Skip to content
Snippets Groups Projects
Select Git revision
  • 618712ad9fb9a128545ae9ee8ca01ca2900a3af9
  • master default protected
  • 6.x protected
  • pardiso+paru
  • mkl-pardiso
  • madysson
  • 5.x protected
  • asm
  • time-varying-information-set
  • 4.6 protected
  • dynare_minreal
  • dragonfly
  • various_fixes
  • 4.5 protected
  • clang+openmp
  • exo_steady_state
  • declare_vars_in_model_block
  • julia
  • error_msg_undeclared_model_vars
  • static_aux_vars
  • slice
  • 6.4 protected
  • 6.3 protected
  • 6.2 protected
  • 6.1 protected
  • 6.0 protected
  • 6-beta2 protected
  • 6-beta1 protected
  • 5.5 protected
  • 5.4 protected
  • 5.3 protected
  • 5.2 protected
  • 5.1 protected
  • 5.0 protected
  • 5.0-rc1 protected
  • 4.7-beta3 protected
  • 4.7-beta2 protected
  • 4.7-beta1 protected
  • 4.6.4 protected
  • 4.6.3 protected
  • 4.6.2 protected
41 results

get_error_message.m

Blame
  • check_posterior_sampler_options.m 21.03 KiB
    function [posterior_sampler_options, options_, bayestopt_] = check_posterior_sampler_options(posterior_sampler_options, options_, bounds, bayestopt_)
    
    % function [posterior_sampler_options, options_, bayestopt_] = check_posterior_sampler_options(posterior_sampler_options, options_, bounds, bayestopt_)
    % initialization of posterior samplers
    %
    % INPUTS
    %   posterior_sampler_options:       posterior sampler options
    %   options_:       structure storing the options
    %   bounds:         structure containing prior bounds
    %   bayestopt_:     structure storing information about priors
    
    % OUTPUTS
    %   posterior_sampler_options:       checked posterior sampler options
    %   options_:       structure storing the options
    %   bayestopt_:     structure storing information about priors
    %
    % SPECIAL REQUIREMENTS
    %   none
    
    % Copyright (C) 2015-2022 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
    
    
    init=0;
    if isempty(posterior_sampler_options)
        init=1;
    end
    
    if init
        % set default options and user defined options
        posterior_sampler_options.posterior_sampling_method = options_.posterior_sampler_options.posterior_sampling_method;
        posterior_sampler_options.bounds = bounds;
    
        switch posterior_sampler_options.posterior_sampling_method
    
          case 'random_walk_metropolis_hastings'
            posterior_sampler_options.parallel_bar_refresh_rate=50;
            posterior_sampler_options.serial_bar_refresh_rate=3;
            posterior_sampler_options.parallel_bar_title='RWMH';
            posterior_sampler_options.serial_bar_title='RW Metropolis-Hastings';
    
            % default options
            posterior_sampler_options = add_fields_(posterior_sampler_options,options_.posterior_sampler_options.rwmh);
    
            % user defined options
            if ~isempty(options_.posterior_sampler_options.sampling_opt)
                options_list = read_key_value_string(options_.posterior_sampler_options.sampling_opt);
                for i=1:rows(options_list)
                    switch options_list{i,1}
    
                      case 'proposal_distribution'
                        if ~(strcmpi(options_list{i,2}, 'rand_multivariate_student') || ...
                             strcmpi(options_list{i,2}, 'rand_multivariate_normal'))
                            error(['initial_estimation_checks:: the proposal_distribution option to estimation takes either ' ...
                                   'rand_multivariate_student or rand_multivariate_normal as options']);
                        else
                            posterior_sampler_options.proposal_distribution=options_list{i,2};
                        end
    
    
                      case 'student_degrees_of_freedom'
                        if options_list{i,2} <= 0
                            error('initial_estimation_checks:: the student_degrees_of_freedom takes a positive integer argument');
                        else
                            posterior_sampler_options.student_degrees_of_freedom=options_list{i,2};
                        end
    
                      case 'use_mh_covariance_matrix'
                        % indicates to use the covariance matrix from previous iterations to
                        % define the covariance of the proposal distribution
                        % default = 0
                        posterior_sampler_options.use_mh_covariance_matrix = options_list{i,2};
                        options_.use_mh_covariance_matrix = options_list{i,2};
                      case 'scale_file'
                        % load optimal_mh_scale parameter if previous run was with mode_compute=6
                        % will overwrite jscale from set_prior.m
                        if exist(options_list{i,2},'file') || exist([options_list{i,2},'.mat'],'file')
                            tmp = load(options_list{i,2},'Scale');
                            bayestopt_.mh_jscale = tmp.Scale;
                            options_.mh_jscale = tmp.Scale;
                            bayestopt_.jscale = ones(size(bounds.lb,1),1)*tmp.Scale;
                            %                                 options_.mh_init_scale = 2*options_.mh_jscale;
                        else
                            error('initial_estimation_checks:: The specified mh_scale_file does not exist.')
                        end
                      case 'save_tmp_file'
                        posterior_sampler_options.save_tmp_file = options_list{i,2};
                      otherwise
                        warning(['rwmh_sampler: Unknown option (' options_list{i,1} ')!'])
                    end
                end
            end
    
          case 'tailored_random_block_metropolis_hastings'
            posterior_sampler_options.parallel_bar_refresh_rate=5;
            posterior_sampler_options.serial_bar_refresh_rate=1;
            posterior_sampler_options.parallel_bar_title='TaRB-MH';
            posterior_sampler_options.serial_bar_title='TaRB Metropolis-Hastings';
    
            % default options
            posterior_sampler_options = add_fields_(posterior_sampler_options,options_.posterior_sampler_options.tarb);
    
            % user defined options
            if ~isempty(options_.posterior_sampler_options.sampling_opt)
                options_list = read_key_value_string(options_.posterior_sampler_options.sampling_opt);
                for i=1:rows(options_list)
    
                    switch options_list{i,1}
    
                      case 'proposal_distribution'
                        if ~(strcmpi(options_list{i,2}, 'rand_multivariate_student') || ...
                             strcmpi(options_list{i,2}, 'rand_multivariate_normal'))
                            error(['initial_estimation_checks:: the proposal_distribution option to estimation takes either ' ...
                                   'rand_multivariate_student or rand_multivariate_normal as options']);
                        else
                            posterior_sampler_options.proposal_distribution=options_list{i,2};
                        end
    
    
                      case 'student_degrees_of_freedom'
                        if options_list{i,2} <= 0
                            error('initial_estimation_checks:: the student_degrees_of_freedom takes a positive integer argument');
                        else
                            posterior_sampler_options.student_degrees_of_freedom=options_list{i,2};
                        end
    
                      case 'mode_compute'
                        posterior_sampler_options.mode_compute=options_list{i,2};
    
                      case 'optim'
                        posterior_sampler_options.optim_opt=options_list{i,2};
    
                      case 'new_block_probability'
                        if options_list{i,2}<0 || options_list{i,2}>1
                            error('check_posterior_sampler_options:: The tarb new_block_probability must be between 0 and 1!')
                        else
                            posterior_sampler_options.new_block_probability=options_list{i,2};
                        end
                      case 'scale_file'
                        % load optimal_mh_scale parameter if previous run was with mode_compute=6
                        % will overwrite jscale from set_prior.m
                        if exist(options_list{i,2},'file') || exist([options_list{i,2},'.mat'],'file')
                            tmp = load(options_list{i,2},'Scale');
                            bayestopt_.mh_jscale = tmp.Scale;
                            options_.mh_jscale = tmp.Scale;
                            bayestopt_.jscale = ones(size(bounds.lb,1),1)*tmp.Scale;
                            %                                 options_.mh_init_scale = 2*options_.mh_jscale;
                        else
                            error('initial_estimation_checks:: The specified scale_file does not exist.')
                        end
                      case 'save_tmp_file'
                        posterior_sampler_options.save_tmp_file = options_list{i,2};
    
                      otherwise
                        warning(['tarb_sampler: Unknown option (' options_list{i,1} ')!'])
    
                    end
    
                end
    
            end
    
          case 'independent_metropolis_hastings'
            posterior_sampler_options.parallel_bar_refresh_rate=50;
            posterior_sampler_options.serial_bar_refresh_rate=3;
            posterior_sampler_options.parallel_bar_title='IMH';
            posterior_sampler_options.serial_bar_title='Ind. Metropolis-Hastings';
    
            % default options
            posterior_sampler_options = add_fields_(posterior_sampler_options,options_.posterior_sampler_options.imh);
    
            % user defined options
            if ~isempty(options_.posterior_sampler_options.sampling_opt)
                options_list = read_key_value_string(options_.posterior_sampler_options.sampling_opt);
                for i=1:rows(options_list)
                    switch options_list{i,1}
    
                      case 'proposal_distribution'
                        if ~(strcmpi(options_list{i,2}, 'rand_multivariate_student') || ...
                             strcmpi(options_list{i,2}, 'rand_multivariate_normal'))
                            error(['initial_estimation_checks:: the proposal_distribution option to estimation takes either ' ...
                                   'rand_multivariate_student or rand_multivariate_normal as options']);
                        else
                            posterior_sampler_options.proposal_distribution=options_list{i,2};
                        end
    
    
                      case 'student_degrees_of_freedom'
                        if options_list{i,2} <= 0
                            error('initial_estimation_checks:: the student_degrees_of_freedom takes a positive integer argument');
                        else
                            posterior_sampler_options.student_degrees_of_freedom=options_list{i,2};
                        end
    
                      case 'use_mh_covariance_matrix'
                        % indicates to use the covariance matrix from previous iterations to
                        % define the covariance of the proposal distribution
                        % default = 0
                        posterior_sampler_options.use_mh_covariance_matrix = options_list{i,2};
                        options_.use_mh_covariance_matrix = options_list{i,2};
    
                      case 'save_tmp_file'
                        posterior_sampler_options.save_tmp_file = options_list{i,2};
    
                      otherwise
                        warning(['imh_sampler: Unknown option (' options_list{i,1} ')!'])
                    end
                end
            end
    
    
          case 'slice'
            posterior_sampler_options.parallel_bar_refresh_rate=1;
            posterior_sampler_options.serial_bar_refresh_rate=1;
            posterior_sampler_options.parallel_bar_title='SLICE';
            posterior_sampler_options.serial_bar_title='SLICE';
    
            % default options
            posterior_sampler_options = add_fields_(posterior_sampler_options,options_.posterior_sampler_options.slice);
    
            % user defined options
            if ~isempty(options_.posterior_sampler_options.sampling_opt)
                options_list = read_key_value_string(options_.posterior_sampler_options.sampling_opt);
                for i=1:rows(options_list)
                    switch options_list{i,1}
                      case 'rotated'
                        % triggers rotated slice iterations using a covariance
                        % matrix from initial burn-in iterations
                        % must be associated with:
                        % <use_mh_covariance_matrix> or <slice_initialize_with_mode>
                        % default  = 0
                        posterior_sampler_options.rotated = options_list{i,2};
    
                      case 'mode'
                        % for multimodal posteriors, provide the list of modes as a
                        % matrix, ordered by column, i.e. [x1 x2 x3] for three
                        % modes x1 x2 x3
                        % MR note: not sure this is possible with the
                        % read_key_value_string ???
                        % if this is not possible <mode_files> does to job in any case
                        % This will automatically trigger <rotated>
                        % default = []
                        tmp_mode = options_list{i,2};
                        for j=1:size(tmp_mode,2)
                            posterior_sampler_options.mode(j).m = tmp_mode(:,j);
                        end
    
                      case 'mode_files'
                        % for multimodal posteriors provide the name of
                        % a file containing a variable array xparams = [nparam * nmodes]
                        % one column per mode. With this info, the code will automatically
                        % set the <mode> option.
                        % This will automatically trigger <rotated>
                        % default = []
                        posterior_sampler_options.mode_files = options_list{i,2};
    
                      case 'slice_initialize_with_mode'
                        % the default for slice is to set mode_compute = 0 in the
                        % preprocessor and start the chain(s) from a random location in the prior.
                        % This option first runs the optimizer and then starts the
                        % chain from the mode. Associated with optios <rotated>, it will
                        % use invhess from the mode to perform rotated slice
                        % iterations.
                        % default = 0
                        posterior_sampler_options.slice_initialize_with_mode = options_list{i,2};
    
                      case 'initial_step_size'
                        % sets the initial size of the interval in the STEPPING-OUT PROCEDURE
                        % the initial_step_size must be a real number in [0, 1],
                        % and it sets the size as a proportion of the prior bounds,
                        % i.e. the size will be initial_step_size*(UB-LB)
                        % slice sampler requires prior_truncation > 0!
                        % default = 0.8
                        if options_list{i,2}<=0 || options_list{i,2}>=1
                            error('check_posterior_sampler_options:: slice initial_step_size must be between 0 and 1')
                        else
                            posterior_sampler_options.initial_step_size=options_list{i,2};
                        end
                      case 'use_mh_covariance_matrix'
                        % in association with <rotated> indicates to use the
                        % covariance matrix from previous iterations to define the
                        % rotated slice
                        % default = 0
                        posterior_sampler_options.use_mh_covariance_matrix = options_list{i,2};
                        options_.use_mh_covariance_matrix = options_list{i,2};
    
                      case 'save_tmp_file'
                        posterior_sampler_options.save_tmp_file = options_list{i,2};
    
                      otherwise
                        warning(['slice_sampler: Unknown option (' options_list{i,1} ')!'])
                    end
                end
            end
    
            % slice posterior sampler does not require mode or hessian to run
            % needs to be set to 1 to skip parts in dynare_estimation_1.m
            % requiring posterior maximization/calibrated smoother before MCMC
            options_.mh_posterior_mode_estimation=true;
    
            if ~ posterior_sampler_options.slice_initialize_with_mode
                % by default, slice sampler should trigger
                % mode_compute=0 and
                % mh_replic=100 (much smaller than the default mh_replic=20000 of RWMH)
                options_.mode_compute = 0;
                options_.cova_compute = 0;
            else
                if (isequal(options_.mode_compute,0) && isempty(options_.mode_file) )
                    skipline()
                    disp('check_posterior_sampler_options:: You have specified the option "slice_initialize_with_mode"')
                    disp('check_posterior_sampler_options:: to initialize the slice sampler using mode information')
                    disp('check_posterior_sampler_options:: but no mode file nor posterior maximization is selected,')
                    error('check_posterior_sampler_options:: The option "slice_initialize_with_mode" is inconsistent with mode_compute=0 or empty mode_file.')
                else
                    options_.mh_posterior_mode_estimation=false;
                end
            end
    
            if any(isinf(bounds.lb)) || any(isinf(bounds.ub))
                skipline()
                disp('some priors are unbounded and prior_trunc is set to zero')
                error('The option "slice" is inconsistent with prior_trunc=0.')
            end
    
            % moreover slice must be associated to:
            %     options_.mh_posterior_mode_estimation = false;
            % this is done below, but perhaps preprocessing should do this?
    
            if ~isempty(posterior_sampler_options.mode)
                % multimodal case
                posterior_sampler_options.rotated = 1;
                posterior_sampler_options.WR=[];
            end
            %     posterior_sampler_options = set_default_option(posterior_sampler_options,'mode_files',[]);
    
    
            posterior_sampler_options.W1=posterior_sampler_options.initial_step_size*(bounds.ub-bounds.lb);
            if options_.load_mh_file
                posterior_sampler_options.slice_initialize_with_mode = 0;
            else
                if ~posterior_sampler_options.slice_initialize_with_mode
                    posterior_sampler_options.invhess=[];
                end
            end
    
            if ~isempty(posterior_sampler_options.mode_files) % multimodal case
                modes = posterior_sampler_options.mode_files; % these can be also mean files from previous parallel slice chains
                load(modes, 'xparams')
                if size(xparams,2)<2
                    error(['check_posterior_sampler_options:: Variable xparams loaded in file <' modes '> has size [' int2str(size(xparams,1)) 'x' int2str(size(xparams,2)) ']: it must contain at least two columns, to allow multi-modal sampling.'])
                end
                for j=1:size(xparams,2)
                    mode(j).m=xparams(:,j);
                end
                posterior_sampler_options.mode = mode;
                posterior_sampler_options.rotated = 1;
                posterior_sampler_options.WR=[];
            end
    
          otherwise
            error('check_posterior_sampler_options:: Unknown posterior_sampling_method option %s ',posterior_sampler_options.posterior_sampling_method);
        end
    
        return
    end
    
    % here are all samplers requiring a proposal distribution
    if ~strcmp(posterior_sampler_options.posterior_sampling_method,'slice')
        if ~options_.cova_compute && ~(options_.load_mh_file && posterior_sampler_options.use_mh_covariance_matrix) 
            if strcmp('hessian',options_.MCMC_jumping_covariance)
            skipline()
            disp('check_posterior_sampler_options:: I cannot start the MCMC because the Hessian of the posterior kernel at the mode was not computed')
            disp('check_posterior_sampler_options:: or there is no previous MCMC to load ')
            error('check_posterior_sampler_options:: MCMC cannot start')
            end
        end
    end
    
    if options_.load_mh_file && posterior_sampler_options.use_mh_covariance_matrix
        [~, invhess] = compute_mh_covariance_matrix;
        posterior_sampler_options.invhess = invhess;
    end
    
    
    
    % check specific options for slice sampler
    if strcmp(posterior_sampler_options.posterior_sampling_method,'slice')
        invhess = posterior_sampler_options.invhess;
        if posterior_sampler_options.rotated
            if isempty(posterior_sampler_options.mode_files) && isempty(posterior_sampler_options.mode) % rotated unimodal
                if ~options_.cova_compute && ~(options_.load_mh_file && posterior_sampler_options.use_mh_covariance_matrix)
                    skipline()
                    disp('check_posterior_sampler_options:: I cannot start rotated slice sampler because')
                    disp('check_posterior_sampler_options:: there is no previous MCMC to load ')
                    disp('check_posterior_sampler_options:: or the Hessian at the mode is not computed.')
                    error('check_posterior_sampler_options:: Rotated slice cannot start')
                end
                if isempty(invhess)
                    error('check_posterior_sampler_options:: This error should not occur, please contact developers.')
                end
                % % %             if options_.load_mh_file && options_.use_mh_covariance_matrix,
                % % %                 [~, invhess] = compute_mh_covariance_matrix;
                % % %                 posterior_sampler_options.invhess = invhess;
                % % %             end
                [V1, D]=eig(invhess);
                posterior_sampler_options.V1=V1;
                posterior_sampler_options.WR=sqrt(diag(D))*3;
            end
        else
            if ~options_.load_mh_file && ~posterior_sampler_options.slice_initialize_with_mode
                posterior_sampler_options.invhess=[];
            end
        end
        % needs to be re-set to zero otherwise posterior analysis is filtered
        % out in dynare_estimation_1.m
        options_.mh_posterior_mode_estimation = false;
    end
    
    return
    
    function posterior_sampler_options = add_fields_(posterior_sampler_options, sampler_options)
    
    fnam = fieldnames(sampler_options);
    for j=1:length(fnam)
        posterior_sampler_options.(fnam{j}) = sampler_options.(fnam{j});
    end