Skip to content
Snippets Groups Projects
Select Git revision
  • 01b51a79c418eca8f9970da12e57006281f91979
  • master default protected
  • 6.x protected
  • madysson
  • 5.x protected
  • asm
  • time-varying-information-set
  • 4.6 protected
  • dynare_minreal
  • dragonfly
  • various_fixes
  • 4.5 protected
  • clang+openmp
  • exo_steady_state
  • declare_vars_in_model_block
  • julia
  • error_msg_undeclared_model_vars
  • static_aux_vars
  • slice
  • aux_func
  • penalty
  • 6.4 protected
  • 6.3 protected
  • 6.2 protected
  • 6.1 protected
  • 6.0 protected
  • 6-beta2 protected
  • 6-beta1 protected
  • 5.5 protected
  • 5.4 protected
  • 5.3 protected
  • 5.2 protected
  • 5.1 protected
  • 5.0 protected
  • 5.0-rc1 protected
  • 4.7-beta3 protected
  • 4.7-beta2 protected
  • 4.7-beta1 protected
  • 4.6.4 protected
  • 4.6.3 protected
  • 4.6.2 protected
41 results

conditional_variance_decomposition_mc_analysis.m

Blame
  • conditional_variance_decomposition_mc_analysis.m 4.14 KiB
    function oo_ = ...
        conditional_variance_decomposition_mc_analysis(NumberOfSimulations, type, dname, fname, Steps, exonames, exo, var_list, endogenous_variable_index, mh_conf_sig, oo_)
    % This function analyses the (posterior or prior) distribution of the
    % endogenous conditional variance decomposition.
    
    % Copyright (C) 2009-2010 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    if strcmpi(type,'posterior')
        TYPE = 'Posterior';
        PATH = [dname '/metropolis/'];
    else
        TYPE = 'Prior';
        PATH = [dname '/prior/moments/'];
    end
    
    % $$$ indx = check_name(vartan,var);
    % $$$ if isempty(indx)
    % $$$     disp([ type '_analysis:: ' var ' is not a stationary endogenous variable!'])
    % $$$     return
    % $$$ end
    % $$$ endogenous_variable_index = sum(1:indx);
    exogenous_variable_index = check_name(exonames,exo);
    if isempty(exogenous_variable_index)
        disp([ type '_analysis:: ' exo ' is not a declared exogenous variable!'])
        return
    end
    
    name = [ var_list(endogenous_variable_index,:) '.' exo ];
    if isfield(oo_, [ TYPE 'TheoreticalMoments' ])
        eval(['temporary_structure = oo_.' TYPE 'TheoreticalMoments;'])
        if isfield(temporary_structure,'dsge')
            eval(['temporary_structure = oo_.' TYPE 'TheoreticalMoments.dsge;'])
            if isfield(temporary_structure,'ConditionalVarianceDecomposition')
                eval(['temporary_structure = oo_.' TYPE 'TheoreticalMoments.dsge.ConditionalVarianceDecomposition.mean;'])
                if isfield(temporary_structure,name)
                    if sum(Steps-temporary_structure.(name)(1,:)) == 0
                        % Nothing (new) to do here...
                        return
                    end
                end
            end
        end
    end
    
    ListOfFiles = dir([ PATH  fname '_' TYPE 'ConditionalVarianceDecomposition*.mat']);
    i1 = 1; tmp = zeros(NumberOfSimulations,length(Steps));
    for file = 1:length(ListOfFiles)
        load([ PATH ListOfFiles(file).name ]);
        % 4D-array (endovar,time,exovar,simul)
        i2 = i1 + size(Conditional_decomposition_array,4) - 1;
        tmp(i1:i2,:) = transpose(dynare_squeeze(Conditional_decomposition_array(endogenous_variable_index,:,exogenous_variable_index,:)));
        i1 = i2+1;
    end
    
    p_mean = NaN(1,length(Steps));
    p_median = NaN(1,length(Steps));
    p_variance = NaN(1,length(Steps));
    p_deciles = NaN(9,length(Steps));
    p_density = NaN(2^9,2,length(Steps));
    p_hpdinf = NaN(1,length(Steps));
    p_hpdsup = NaN(1,length(Steps));
    for i=1:length(Steps)
        [pp_mean, pp_median, pp_var, hpd_interval, pp_deciles, pp_density] = ...
            posterior_moments(tmp(:,i),1,mh_conf_sig);
        p_mean(i) = pp_mean;
        p_median(i) = pp_median;
        p_variance(i) = pp_var;
        p_deciles(:,i) = pp_deciles;
        p_hpdinf(i) = hpd_interval(1);
        p_hpdsup(i) = hpd_interval(2);
        p_density(:,:,i) = pp_density;
    end
    eval(['oo_.' TYPE 'TheoreticalMoments.dsge.ConditionalVarianceDecomposition.steps = Steps;']);
    eval(['oo_.' TYPE 'TheoreticalMoments.dsge.ConditionalVarianceDecomposition.mean.' name ' = p_mean;']);
    eval(['oo_.' TYPE 'TheoreticalMoments.dsge.ConditionalVarianceDecomposition.median.' name ' = p_median;']);
    eval(['oo_.' TYPE 'TheoreticalMoments.dsge.ConditionalVarianceDecomposition.variance.' name ' = p_variance;']);
    eval(['oo_.' TYPE 'TheoreticalMoments.dsge.ConditionalVarianceDecomposition.hpdinf.' name ' = p_hpdinf;']);
    eval(['oo_.' TYPE 'TheoreticalMoments.dsge.ConditionalVarianceDecomposition.hpdsup.' name ' = p_hpdsup;']);
    eval(['oo_.' TYPE 'TheoreticalMoments.dsge.ConditionalVarianceDecomposition.deciles.' name ' = p_deciles;']);
    eval(['oo_.' TYPE 'TheoreticalMoments.dsge.ConditionalVarianceDecomposition.density.' name ' = p_density;']);