Maximum number of iterations. Default: @code{1000}
@item 'NumgradAlgorithm'
Possible values are @code{2}, @code{3} and @code{5} respectively corresponding to the two, three and five points formula used to compute the gradient of the objective function (see @cite{Abramowitz and Stegun (1964)}). Values @code{13} and @code{15} are more experimental. If perturbations on the right and the left increase the value of the objective function (we minimize this function) then we force the corresponding element of the gradient to be zero. The idea is to temporarly reduce the size of the optimization problem. Default: @code{2}.
@item 'NumgradEpsilon'
Size of the perturbation used to compute numerically the gradient of the objective function. Default: @code{1e-6}
@item 'TolFun'
Stopping criteria. Default: @code{1e-7}
@item 'InitialInverseHessian'
Initial approximation for the inverse of the Hessian matrix of the posterior kernel (or likelihood). Obviously this approximation has to be a square, positive definite and symmetric matrix. Default: @code{'1e-4*eye(nx)'}, where @code{nx} is the number of parameters to be estimated.
@end table
@item
@end table
@customhead{Example 1}
To change the defaults of csminwel (@code{mode_compute=4}):