Skip to content
Snippets Groups Projects
Commit 7b856645 authored by Stéphane Adjemian's avatar Stéphane Adjemian
Browse files

Added routine performing reduced rank Cholesky factorization.

parent c250f8f4
Branches
Tags
No related merge requests found
function T = reduced_rank_cholesky(X)
% Computes the cholesky decomposition of a symetric semidefinite matrix or of a definite positive matrix.
%@info:
%! @deftypefn {Function File} { @var{T} =} reduced_rank_cholesky (@var{X})
%! @anchor{reduced_rank_cholesky}
%! @sp 1
%! Computes the cholesky decomposition of a symetric semidefinite matrix or of a definite positive matrix.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item X
%! n*n matrix of doubles to be factorized (X is supposed to be semidefinite positive).
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item T
%! q*n matrix of doubles such that T'*T = X, where q is the number of positive eigenvalues in X.
%! @end table
%! @sp 2
%! @strong{Remarks}
%! @sp 1
%! [1] If X is not positive definite, then X has to be a symetric semidefinite matrix.
%! @sp 1
%! [2] The matrix T is upper triangular iff X is positive definite.
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{particle/sequential_importance_particle_filter}
%! @sp 2
%! @strong{This function calls:}
%! @sp 2
%! @end deftypefn
%@eod:
% Copyright (C) 2009, 2010, 2011 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
[T,X_is_not_positive_definite] = chol(X);
if X_is_not_positive_definite
n = length(X);
[U,D] = eig(X);
[tmp,max_elements_indices] = max(abs(U),[],1);
negloc = (U(max_elements_indices+(0:n:(n-1)*n))<0);
U(:,negloc) = -U(:,negloc);
D = diag(D);
tol = sqrt(eps(max(D))*length(D)*10);
t = (abs(D) > tol);
D = D(t);
if ~(sum(D<0))
T = diag(sqrt(D))*U(:,t)';
else
disp('reduced_rank_cholesky:: Input matrix is not semidefinite positive!')
T = NaN;
end
end
%@test:1
%$ n = 10;
%$ m = 100;
%$
%$ X = randn(n,m);
%$ X = X*X';
%$
%$ t = ones(2,1);
%$
%$ try
%$ T = reduced_rank_cholesky(X);
%$ catch
%$ t(1) = 0;
%$ T = all(t);
%$ return;
%$ end
%$
%$
%$ % Check the results.
%$ t(2) = dyn_assert(T,chol(X),1e-16);
%$ T = all(t);
%@eof:1
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment