Skip to content
Snippets Groups Projects
Select Git revision
  • master default protected
  • 6.x protected
  • madysson
  • 5.x protected
  • asm
  • time-varying-information-set
  • 4.6 protected
  • dynare_minreal
  • dragonfly
  • various_fixes
  • 4.5 protected
  • clang+openmp
  • exo_steady_state
  • declare_vars_in_model_block
  • julia
  • error_msg_undeclared_model_vars
  • static_aux_vars
  • slice
  • aux_func
  • penalty
  • 6.4 protected
  • 6.3 protected
  • 6.2 protected
  • 6.1 protected
  • 6.0 protected
  • 6-beta2 protected
  • 6-beta1 protected
  • 5.5 protected
  • 5.4 protected
  • 5.3 protected
  • 5.2 protected
  • 5.1 protected
  • 5.0 protected
  • 5.0-rc1 protected
  • 4.7-beta3 protected
  • 4.7-beta2 protected
  • 4.7-beta1 protected
  • 4.6.4 protected
  • 4.6.3 protected
  • 4.6.2 protected
40 results

extended_path.m

Blame
  • extended_path.m 12.61 KiB
    function time_series = extended_path(initial_conditions,sample_size)
    % Stochastic simulation of a non linear DSGE model using the Extended Path method (Fair and Taylor 1983). A time
    % series of size T  is obtained by solving T perfect foresight models. 
    %    
    % INPUTS
    %  o initial_conditions     [double]    m*nlags array, where m is the number of endogenous variables in the model and
    %                                       nlags is the maximum number of lags.
    %  o sample_size            [integer]   scalar, size of the sample to be simulated.
    %   
    % OUTPUTS
    %  o time_series            [double]    m*sample_size array, the simulations.
    %    
    % ALGORITHM
    %  
    % SPECIAL REQUIREMENTS
    
    % Copyright (C) 2009, 2010, 2011 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    global M_ options_ oo_
        
    debug = 0;
    verbosity = options_.ep.verbosity+debug;
    
    % Test if bytecode and block options are used (these options are mandatory)
    if ~( options_.bytecode && options_.block )
        error('extended_path:: Options bytecode and block are mandatory!')
    end
    
    % Set default initial conditions.
    if isempty(initial_conditions)
        initial_conditions = oo_.steady_state;
    end
    
    % Set maximum number of iterations for the deterministic solver.
    options_.maxit_ = options_.ep.maxit;
    
    % Set the number of periods for the perfect foresight model
    options_.periods = options_.ep.periods;
    
    % Set the algorithm for the perfect foresight solver
    options_.stack_solve_algo = options_.ep.stack_solve_algo;
    
    % Compute the first order reduced form if needed.
    %
    % REMARK. It is assumed that the user did run the same mod file with stoch_simul(order=1) and save
    % all the globals in a mat file called linear_reduced_form.mat;
    if options_.ep.init
        lrf = load('linear_reduced_form','oo_');
        oo_.dr = lrf.oo_.dr; clear('lrf');
        if options_.ep.init==2
            lambda = .8;
        end
    end
    
    % Do not use a minimal number of perdiods for the perfect foresight solver (with bytecode and blocks)
    options_.minimal_solving_period = options_.ep.periods;
    
    % Get indices of variables with non zero steady state
    idx = find(abs(oo_.steady_state)>0);
    
    % Initialize the exogenous variables.
    make_ex_;
    
    % Initialize the endogenous variables.
    make_y_;
    
    % Initialize the output array.
    time_series = zeros(M_.endo_nbr,sample_size);
    
    % Set the covariance matrix of the structural innovations.
    variances = diag(M_.Sigma_e); 
    positive_var_indx = find(variances>0); 
    covariance_matrix = M_.Sigma_e(positive_var_indx,positive_var_indx); 
    number_of_structural_innovations = length(covariance_matrix); 
    covariance_matrix_upper_cholesky = chol(covariance_matrix); 
    
    % Set seed.
    if options_.ep.set_dynare_seed_to_default
        set_dynare_seed('default');
    end
    
    % Simulate shocks.
    switch options_.ep.innovation_distribution
      case 'gaussian'
          oo_.ep.shocks = randn(sample_size,number_of_structural_innovations)*covariance_matrix_upper_cholesky; 
      otherwise
        error(['extended_path:: ' options_.ep.innovation_distribution ' distribution for the structural innovations is not (yet) implemented!'])
    end
        
    % Set future shocks (Stochastic Extended Path approach)
    if options_.ep.stochastic
        [r,w] = gauss_hermite_weights_and_nodes(options_.ep.number_of_nodes);
        switch options_.ep.stochastic
          case 1
            if M_.exo_nbr>1
                rr = cell(1);
                ww = cell(1);
                for i=1:size(M_.Sigma_e,1)
                    rr = {r};
                    ww = {w};
                end
                rrr = cartesian_product_of_sets(rr{:});
                www = cartesian_product_of_sets(ww{:});
            else
                rrr = r;
                www = w;
            end
            www = prod(www,2);
            nnn = length(www);    
          otherwise
            error(['Order ' int2str(options_.ep.stochastic) ' Stochastic Extended Path method is not implemented!'])
        end
    else
        rrr = zeros(1,number_of_structural_innovations);
        www = 1;
        nnn = 1;
    end
    
    % Initializes some variables.
    t  = 0;
    
    
    % Set waitbar (graphic or text  mode)
    graphic_waitbar_flag = ~( options_.console_mode || exist('OCTAVE_VERSION') );
    
    if graphic_waitbar_flag
        hh = waitbar(0,['Please wait. Extended Path simulations...']);
        set(hh,'Name','EP simulations');
    else
        for i=1:2, disp(' '), end
        if ~exist('OCTAVE_VERSION')
           back = [];
        end
    end
    
    
    % Main loop.
    while (t<sample_size)
        if ~mod(t,10)
            if graphic_waitbar_flag
                waitbar(t/sample_size);
            else
                if exist('OCTAVE_VERSION')
                    printf('Please wait. Extended Path simulations... %3.f%%\r done', 100*t/sample_size);
                else
                    str = sprintf('Please wait. Extended Path simulations... %3.f%% done.', 100*t/sample_size);
                    fprintf([back '%s'],str);
                    back=repmat('\b',1,length(str));
                end
            end
        end
        % Set period index.
        t = t+1;
        shocks = oo_.ep.shocks(t,:);
        % Put it in oo_.exo_simul (second line).
        oo_.exo_simul(2,positive_var_indx) = shocks;
        for s = 1:nnn
            oo_.exo_simul(3,positive_var_indx) = rrr(s,:)*covariance_matrix_upper_cholesky;
            if options_.ep.init && s==1% Compute first order solution. t==1 && 
                initial_path = simult_(initial_conditions,oo_.dr,oo_.exo_simul(2:end,:),1);
                if options_.ep.init==1
                    oo_.endo_simul(:,1:end-1) = initial_path(:,1:end-1);% Last column is the steady state.
                elseif options_.ep.init==2
                    oo_.endo_simul(:,1:end-1) = initial_path(:,1:end-1)*lambda+oo_.endo_simul(:,1:end-1)*(1-lambda);
                end
            end
            % Solve a perfect foresight model (using bytecoded version).
            increase_periods = 0;
            endo_simul = oo_.endo_simul;
            while 1
                if ~increase_periods
                    t0 = tic;
                    [flag,tmp] = bytecode('dynamic'); 
                    ctime = toc(t0);
                    info.convergence = ~flag;
                    info.time = ctime;
                end
                if verbosity
                    if info.convergence
                        if t<10
                            disp(['Time:    ' int2str(t)  '. Convergence of the perfect foresight model solver!'])
                        elseif t<100
                            disp(['Time:   ' int2str(t)  '. Convergence of the perfect foresight model solver!'])
                        elseif t<1000
                            disp(['Time:  ' int2str(t)  '. Convergence of the perfect foresight model solver!'])
                        else
                            disp(['Time: ' int2str(t)  '. Convergence of the perfect foresight model solver!'])
                        end
                    else
                        if t<10
                            disp(['Time:    ' int2str(t)  '. No convergence of the perfect foresight model solver!'])
                        elseif t<100
                            disp(['Time:   ' int2str(t)  '. No convergence of the perfect foresight model solver!'])
                        elseif t<1000
                            disp(['Time:  ' int2str(t)  '. No convergence of the perfect foresight model solver!'])
                        else
                            disp(['Time: ' int2str(t)  '. No convergence of the perfect foresight model solver!'])
                        end
                    end
                end
                % Test if periods is big enough.
                if ~increase_periods &&  max(max(abs(tmp(idx,end-options_.ep.lp:end)./tmp(idx,end-options_.ep.lp-1:end-1)-1)))<options_.dynatol.x
                    break
                else
                    options_.periods = options_.periods + options_.ep.step;
                    options_.minimal_solving_period = options_.periods;
                    increase_periods = increase_periods + 1;
                    if verbosity
                        if t<10
                            disp(['Time:    ' int2str(t)  '. I increase the number of periods to ' int2str(options_.periods) '.'])
                        elseif t<100
                            disp(['Time:   ' int2str(t) '. I increase the number of periods to ' int2str(options_.periods) '.'])
                        elseif t<1000
                            disp(['Time:  ' int2str(t)  '. I increase the number of periods to ' int2str(options_.periods) '.'])
                        else
                            disp(['Time: ' int2str(t)  '. I increase the number of periods to ' int2str(options_.periods) '.'])
                        end
                    end
                    if info.convergence
                        oo_.endo_simul = [ tmp , repmat(oo_.steady_state,1,options_.ep.step) ];
                        oo_.exo_simul  = [ oo_.exo_simul ; zeros(options_.ep.step,size(shocks,2)) ];
                        tmp_old = tmp;
                    else
                        oo_.endo_simul = [ oo_.endo_simul , repmat(oo_.steady_state,1,options_.ep.step) ];
                        oo_.exo_simul  = [ oo_.exo_simul ; zeros(options_.ep.step,size(shocks,2)) ];
                    end
                    t0 = tic;
                    [flag,tmp] = bytecode('dynamic');
                    ctime = toc(t0);
                    info.time = info.time+ctime;
                    if info.convergence
                        maxdiff = max(max(abs(tmp(:,2:options_.ep.fp)-tmp_old(:,2:options_.ep.fp))));
                        if maxdiff<options_.dynatol.x
                            options_.periods = options_.ep.periods;
                            options_.minimal_solving_period = options_.periods;
                            oo_.exo_simul = oo_.exo_simul(1:(options_.periods+2),:);
                            break
                        end
                    else
                        info.convergence = ~flag;
                        if info.convergence
                            continue
                        else
                            if increase_periods==10;
                                if verbosity
                                    if t<10
                                        disp(['Time:    ' int2str(t)  '. Even with ' int2str(options_.periods) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
                                    elseif t<100
                                        disp(['Time:   ' int2str(t)  '. Even with ' int2str(options_.periods) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
                                    elseif t<1000
                                        disp(['Time:  ' int2str(t)  '. Even with ' int2str(options_.periods) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
                                    else
                                        disp(['Time: ' int2str(t)  '. Even with ' int2str(options_.periods) ', I am not able to solve the perfect foresight model. Use homotopy instead...'])
                                    end
                                end
                                break
                            end
                        end
                    end
                end
            end
            if ~info.convergence% If the previous step was unsuccesfull, use an homotopic approach
                [INFO,tmp] = homotopic_steps(.5,.01,t);
                % Cumulate time.
                info.time = ctime+INFO.time;
                if (~isstruct(INFO) && isnan(INFO)) || ~INFO.convergence
                    disp('Homotopy:: No convergence of the perfect foresight model solver!')
                    error('I am not able to simulate this model!');
                else
                    info.convergence = 1;
                    oo_.endo_simul = tmp;
                    if verbosity && info.convergence
                        disp('Homotopy:: Convergence of the perfect foresight model solver!')
                    end
                end
            else
                oo_.endo_simul = tmp;
            end
            % Save results of the perfect foresight model solver.
            time_series(:,t) = time_series(:,t)+ www(s)*oo_.endo_simul(:,2);
            %save('simulated_paths.mat','time_series');
            % Set initial condition for the nex round.
            %initial_conditions = oo_.endo_simul(:,2);
        end
        %oo_.endo_simul = oo_.endo_simul(:,1:options_.periods+M_.maximum_endo_lag+M_.maximum_endo_lead);
        oo_.endo_simul(:,1:end-1) = oo_.endo_simul(:,2:end);
        oo_.endo_simul(:,1) = time_series(:,t);
        oo_.endo_simul(:,end) = oo_.steady_state;
    end
    
    if graphic_waitbar_flag
        close(hh);
    else
        if ~exist('OCTAVE_VERSION')
            fprintf(back);
        end
    end
    
    oo_.endo_simul = oo_.steady_state;