Skip to content
Snippets Groups Projects
Select Git revision
  • 82b3115696f546d7f7920912addb51b08956cec0
  • master default protected
  • 6.x protected
  • madysson
  • 5.x protected
  • asm
  • time-varying-information-set
  • 4.6 protected
  • dynare_minreal
  • dragonfly
  • various_fixes
  • 4.5 protected
  • clang+openmp
  • exo_steady_state
  • declare_vars_in_model_block
  • julia
  • error_msg_undeclared_model_vars
  • static_aux_vars
  • slice
  • aux_func
  • penalty
  • 6.4 protected
  • 6.3 protected
  • 6.2 protected
  • 6.1 protected
  • 6.0 protected
  • 6-beta2 protected
  • 6-beta1 protected
  • 5.5 protected
  • 5.4 protected
  • 5.3 protected
  • 5.2 protected
  • 5.1 protected
  • 5.0 protected
  • 5.0-rc1 protected
  • 4.7-beta3 protected
  • 4.7-beta2 protected
  • 4.7-beta1 protected
  • 4.6.4 protected
  • 4.6.3 protected
  • 4.6.2 protected
41 results

SigmaeInitialization.hh

Blame
  • autoregressive_process_specification.m 3.59 KiB
    function [InnovationVariance,AutoregressiveParameters] = autoregressive_process_specification(Variance,Rho,p)
    % This function computes the parameters of an AR(p) process from the variance and the autocorrelation function
    % (the first p terms) of this process.
    %
    % INPUTS 
    %  [1] Variance                 [double]  scalar, variance of the variable.
    %  [2] Rho                      [double]  p*1 vector, the autocorelation function: \rho(1), \rho(2), ..., \rho(p).
    %  [3] p                        [double]  scalar, the number of lags in the AR process.
    %
    % OUTPUTS 
    %  [1] InnovationVariance       [double]  scalar, the variance of the innovation.
    %  [2] AutoregressiveParameters [double]  p*1 vector of autoregressive parameters.
    %
    % NOTES 
    %
    % The AR(p) model for {y_t} is:
    %   
    %           y_t = \phi_1 * y_{t-1} +  \phi_2 * y_{t-2} + ... +  \phi_p * y_{t-p} + e_t    
    %
    % Let \gamma(0) and \rho(1), ..., \rho(2) be the variance and the autocorrelation function of {y_t}. This function
    % compute the variance of {e_t} and the \phi_i (i=1,...,p) from the variance and the autocorrelation function of {y_t}. 
    % We know that:
    %    
    %    \gamma(0) = \phi_1 \gamma(1) + ... + \phi_p \gamma(p) + \sigma^2
    %
    % where \sigma^2 is the variance of {e_t}. Equivalently we have:
    %
    %    \sigma^2 = \gamma(0) (1-\rho(1)\phi_1 - ... - \rho(p)\phi_p)     
    %
    % We also have for any integer  h>0:
    % 
    %    \rho(h) = \phi_1 \rho(h-1) + ... + \phi_p \rho(h-p)
    %
    % We can write the equations for \rho(1), ..., \rho(p) using matrices. Let R be the p*p autocorelation
    % matrix and v be the p*1 vector gathering the first p terms of the autocorrelation function. We have: 
    %
    %           v = R*PHI
    %    
    % where PHI is a p*1 vector with the autoregressive parameters of the AR(p) process. We can recover the autoregressive
    % parameters by inverting the autocorrelation matrix: PHI = inv(R)*v.
    % 
    % This function first computes the vector PHI by inverting R and computes the variance of the innovation by evaluating
    %
    %           \sigma^2 = \gamma(0)*(1-PHI'*v)
    
    % Copyright (C) 2009 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    AutoregressiveParameters = NaN(p,1);
    InnovationVariance = NaN;
    switch p
      case 1
        AutoregressiveParameters = Rho(1);
      case 2
        tmp = (Rho(2)-1)/(Rho(1)*Rho(1)-1);
        AutoregressiveParameters(1) = Rho(1)*tmp;
        AutoregressiveParameters(2) = 1-tmp;
      case 3
        t1 = 1/(Rho(2)-2*Rho(1)*Rho(1)+1);
        t2 = (1.5*Rho(1)-2*Rho(1)*Rho(1)*Rho(1)+.5*Rho(3))*t1;
        t3 = .5*(Rho(1)- Rho(3))/(Rho(2)-1);
        AutoregressiveParameters(1) = t2-t3-Rho(1);
        AutoregressiveParameters(2) = (Rho(2)*Rho(2)-Rho(3)*Rho(1)-Rho(1)*Rho(1)+Rho(2))*t1 ;
        AutoregressiveParameters(3) = t3-Rho(1)+t2;
      otherwise
        AutocorrelationMatrix = eye(p);
        for i=1:p-1
            AutocorrelationMatrix = AutocorrelationMatrix + diag(Rho(i)*ones(p-i,1),i);
            AutocorrelationMatrix = AutocorrelationMatrix + diag(Rho(i)*ones(p-i,1),-i);
        end
        AutoregressiveParameters = AutocorrelationMatrix\Rho;
    end
    InnovationVariance = Variance * (1-AutoregressiveParameters'*Rho);