Skip to content
Snippets Groups Projects
Select Git revision
  • b6634940ff20cbfe77ab52b5281b4bc24e7894e5
  • master default protected
  • 6.x protected
  • madysson
  • 5.x protected
  • asm
  • time-varying-information-set
  • 4.6 protected
  • dynare_minreal
  • dragonfly
  • various_fixes
  • 4.5 protected
  • clang+openmp
  • exo_steady_state
  • declare_vars_in_model_block
  • julia
  • error_msg_undeclared_model_vars
  • static_aux_vars
  • slice
  • aux_func
  • penalty
  • 6.4 protected
  • 6.3 protected
  • 6.2 protected
  • 6.1 protected
  • 6.0 protected
  • 6-beta2 protected
  • 6-beta1 protected
  • 5.5 protected
  • 5.4 protected
  • 5.3 protected
  • 5.2 protected
  • 5.1 protected
  • 5.0 protected
  • 5.0-rc1 protected
  • 4.7-beta3 protected
  • 4.7-beta2 protected
  • 4.7-beta1 protected
  • 4.6.4 protected
  • 4.6.3 protected
  • 4.6.2 protected
41 results

example2long.mod

  • adaptive_metropolis_hastings.m 6.22 KiB
    function record=adaptive_metropolis_hastings(TargetFun,ProposalFun,xparam1,vv,mh_bounds,varargin)
    %function adaptive_metropolis_hastings(TargetFun,ProposalFun,xparam1,vv,mh_bounds,varargin)
    % Random walk Metropolis-Hastings algorithm. 
    % 
    % INPUTS 
    %   o TargetFun  [char]     string specifying the name of the objective
    %                           function (posterior kernel).
    %   o xparam1    [double]   (p*1) vector of parameters to be estimated (initial values).
    %   o vv         [double]   (p*p) matrix, posterior covariance matrix (at the mode).
    %   o mh_bounds  [double]   (p*2) matrix defining lower and upper bounds for the parameters. 
    %   o varargin              list of argument following mh_bounds
    %  
    % OUTPUTS 
    %   o record     [struct]   structure describing the iterations
    %
    % ALGORITHM 
    %   Metropolis-Hastings.       
    %
    % SPECIAL REQUIREMENTS
    %   None.
    %
    % PARALLEL CONTEXT
    % The most computationally intensive part of this function may be executed
    % in parallel. The code sutable to be executed in
    % parallel on multi core or cluster machine (in general a 'for' cycle),
    % is removed from this function and placed in random_walk_metropolis_hastings_core.m funtion.
    % Then the DYNARE parallel package contain a set of pairs matlab functions that can be executed in
    % parallel and called name_function.m and name_function_core.m. 
    % In addition in parallel package we have second set of functions used
    % to manage the parallel computation.
    %
    % This function was the first function to be parallelized, later other
    % functions have been parallelized using the same methodology.
    % Then the comments write here can be used for all the other pairs of
    % parallel functions and also for management funtions.
    
    % Copyright (C) 2006-2013 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    global M_ options_ bayestopt_ estim_params_ oo_
    
    
    old_options = options_;
    
    accept_target = options_.amh.accept_target;
    m_directory = [M_.fname '/metropolis/']; 
    
    if options_.load_mh_file == 0
        delete([m_directory 'adaptive_metropolis_proposal_*.mat']);
        nP = 0;
    else
        D = dir([m_directory 'adaptive_metropolis_proposal_*.mat']);
        nP = size(D,1);
    end;
    
    if nP == 0
        jscale = options_.mh_jscale;
        bayestopt_.jscale = jscale;
        save([m_directory 'adaptive_metropolis_proposal_0'],'vv','jscale');
        nP = 1;
    else
        tmp = load([m_directory 'adaptive_metropolis_proposal_' ...
                    int2str(nP-1)],'vv','jscale');
        vv = tmp.vv;
        bayestopt_.jscale = tmp.jscale;
    end
    
    if options_.amh.cova_steps
        bayestopt_.jscale = tune_scale_parameter(TargetFun, ...
                                                  ProposalFun,xparam1,vv,mh_bounds,varargin{:});
    end
    
    for i=1:options_.amh.cova_steps
        options_.mh_replic = options_.amh.cova_replic;
        random_walk_metropolis_hastings(TargetFun,ProposalFun, ...
                                        xparam1,vv,mh_bounds,varargin{:});
        tot_draws = total_draws(M_);
        options_.mh_drop = (tot_draws-options_.amh.cova_replic)/tot_draws;
        CutSample(M_,options_,estim_params_);
        [junk,vv] = compute_mh_covariance_matrix();
        jscale = tune_scale_parameter(TargetFun,ProposalFun,xparam1,vv,mh_bounds,varargin{:});
        bayestopt_.jscale = jscale;
        save([m_directory 'adaptive_metropolis_proposal_' ...
              int2str(nP)],'vv','jscale');
        nP = nP + 1;
    end
    
    options_.mh_replic = old_options.mh_replic;
    options_.mh_drop = old_options.mh_drop;
    record = random_walk_metropolis_hastings(TargetFun,ProposalFun, ...
                                             xparam1,vv,mh_bounds,varargin{:});
                    
    
    
    function selected_scale = tune_scale_parameter(TargetFun,ProposalFun,xparam1,vv,mh_bounds,varargin)
    global options_ bayestopt_
    
    selected_scale = [];
    
    maxit = options_.amh.scale_tuning_maxit;
    accept_target = options_.amh.accept_target;
    test_runs = options_.amh.scale_tuning_test_runs;
    tolerance = options_.amh.scale_tuning_tolerance;
    Scales = zeros(maxit,1);
    AvRates = zeros(maxit,1);
    Scales(1) = bayestopt_.jscale;
    
    for i=1:maxit
        options_.mh_replic = options_.amh.scale_tuning_blocksize;
        bayestopt_.jscale = Scales(i);
        record = random_walk_metropolis_hastings(TargetFun,ProposalFun, ...
                                                 xparam1,vv, ...
                                                 mh_bounds,varargin{:});
        AvRates(i) = mean(record.AcceptanceRatio);
    
        if i < test_runs
            i_kept_runs = 1:i;
        else
            i_kept_runs = i_kept_runs+1;
        end
        
        kept_runs_s = Scales(i_kept_runs);
        kept_runs_a = AvRates(i_kept_runs);
        
        if i > test_runs
            a_mean = mean(kept_runs_a);
            if (a_mean > (1-tolerance)*accept_target) && ...
                    (a_mean < (1+tolerance)*accept_target) && ...
                    all(kept_runs_a > (1-test_runs*tolerance)*accept_target) && ...
                    all(kept_runs_a < (1+test_runs*tolerance)*accept_target)
                selected_scale = mean(Scales((i-test_runs+1):i));
                disp(['Selected scale: ' num2str(selected_scale)])
                return
            end
        end
        
        mean_kept_runs_a = mean(kept_runs_a);
        if (mean_kept_runs_a/accept_target < 1-test_runs*tolerance) ...
                || (mean_kept_runs_a/accept_target > 1+test_runs*tolerance)
            damping_factor = 1
        else
            damping_factor = 1/3
        end
        Scales(i+1) = mean(kept_runs_s)*(mean(kept_runs_a)/ ...
                                         accept_target)^damping_factor;
    
    
        options_.load_mh_file = 1;
        
        disp(100*kept_runs_s')
        disp(100*kept_runs_a')
        disp(['Selected scale ' num2str(Scales(i+1))])    
    end
    
    error('AMH scale tuning: tuning didn''t converge')
    
    function y = total_draws(M_)
    load_last_mh_history_file([M_.dname filesep 'metropolis'],M_.fname);
    y = sum(record.MhDraws(:,1));