-
Sébastien Villemot authored
Packages are no longer autoloaded, so testing whether they are "Loaded" does not work in all cases. The function now ensures that the package is loaded. (cherry picked from commit 7cbac0c9)
Sébastien Villemot authoredPackages are no longer autoloaded, so testing whether they are "Loaded" does not work in all cases. The function now ensures that the package is loaded. (cherry picked from commit 7cbac0c9)
dynare_minimize_objective.m 23.54 KiB
function [opt_par_values,fval,exitflag,hessian_mat,options_,Scale,new_rat_hess_info]=dynare_minimize_objective(objective_function,start_par_value,minimizer_algorithm,options_,bounds,parameter_names,prior_information,Initial_Hessian,varargin)
% function [opt_par_values,fval,exitflag,hessian_mat,options_,Scale,new_rat_hess_info]=dynare_minimize_objective(objective_function,start_par_value,minimizer_algorithm,options_,bounds,parameter_names,prior_information,Initial_Hessian,new_rat_hess_info,varargin)
% Calls a minimizer
%
% INPUTS
% objective_function [function handle] handle to the objective function
% start_par_value [n_params by 1] vector of doubles starting values for the parameters
% minimizer_algorithm [scalar double, or string] code of the optimizer algorithm, or string for the name of a user defined optimization routine (not shipped with dynare).
% options_ [matlab structure] Dynare options structure
% bounds [n_params by 2] vector of doubles 2 row vectors containing lower and upper bound for parameters
% parameter_names [n_params by 1] cell array strings containing the parameters names
% prior_information [matlab structure] Dynare prior information structure (bayestopt_) provided for algorithm 6
% Initial_Hessian [n_params by n_params] matrix initial hessian matrix provided for algorithm 6
% new_rat_hess_info [matlab structure] step size info used by algorith 5
% varargin [cell array] Input arguments for objective function
%
% OUTPUTS
% opt_par_values [n_params by 1] vector of doubles optimal parameter values minimizing the objective
% fval [scalar double] value of the objective function at the minimum
% exitflag [scalar double] return code of the respective optimizer
% hessian_mat [n_params by n_params] matrix hessian matrix at the mode returned by optimizer
% options_ [matlab structure] Dynare options structure (to return options set by algorithms 5)
% Scale [scalar double] scaling parameter returned by algorith 6
%
% SPECIAL REQUIREMENTS
% none.
%
%
% Copyright (C) 2014-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
%% set bounds and parameter names if not already set
n_params=size(start_par_value,1);
if isempty(bounds)
bounds=[-Inf(n_params,1) Inf(n_params,1)];
end
if isempty(parameter_names)
parameter_names=[repmat('parameter ',n_params,1),num2str((1:n_params)')];
end
%% initialize function outputs
hessian_mat=[];
Scale=[];
exitflag=1;
fval=NaN;
opt_par_values=NaN(size(start_par_value));
new_rat_hess_info=[];
switch minimizer_algorithm
case 1
if isoctave
error('Optimization algorithm 1 is not available under Octave')
elseif ~user_has_matlab_license('optimization_toolbox')
error('Optimization algorithm 1 requires the Optimization Toolbox')
end
% Set default optimization options for fmincon.
optim_options = optimset('display','iter', 'LargeScale','off', 'MaxFunEvals',100000, 'TolFun',1e-8, 'TolX',1e-6);
if ~isempty(options_.optim_opt)
eval(['optim_options = optimset(optim_options,' options_.optim_opt ');']);
end
if options_.silent_optimizer
optim_options = optimset(optim_options,'display','off');
end
if options_.analytic_derivation
optim_options = optimset(optim_options,'GradObj','on','TolX',1e-7);
end
[opt_par_values,fval,exitflag,output,lamdba,grad,hessian_mat] = ...
fmincon(objective_function,start_par_value,[],[],[],[],bounds(:,1),bounds(:,2),[],optim_options,varargin{:});
case 2
%simulating annealing
sa_options = options_.saopt;
if ~isempty(options_.optim_opt)
options_list = read_key_value_string(options_.optim_opt);
for i=1:rows(options_list)
switch options_list{i,1}
case 'neps'
sa_options.neps = options_list{i,2};
case 'rt'
sa_options.rt = options_list{i,2};
case 'MaxIter'
sa_options.MaxIter = options_list{i,2};
case 'TolFun'
sa_options.TolFun = options_list{i,2};
case 'verbosity'
sa_options.verbosity = options_list{i,2};
case 'initial_temperature'
sa_options.initial_temperature = options_list{i,2};
case 'ns'
sa_options.ns = options_list{i,2};
case 'nt'
sa_options.nt = options_list{i,2};
case 'step_length_c'
sa_options.step_length_c = options_list{i,2};
case 'initial_step_length'
sa_options.initial_step_length = options_list{i,2};
otherwise
warning(['solveopt: Unknown option (' options_list{i,1} ')!'])
end
end
end
if options_.silent_optimizer
sa_options.verbosity = 0;
end
npar=length(start_par_value);
[LB, UB]=set_bounds_to_finite_values(bounds, options_.huge_number);
if sa_options.verbosity
fprintf('\nNumber of parameters= %d, initial temperatur= %4.3f \n', npar,sa_options.initial_temperature);
fprintf('rt= %4.3f; TolFun= %4.3f; ns= %4.3f;\n',sa_options.rt,sa_options.TolFun,sa_options.ns);
fprintf('nt= %4.3f; neps= %4.3f; MaxIter= %d\n',sa_options.nt,sa_options.neps,sa_options.MaxIter);
fprintf('Initial step length(vm): %4.3f; step_length_c: %4.3f\n', sa_options.initial_step_length,sa_options.step_length_c);
fprintf('%-20s %-6s %-6s %-6s\n','Name:', 'LB;','Start;','UB;');
for pariter=1:npar
fprintf('%-20s %6.4f; %6.4f; %6.4f;\n',parameter_names{pariter}, LB(pariter),start_par_value(pariter),UB(pariter));
end
end
sa_options.initial_step_length= sa_options.initial_step_length*ones(npar,1); %bring step length to correct vector size
sa_options.step_length_c= sa_options.step_length_c*ones(npar,1); %bring step_length_c to correct vector size
[opt_par_values, fval,exitflag, n_accepted_draws, n_total_draws, n_out_of_bounds_draws, t, vm] =...
simulated_annealing(objective_function,start_par_value,sa_options,LB,UB,varargin{:});
case 3
if isoctave && ~user_has_octave_forge_package('optim')
error('Optimization algorithm 3 requires the optim package')
elseif ~isoctave && ~user_has_matlab_license('optimization_toolbox')
error('Optimization algorithm 3 requires the Optimization Toolbox')
end
% Set default optimization options for fminunc.
optim_options = optimset('display','iter','MaxFunEvals',100000,'TolFun',1e-8,'TolX',1e-6);
if ~isempty(options_.optim_opt)
eval(['optim_options = optimset(optim_options,' options_.optim_opt ');']);
end
if options_.analytic_derivation
optim_options = optimset(optim_options,'GradObj','on');
end
if options_.silent_optimizer
optim_options = optimset(optim_options,'display','off');
end
if ~isoctave
[opt_par_values,fval,exitflag] = fminunc(objective_function,start_par_value,optim_options,varargin{:});
else
% Under Octave, use a wrapper, since fminunc() does not have a 4th arg
func = @(x) objective_function(x,varargin{:});
[opt_par_values,fval,exitflag] = fminunc(func,start_par_value,optim_options);
end
case 4
% Set default options.
H0 = 1e-4*eye(n_params);
crit = options_.csminwel.tolerance.f;
nit = options_.csminwel.maxiter;
numgrad = options_.gradient_method;
epsilon = options_.gradient_epsilon;
Verbose = options_.csminwel.verbosity;
Save_files = options_.csminwel.Save_files;
% Change some options.
if ~isempty(options_.optim_opt)
options_list = read_key_value_string(options_.optim_opt);
for i=1:rows(options_list)
switch options_list{i,1}
case 'MaxIter'
nit = options_list{i,2};
case 'InitialInverseHessian'
H0 = eval(options_list{i,2});
case 'TolFun'
crit = options_list{i,2};
case 'NumgradAlgorithm'
numgrad = options_list{i,2};
case 'NumgradEpsilon'
epsilon = options_list{i,2};
case 'verbosity'
Verbose = options_list{i,2};
case 'SaveFiles'
Save_files = options_list{i,2};
otherwise
warning(['csminwel: Unknown option (' options_list{i,1} ')!'])
end
end
end
if options_.silent_optimizer
Save_files = 0;
Verbose = 0;
end
% Set flag for analytical gradient.
if options_.analytic_derivation
analytic_grad=1;
else
analytic_grad=[];
end
% Call csminwell.
[fval,opt_par_values,grad,inverse_hessian_mat,itct,fcount,exitflag] = ...
csminwel1(objective_function, start_par_value, H0, analytic_grad, crit, nit, numgrad, epsilon, Verbose, Save_files, varargin{:});
hessian_mat=inv(inverse_hessian_mat);
case 5
if options_.analytic_derivation==-1 %set outside as code for use of analytic derivation
analytic_grad=1;
crit = options_.newrat.tolerance.f_analytic;
newratflag = 0; %analytical Hessian
else
analytic_grad=0;
crit=options_.newrat.tolerance.f;
newratflag = options_.newrat.hess; %default
end
nit=options_.newrat.maxiter;
Verbose = options_.newrat.verbosity;
Save_files = options_.newrat.Save_files;
if ~isempty(options_.optim_opt)
options_list = read_key_value_string(options_.optim_opt);
for i=1:rows(options_list)
switch options_list{i,1}
case 'MaxIter'
nit = options_list{i,2};
case 'Hessian'
flag=options_list{i,2};
if options_.analytic_derivation && flag~=0
error('newrat: analytic_derivation is incompatible with numerical Hessian. Using analytic Hessian')
else
newratflag=flag;
end
case 'TolFun'
crit = options_list{i,2};
case 'verbosity'
Verbose = options_list{i,2};
case 'SaveFiles'
Save_files = options_list{i,2};
otherwise
warning(['newrat: Unknown option (' options_list{i,1} ')!'])
end
end
end
if options_.silent_optimizer
Save_files = 0;
Verbose = 0;
end
hess_info.gstep=options_.gstep;
hess_info.htol = 1.e-4;
hess_info.h1=options_.gradient_epsilon*ones(n_params,1);
[opt_par_values,hessian_mat,gg,fval,invhess,new_rat_hess_info] = newrat(objective_function,start_par_value,bounds,analytic_grad,crit,nit,0,Verbose, Save_files,hess_info,varargin{:});
%hessian_mat is the plain outer product gradient Hessian
case 6
[opt_par_values, hessian_mat, Scale, fval] = gmhmaxlik(objective_function, start_par_value, ...
Initial_Hessian, options_.mh_jscale, bounds, prior_information.p2, options_.gmhmaxlik, options_.optim_opt, varargin{:});
case 7
% Matlab's simplex (Optimization toolbox needed).
if isoctave && ~user_has_octave_forge_package('optim')
error('Option mode_compute=7 requires the optim package')
elseif ~isoctave && ~user_has_matlab_license('optimization_toolbox')
error('Option mode_compute=7 requires the Optimization Toolbox')
end
optim_options = optimset('display','iter','MaxFunEvals',1000000,'MaxIter',6000,'TolFun',1e-8,'TolX',1e-6);
if ~isempty(options_.optim_opt)
eval(['optim_options = optimset(optim_options,' options_.optim_opt ');']);
end
if options_.silent_optimizer
optim_options = optimset(optim_options,'display','off');
end
if ~isoctave
[opt_par_values,fval,exitflag] = fminsearch(objective_function,start_par_value,optim_options,varargin{:});
else
% Under Octave, use a wrapper, since fminsearch() does not have a
% 4th arg, and only has two output args
func = @(x) objective_function(x,varargin{:});
[opt_par_values,fval] = fminsearch(func,start_par_value,optim_options);
end
case 8
% Dynare implementation of the simplex algorithm.
simplexOptions = options_.simplex;
if ~isempty(options_.optim_opt)
options_list = read_key_value_string(options_.optim_opt);
for i=1:rows(options_list)
switch options_list{i,1}
case 'MaxIter'
simplexOptions.maxiter = options_list{i,2};
case 'TolFun'
simplexOptions.tolerance.f = options_list{i,2};
case 'TolX'
simplexOptions.tolerance.x = options_list{i,2};
case 'MaxFunEvals'
simplexOptions.maxfcall = options_list{i,2};
case 'MaxFunEvalFactor'
simplexOptions.maxfcallfactor = options_list{i,2};
case 'InitialSimplexSize'
simplexOptions.delta_factor = options_list{i,2};
case 'verbosity'
simplexOptions.verbose = options_list{i,2};
otherwise
warning(['simplex: Unknown option (' options_list{i,1} ')!'])
end
end
end
if options_.silent_optimizer
simplexOptions.verbose = options_list{i,2};
end
[opt_par_values,fval,exitflag] = simplex_optimization_routine(objective_function,start_par_value,simplexOptions,parameter_names,varargin{:});
case 9
% Set defaults
H0 = (bounds(:,2)-bounds(:,1))*0.2;
H0(~isfinite(H0)) = 0.01;
while max(H0)/min(H0)>1e6 %make sure initial search volume (SIGMA) is not badly conditioned
H0(H0==max(H0))=0.9*H0(H0==max(H0));
end
cmaesOptions = options_.cmaes;
cmaesOptions.LBounds = bounds(:,1);
cmaesOptions.UBounds = bounds(:,2);
% Modify defaults
if ~isempty(options_.optim_opt)
options_list = read_key_value_string(options_.optim_opt);
for i=1:rows(options_list)
switch options_list{i,1}
case 'MaxIter'
cmaesOptions.MaxIter = options_list{i,2};
case 'TolFun'
cmaesOptions.TolFun = options_list{i,2};
case 'TolX'
cmaesOptions.TolX = options_list{i,2};
case 'MaxFunEvals'
cmaesOptions.MaxFunEvals = options_list{i,2};
case 'verbosity'
if options_list{i,2}==0
cmaesOptions.DispFinal = 'off'; % display messages like initial and final message';
cmaesOptions.DispModulo = '0'; % [0:Inf], disp messages after every i-th iteration';
end
case 'SaveFiles'
if options_list{i,2}==0
cmaesOptions.SaveVariables='off';
cmaesOptions.LogModulo = '0'; % [0:Inf] if >1 record data less frequently after gen=100';
cmaesOptions.LogTime = '0'; % [0:100] max. percentage of time for recording data';
end
case 'CMAESResume'
if options_list{i,2}==1
cmaesOptions.Resume = 'yes';
end
otherwise
warning(['cmaes: Unknown option (' options_list{i,1} ')!'])
end
end
end
if options_.silent_optimizer
cmaesOptions.DispFinal = 'off'; % display messages like initial and final message';
cmaesOptions.DispModulo = '0'; % [0:Inf], disp messages after every i-th iteration';
cmaesOptions.SaveVariables='off';
cmaesOptions.LogModulo = '0'; % [0:Inf] if >1 record data less frequently after gen=100';
cmaesOptions.LogTime = '0'; % [0:100] max. percentage of time for recording data';
end
warning('off','CMAES:NonfinitenessRange');
warning('off','CMAES:InitialSigma');
[x, fval, COUNTEVAL, STOPFLAG, OUT, BESTEVER] = cmaes(func2str(objective_function),start_par_value,H0,cmaesOptions,varargin{:});
opt_par_values=BESTEVER.x;
fval=BESTEVER.f;
case 10
simpsaOptions = options_.simpsa;
if ~isempty(options_.optim_opt)
options_list = read_key_value_string(options_.optim_opt);
for i=1:rows(options_list)
switch options_list{i,1}
case 'MaxIter'
simpsaOptions.MAX_ITER_TOTAL = options_list{i,2};
case 'TolFun'
simpsaOptions.TOLFUN = options_list{i,2};
case 'TolX'
tolx = options_list{i,2};
if tolx<0
simpsaOptions = rmfield(simpsaOptions,'TOLX'); % Let simpsa choose the default.
else
simpsaOptions.TOLX = tolx;
end
case 'EndTemparature'
simpsaOptions.TEMP_END = options_list{i,2};
case 'MaxFunEvals'
simpsaOptions.MAX_FUN_EVALS = options_list{i,2};
case 'verbosity'
if options_list{i,2} == 0
simpsaOptions.DISPLAY = 'none';
else
simpsaOptions.DISPLAY = 'iter';
end
otherwise
warning(['simpsa: Unknown option (' options_list{i,1} ')!'])
end
end
end
if options_.silent_optimizer
simpsaOptions.DISPLAY = 'none';
end
simpsaOptionsList = options2cell(simpsaOptions);
simpsaOptions = simpsaset(simpsaOptionsList{:});
[LB, UB]=set_bounds_to_finite_values(bounds, options_.huge_number);
[opt_par_values, fval, exitflag] = simpsa(func2str(objective_function),start_par_value,LB,UB,simpsaOptions,varargin{:});
case 11
options_.cova_compute = 0;
[opt_par_values, stdh, lb_95, ub_95, med_param] = online_auxiliary_filter(start_par_value, varargin{:});
case 12
[LB, UB] = set_bounds_to_finite_values(bounds, options_.huge_number);
tmp = transpose([fieldnames(options_.particleswarm), struct2cell(options_.particleswarm)]);
particleswarmOptions = optimoptions(@particleswarm);
particleswarmOptions = optimoptions(particleswarmOptions, tmp{:});
if ~isempty(options_.optim_opt)
options_list = read_key_value_string(options_.optim_opt);
SupportedListOfOptions = {'CreationFcn', 'Display', 'DisplayInterval', 'FunctionTolerance', ...
'FunValCheck', 'HybridFcn', 'InertiaRange', 'InitialSwarmMatrix', 'InitialSwarmSpan', ...
'MaxIterations', 'MaxStallIterations', 'MaxStallTime', 'MaxTime', ...
'MinNeighborsFraction', 'ObjectiveLimit', 'OutputFcn', 'PlotFcn', 'SelfAdjustmentWeight', ...
'SocialAdjustmentWeight', 'SwarmSize', 'UseParallel', 'UseVectorized'};
for i=1:rows(options_list)
if ismember(options_list{i,1}, SupportedListOfOptions)
particleswarmOptions = optimoptions(particleswarmOptions, options_list{i,1}, options_list{i,2});
else
warning(['particleswarm: Unknown option (' options_list{i,1} ')!'])
end
end
end
% Get number of instruments.
numberofvariables = length(start_par_value);
% Set objective function.
objfun = @(x) objective_function(x, varargin{:});
if ischar(particleswarmOptions.SwarmSize)
eval(['particleswarmOptions.SwarmSize = ' particleswarmOptions.SwarmSize ';'])
end
if isempty(particleswarmOptions.InitialSwarmMatrix)
particleswarmOptions.InitialSwarmMatrix = zeros(particleswarmOptions.SwarmSize, numberofvariables);
p = 1;
FVALS = zeros(particleswarmOptions.SwarmSize, 1);
while p<=particleswarmOptions.SwarmSize
candidate = rand(numberofvariables, 1).*(UB-LB)+LB;
[fval, info, exit_flag] = objfun(candidate);
if exit_flag
particleswarmOptions.InitialSwarmMatrix(p,:) = transpose(candidate);
FVALS(p) = fval;
p = p + 1;
end
end
end
% Set penalty to the worst value of the objective function.
TMP = [particleswarmOptions.InitialSwarmMatrix, FVALS];
TMP = sortrows(TMP, length(start_par_value)+1);
penalty = TMP(end,end);
% Define penalized objective.
objfun = @(x) penalty_objective_function(x, objective_function, penalty, varargin{:});
% Minimize the penalized objective (note that the penalty is not updated).
[opt_par_values, fval, exitflag, output] = particleswarm(objfun, length(start_par_value), LB, UB, particleswarmOptions);
opt_par_values = opt_par_values(:);
case 101
solveoptoptions = options_.solveopt;
if ~isempty(options_.optim_opt)
options_list = read_key_value_string(options_.optim_opt);
for i=1:rows(options_list)
switch options_list{i,1}
case 'TolX'
solveoptoptions.TolX = options_list{i,2};
case 'TolFun'
solveoptoptions.TolFun = options_list{i,2};
case 'MaxIter'
solveoptoptions.MaxIter = options_list{i,2};
case 'verbosity'
solveoptoptions.verbosity = options_list{i,2};
case 'SpaceDilation'
solveoptoptions.SpaceDilation = options_list{i,2};
case 'LBGradientStep'
solveoptoptions.LBGradientStep = options_list{i,2};
otherwise
warning(['solveopt: Unknown option (' options_list{i,1} ')!'])
end
end
end
if options_.silent_optimizer
solveoptoptions.verbosity = 0;
end
[opt_par_values,fval]=solvopt(start_par_value,objective_function,[],[],[],solveoptoptions,varargin{:});
case 102
if isoctave
error('Optimization algorithm 2 is not available under Octave')
elseif ~user_has_matlab_license('GADS_Toolbox')
error('Optimization algorithm 2 requires the Global Optimization Toolbox')
end
% Set default optimization options for simulannealbnd.
optim_options = saoptimset('display','iter','TolFun',1e-8);
if ~isempty(options_.optim_opt)
eval(['optim_options = saoptimset(optim_options,' options_.optim_opt ');']);
end
if options_.silent_optimizer
optim_options = optimset(optim_options,'display','off');
end
func = @(x)objective_function(x,varargin{:});
[opt_par_values,fval,exitflag,output] = simulannealbnd(func,start_par_value,bounds(:,1),bounds(:,2),optim_options);
otherwise
if ischar(minimizer_algorithm)
if exist(minimizer_algorithm)
[opt_par_values, fval, exitflag] = feval(minimizer_algorithm,objective_function,start_par_value,varargin{:});
else
error('No minimizer with the provided name detected.')
end
else
error(['Optimization algorithm ' int2str(minimizer_algorithm) ' is unknown!'])
end
end
end
function [LB, UB]=set_bounds_to_finite_values(bounds, huge_number)
LB=bounds(:,1);
LB(isinf(LB))=-huge_number;
UB=bounds(:,2);
UB(isinf(UB))=huge_number;
end