Skip to content
Snippets Groups Projects
Select Git revision
  • 69ddfadde90fb99d44e78fcd811a0f1fdf57b6ed
  • master default protected
  • 6.x protected
  • madysson
  • 5.x protected
  • asm
  • time-varying-information-set
  • 4.6 protected
  • dynare_minreal
  • dragonfly
  • various_fixes
  • 4.5 protected
  • clang+openmp
  • exo_steady_state
  • declare_vars_in_model_block
  • julia
  • error_msg_undeclared_model_vars
  • static_aux_vars
  • slice
  • aux_func
  • penalty
  • 6.4 protected
  • 6.3 protected
  • 6.2 protected
  • 6.1 protected
  • 6.0 protected
  • 6-beta2 protected
  • 6-beta1 protected
  • 5.5 protected
  • 5.4 protected
  • 5.3 protected
  • 5.2 protected
  • 5.1 protected
  • 5.0 protected
  • 5.0-rc1 protected
  • 4.7-beta3 protected
  • 4.7-beta2 protected
  • 4.7-beta1 protected
  • 4.6.4 protected
  • 4.6.3 protected
  • 4.6.2 protected
41 results

StaticModel.cc

Blame
  • conditional_variance_decomposition_mc_analysis.m 5.71 KiB
    function oo_ = ...
        conditional_variance_decomposition_mc_analysis(NumberOfSimulations, type, dname, fname, Steps, exonames, exo, var_list, endogenous_variable_index, mh_conf_sig, oo_,options_)
    % This function analyses the (posterior or prior) distribution of the
    % endogenous variables' conditional variance decomposition.
    %
    % INPUTS
    %   NumberOfSimulations     [integer]           scalar, number of simulations.
    %   type                    [string]            'prior' or 'posterior'
    %   dname                   [string]            directory name where to save
    %   fname                   [string]            name of the mod-file
    %   Steps                   [integers]          horizons at which to conduct decomposition
    %   exonames                [string]            (n_exo*char_length) character array with names of exogenous variables        
    %   exo                     [string]            name of current exogenous
    %                                               variable
    %   var_list                [string]            (n_endo*char_length) character array with name
    %                                               of endogenous variables
    %   endogenous_variable_index [integer]         index of the current
    %                                               endogenous variable
    %   mh_conf_sig             [double]            2 by 1 vector with upper
    %                                               and lower bound of HPD intervals
    %   oo_                     [structure]         Dynare structure where the results are saved.
    %
    % OUTPUTS
    %   oo_          [structure]        Dynare structure where the results are saved.
    
    % Copyright (C) 2009-2015 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    if strcmpi(type,'posterior')
        TYPE = 'Posterior';
        PATH = [dname '/metropolis/'];
    else
        TYPE = 'Prior';
        PATH = [dname '/prior/moments/'];
    end
    
    % $$$ indx = check_name(vartan,var);
    % $$$ if isempty(indx)
    % $$$     disp([ type '_analysis:: ' var ' is not a stationary endogenous variable!'])
    % $$$     return
    % $$$ end
    % $$$ endogenous_variable_index = sum(1:indx);
    exogenous_variable_index = check_name(exonames,exo);
    if isempty(exogenous_variable_index)
        disp([ type '_analysis:: ' exo ' is not a declared exogenous variable!'])
        return
    end
    
    name_1 = var_list(endogenous_variable_index,:);
    name_2 = exo;
    name = [ name_1 '.' name_2 ];
    
    if isfield(oo_, [ TYPE 'TheoreticalMoments' ])
        temporary_structure = oo_.([TYPE 'TheoreticalMoments']);
        if isfield(temporary_structure,'dsge')
            temporary_structure = oo_.([TYPE 'TheoreticalMoments']).dsge;
            if isfield(temporary_structure,'ConditionalVarianceDecomposition')
                temporary_structure = oo_.([TYPE 'TheoreticalMoments']).dsge.ConditionalVarianceDecomposition.Mean;
                if isfield(temporary_structure,name)
                    if sum(Steps-temporary_structure.(name)(1,:)) == 0
                        % Nothing (new) to do here...
                        return
                    end
                end
            end
        end
    end
    
    ListOfFiles = dir([ PATH  fname '_' TYPE 'ConditionalVarianceDecomposition*.mat']);
    i1 = 1; tmp = zeros(NumberOfSimulations,length(Steps));
    for file = 1:length(ListOfFiles)
        load([ PATH ListOfFiles(file).name ]);
        % 4D-array (endovar,time,exovar,simul)
        i2 = i1 + size(Conditional_decomposition_array,4) - 1;
        tmp(i1:i2,:) = transpose(dynare_squeeze(Conditional_decomposition_array(endogenous_variable_index,:,exogenous_variable_index,:)));
        i1 = i2+1;
    end
    
    p_mean = NaN(1,length(Steps));
    p_median = NaN(1,length(Steps));
    p_variance = NaN(1,length(Steps));
    p_deciles = NaN(9,length(Steps));
    if options_.estimation.moments_posterior_density.indicator
        p_density = NaN(2^9,2,length(Steps));
    end
    p_hpdinf = NaN(1,length(Steps));
    p_hpdsup = NaN(1,length(Steps));
    for i=1:length(Steps)
        if options_.estimation.moments_posterior_density.indicator
            [pp_mean, pp_median, pp_var, hpd_interval, pp_deciles, pp_density] = ...
                posterior_moments(tmp(:,i),1,mh_conf_sig);
            p_density(:,:,i) = pp_density;
        else
            [pp_mean, pp_median, pp_var, hpd_interval, pp_deciles] = ...
                posterior_moments(tmp(:,i),0,mh_conf_sig);        
        end
        p_mean(i) = pp_mean;
        p_median(i) = pp_median;
        p_variance(i) = pp_var;
        p_deciles(:,i) = pp_deciles;
        p_hpdinf(i) = hpd_interval(1);
        p_hpdsup(i) = hpd_interval(2);
    end
    
    FirstField = sprintf('%sTheoreticalMoments', TYPE);
    
    oo_.(FirstField).dsge.ConditionalVarianceDecomposition.Steps = Steps;
    oo_.(FirstField).dsge.ConditionalVarianceDecomposition.Mean.(name_1).(name_2) = p_mean;
    oo_.(FirstField).dsge.ConditionalVarianceDecomposition.Median.(name_1).(name_2) = p_median;
    oo_.(FirstField).dsge.ConditionalVarianceDecomposition.Variance.(name_1).(name_2) = p_variance;
    oo_.(FirstField).dsge.ConditionalVarianceDecomposition.HPDinf.(name_1).(name_2) = p_hpdinf;
    oo_.(FirstField).dsge.ConditionalVarianceDecomposition.HPDsup.(name_1).(name_2) = p_hpdsup;
    oo_.(FirstField).dsge.ConditionalVarianceDecomposition.deciles.(name_1).(name_2)  = p_deciles;
    if options_.estimation.moments_posterior_density.indicator
        oo_.(FirstField).dsge.ConditionalVarianceDecomposition.density.(name_1).(name_2) = p_density;
    end