<listitem><para><literal>0</literal>: uses <trademarkclass="registered">MATLAB</trademark> Optimization Toolbox FSOLVE (not available under Octave)</para></listitem>
<listitem><para><literal>1</literal>: uses Dynare's own nonlinear equation solver</para></listitem>
<listitem><para><literal>2</literal>: splits the model into recursive blocks and solves each block in turn</para></listitem>
<listitem><para><literal>3</literal>: Chris Sims' solver</para></listitem>
<listitem><para><literal>4</literal>: similar to value <literal>2</literal>, except that it deals differently with nearly singular Jacobian</para></listitem>
<listitem><para><literal>5</literal>: Newton algorithm with a sparse Gaussian elimination (SPE)</para></listitem>
<listitem><para><literal>5</literal>: Newton algorithm with a sparse Gaussian elimination (SPE) (requires <xreflinkend="bytecode"/> option)</para></listitem>
<listitem><para><literal>6</literal>: Newton algorithm with a sparse LU solver at each iteration (requires <xreflinkend="bytecode"/> and/or <xreflinkend="block"/> option)</para></listitem>
<listitem><para><literal>7</literal>: Newton algorithm with a Generalized Minimal Residual (GMRES) solver at each iteration (requires <xreflinkend="bytecode"/> and/or <xreflinkend="block"/> option; not available under Octave))</para></listitem>
<listitem><para><literal>8</literal>: Newton algorithm with a Stabilized Bi-Conjugate Gradient (BICGSTAB) solver at each iteration (requires <xreflinkend="bytecode"/> and/or <xreflinkend="block"/> option)</para></listitem>
<listitem><para>Algorithm used for computing the solution. Possible values are:
<itemizedlist>
<listitem><para><literal>0</literal>: Newton method to solve simultaneously all the equations for every period, see <xreflinkend="juillard_1996"/>. (Default)</para></listitem>
<listitem><para><literal>1</literal>: use a Newton algorithm with a sparse LU solver at each iteration.</para></listitem>
<listitem><para><literal>2</literal>: use a Newton algorithm with a Generalized Minimal Residual (GMRES) solver at each iteration. This option is not available under Octave.</para></listitem>
<listitem><para><literal>3</literal>: use a Newton algorithm with a Stabilized Bi-Conjugate Gradient (BICGSTAB) solver at each iteration.</para></listitem>
<listitem><para><literal>4</literal>: use a Newton algorithm with a optimal path length at each iteration.</para></listitem>
<listitem><para><literal>5</literal>: use a Newton algorithm with a sparse Gaussian elimination (SPE) solver at each iteration.</para></listitem>
<listitem><para><literal>0</literal>: Newton method to solve simultaneously all the equations for every period, see <xreflinkend="juillard_1996"/> (Default)</para></listitem>
<listitem><para><literal>1</literal>: use a Newton algorithm with a sparse LU solver at each iteration (requires <xreflinkend="bytecode"/> and/or <xreflinkend="block"/> option)</para></listitem>
<listitem><para><literal>2</literal>: use a Newton algorithm with a Generalized Minimal Residual (GMRES) solver at each iteration (requires <xreflinkend="bytecode"/> and/or <xreflinkend="block"/> option; not available under Octave)</para></listitem>
<listitem><para><literal>3</literal>: use a Newton algorithm with a Stabilized Bi-Conjugate Gradient (BICGSTAB) solver at each iteration (requires <xreflinkend="bytecode"/> and/or <xreflinkend="block"/> option) </para></listitem>
<listitem><para><literal>4</literal>: use a Newton algorithm with a optimal path length at each iteration (requires <xreflinkend="bytecode"/> and/or <xreflinkend="block"/> option)</para></listitem>
<listitem><para><literal>5</literal>: use a Newton algorithm with a sparse Gaussian elimination (SPE) solver at each iteration (requires <xreflinkend="bytecode"/> option)</para></listitem>