loads into the MATLAB/Octave’s workspace informations
            about the previously saved MCMC draws generated by a ``.mod``
            file named MODFILENAME.
    
            *Example*
    
                ::
    
                    >> internals --load-mh-history MODFILENAME
    
            This will create a structure called ``mcmc_informations``
            (in the workspace) with the following fields:
    
            ``Nblck``
    
                The number of MCMC chains.
    
            ``InitialParameters``
    
                A ``Nblck*n``, where ``n`` is the number of estimated
                parameters, array of doubles. Initial state of
                the MCMC.
    
            ``LastParameters``
    
                A ``Nblck*n``, where ``n`` is the number of estimated
                parameters, array of doubles. Current state of
                the MCMC.
    
            ``InitialLogPost``
    
                A ``Nblck*1`` array of doubles. Initial value of the
                posterior kernel.
    
            ``LastLogPost``
    
                A ``Nblck*1`` array of doubles. Current value of the
                posterior kernel.
    
            ``InitialSeeds``
    
                A ``1*Nblck`` structure array. Initial state of the random
                number generator.
    
            ``LastSeeds``
    
                A ``1*Nblck`` structure array. Current state of the random
                number generator.
    
            ``AcceptanceRatio``
    
                A ``1*Nblck`` array of doubles. Current acceptance ratios.
    
    .. matcomm:: prior [OPTIONS[, ...]];
    
        Prints information about the prior distribution given the provided
        options. If no options are provided, the command returns the list of
        available options.
    
        *Options*
    
        .. option:: table
    
            Prints a table describing the marginal prior distributions
            (mean, mode, std., lower and upper bounds, HPD interval).
    
        .. option:: moments
    
            Computes and displays first and second order moments of the
            endogenous variables at the prior mode (considering the
            linearized version of the model).
    
        .. option:: moments(distribution)
    
            Computes and displays the prior mean and prior standard
            deviation of the first and second moments of the endogenous
            variables (considering the linearized version of the model) by
            randomly sampling from the prior.  The results will also be
            stored in the ``prior`` subfolder in a
            ``_endogenous_variables_prior_draws.mat`` file.
    
        .. option:: optimize
    
            Optimizes the prior density (starting from a random initial
            guess). The parameters such that the steady state does not
            exist or does not satisfy the Blanchard and Kahn conditions
            are penalized, as they would be when maximizing the posterior
            density. If a significant proportion of the prior mass is
            defined over such regions, the optimization algorithm may fail
            to converge to the true solution (the prior mode).
    
        .. option:: simulate
    
            Computes the effective prior mass using a Monte-Carlo. Ideally
            the effective prior mass should be equal to 1, otherwise
            problems may arise when maximising the posterior density and
            model comparison based on marginal densities may be
            unfair. When comparing models, say :math:`A` and :math:`B`,
            the marginal densities, :math:`m_A` and :math:`m_B`, should be
            corrected for the estimated effective prior mass
            :math:`p_A\neq p_B \leq 1` so that the prior mass of the
            compared models are identical.
    
        .. option:: plot
    
            Plots the marginal prior density.