Skip to content
Snippets Groups Projects
Select Git revision
  • d55b6c68f96cbd744b62adcb1554c10f401626cd
  • master default protected
  • 6.x protected
  • madysson
  • 5.x protected
  • asm
  • time-varying-information-set
  • 4.6 protected
  • dynare_minreal
  • dragonfly
  • various_fixes
  • 4.5 protected
  • clang+openmp
  • exo_steady_state
  • declare_vars_in_model_block
  • julia
  • error_msg_undeclared_model_vars
  • static_aux_vars
  • slice
  • aux_func
  • penalty
  • 6.4 protected
  • 6.3 protected
  • 6.2 protected
  • 6.1 protected
  • 6.0 protected
  • 6-beta2 protected
  • 6-beta1 protected
  • 5.5 protected
  • 5.4 protected
  • 5.3 protected
  • 5.2 protected
  • 5.1 protected
  • 5.0 protected
  • 5.0-rc1 protected
  • 4.7-beta3 protected
  • 4.7-beta2 protected
  • 4.7-beta1 protected
  • 4.6.4 protected
  • 4.6.3 protected
  • 4.6.2 protected
41 results

DsgeSmoother.m

Blame
  • DsgeSmoother.m 29.99 KiB
    function [alphahat,etahat,epsilonhat,ahat,SteadyState,trend_coeff,aK,T,R,P,PK,decomp,trend_addition,state_uncertainty,oo_,bayestopt_,alphahat0,state_uncertainty0,d] = DsgeSmoother(xparam1,gend,Y,data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_,varargin)
    % [alphahat,etahat,epsilonhat,ahat,SteadyState,trend_coeff,aK,T,R,P,PK,decomp,trend_addition,state_uncertainty,oo_,bayestopt_,alphahat0,state_uncertainty0,d] = DsgeSmoother(xparam1,gend,Y,data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_,varargin)
    % Estimation of the smoothed variables and innovations.
    %
    % INPUTS
    %   o xparam1       [double]   (p*1) vector of (estimated) parameters.
    %   o gend          [integer]  scalar specifying the number of observations ==> varargin{1}.
    %   o Y             [double]   (n*T) matrix of data.
    %   o data_index    [cell]      1*smpl cell of column vectors of indices.
    %   o missing_value 1 if missing values, 0 otherwise
    %   o M_            [structure] decribing the model
    %   o oo_           [structure] storing the results
    %   o options_      [structure] describing the options
    %   o bayestopt_    [structure] describing the priors
    %   o estim_params_ [structure] characterizing parameters to be estimated
    %
    % OUTPUTS
    %   o alphahat      [double]  (m*T) matrix, smoothed endogenous variables (a_{t|T})  (decision-rule order)
    %   o etahat        [double]  (r*T) matrix, smoothed structural shocks (r>=n is the number of shocks).
    %   o epsilonhat    [double]  (n*T) matrix, smoothed measurement errors.
    %   o ahat          [double]  (m*T) matrix, updated (endogenous) variables (a_{t|t}) (decision-rule order)
    %   o SteadyState   [double]  (m*1) vector specifying the steady state level of each endogenous variable (declaration order)
    %   o trend_coeff   [double]  (n*1) vector, parameters specifying the slope of the trend associated to each observed variable.
    %   o aK            [double]  (K,n,T+K) array, k (k=1,...,K) steps ahead
    %                                   filtered (endogenous) variables  (decision-rule order)
    %   o T and R       [double]  Matrices defining the state equation (T is the (m*m) transition matrix).
    %   o P:            (m*m*(T+1)) 3D array of one-step ahead forecast error variance
    %                       matrices (decision-rule order)
    %   o PK:           (K*m*m*(T+K)) 4D array of k-step ahead forecast error variance
    %                       matrices (meaningless for periods 1:d) (decision-rule order)
    %   o decomp        (K*m*r*(T+K)) 4D array of shock decomposition of k-step ahead
    %                       filtered variables (decision-rule order)
    %   o trend_addition [double] (n*T) pure trend component; stored in options_.varobs order
    %   o state_uncertainty [double] (K,K,T) array, storing the uncertainty
    %                                   about the smoothed state (decision-rule order)
    %   o oo_           [structure] storing the results
    %   o bayestopt_    [structure] describing the priors
    %
    % Notes:
    %   m:  number of endogenous variables (M_.endo_nbr)
    %   T:  number of Time periods (options_.nobs)
    %   r:  number of strucural shocks (M_.exo_nbr)
    %   n:  number of observables (length(options_.varobs))
    %   K:  maximum forecast horizon (max(options_.nk))
    %
    %   To get variables that are stored in decision rule order in order of declaration
    %   as in M_.endo_names, ones needs code along the lines of:
    %   variables_declaration_order(dr.order_var,:) = alphahat
    %
    %   Defines bayestopt_.mf = bayestopt_.smoother_mf (positions of observed variables
    %   and requested smoothed variables in decision rules (decision rule order)) and
    %   passes it back via global variable
    %
    % ALGORITHM
    %   Diffuse Kalman filter (Durbin and Koopman)
    %
    % SPECIAL REQUIREMENTS
    %   None
    
    % Copyright © 2006-2023 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
    
    alphahat        = [];
    etahat  = [];
    epsilonhat      = [];
    ahat          = [];
    SteadyState   = [];
    trend_coeff   = [];
    aK            = [];
    T             = [];
    R             = [];
    P             = [];
    PK            = [];
    decomp        = [];
    vobs            = length(options_.varobs);
    smpl          = size(Y,2);
    
    if ~isempty(xparam1) %not calibrated model
        M_ = set_all_parameters(xparam1,estim_params_,M_);
    end
    
    %------------------------------------------------------------------------------
    % 2. call model setup & reduction program
    %------------------------------------------------------------------------------
    length_varargin=length(varargin);
    if ~options_.smoother_redux
        
        %store old setting of restricted var_list
        oldoo.restrict_var_list = oo_.dr.restrict_var_list;
        oldoo.restrict_columns = oo_.dr.restrict_columns;
        oo_.dr.restrict_var_list = bayestopt_.smoother_var_list;
        oo_.dr.restrict_columns = bayestopt_.smoother_restrict_columns;
        
        [T,R,SteadyState,info,oo_.dr,M_.params] = dynare_resolve(M_,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state);
        
        %get location of observed variables and requested smoothed variables in
        %decision rules
        bayestopt_.mf = bayestopt_.smoother_var_list(bayestopt_.smoother_mf);
        
    else
        if ~options_.occbin.smoother.status
            [T,R,SteadyState,info,oo_.dr,M_.params] = dynare_resolve(M_,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state,'restrict');
        else
            [T,R,SteadyState,info,oo_.dr, M_.params,~,~,~, T0, R0] = ...
                occbin.dynare_resolve(M_,options_,oo_.dr, oo_.steady_state, oo_.exo_steady_state, oo_.exo_det_steady_state,[],'restrict');
            varargin{length_varargin+1}=T0;
            varargin{length_varargin+2}=R0;
        end
        bayestopt_.mf = bayestopt_.mf1;
    end
    if options_.occbin.smoother.status
        occbin_info.status = true;
        occbin_info.info= [{options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state,M_} varargin];
    else
        occbin_info.status = false;    
    end
    
    if info~=0
        print_info(info,options_.noprint, options_);
        return
    end
    
    if options_.noconstant
        constant = zeros(vobs,1);
    else
        if options_.loglinear
            constant = log(SteadyState(bayestopt_.mfys));
        else
            constant = SteadyState(bayestopt_.mfys);
        end
    end
    trend_coeff = zeros(vobs,1);
    if bayestopt_.with_trend == 1
        [trend_addition, trend_coeff] =compute_trend_coefficients(M_,options_,vobs,gend);
        trend = constant*ones(1,gend)+trend_addition;
    else
        trend_addition=zeros(size(constant,1),gend);
        trend = constant*ones(1,gend);
    end
    
    np    = size(T,1);
    mf    = bayestopt_.mf;
    % ------------------------------------------------------------------------------
    %  3. Initial condition of the Kalman filter
    % ------------------------------------------------------------------------------
    %
    %  Here, Pinf and Pstar are determined. If the model is stationary, determine
    %  Pstar as the solution of the Lyapunov equation and set Pinf=[] (Notation follows
    %  Koopman/Durbin (2003), Journal of Time Series Analysis 24(1))
    %
    Q = M_.Sigma_e;
    H = M_.H;
    
    if isequal(H,0)
        H = zeros(vobs,vobs);
    end
    
    Z = zeros(vobs,size(T,2));
    for i=1:vobs
        Z(i,mf(i)) = 1;
    end
    
    expanded_state_vector_for_univariate_filter=0;
    kalman_algo = options_.kalman_algo;
    if options_.lik_init == 1               % Kalman filter
        if kalman_algo ~= 2
            kalman_algo = 1;
        end
        Pstar=lyapunov_solver(T,R,Q,options_);
        Pinf        = [];
    elseif options_.lik_init == 2           % Old Diffuse Kalman filter
        if kalman_algo ~= 2
            kalman_algo = 1;
        end
        Pstar = options_.Harvey_scale_factor*eye(np);
        Pinf        = [];
    elseif options_.lik_init == 3           % Diffuse Kalman filter
        my_mf = mf;
        if kalman_algo ~= 4
            kalman_algo = 3;
        else
            if ~all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is not diagonal...
                %Augment state vector (follows Section 6.4.3 of DK (2012))
                expanded_state_vector_for_univariate_filter=1;
                T  = blkdiag(T,zeros(vobs));
                np    = size(T,1);
                Q   = blkdiag(Q,H);
                R  = blkdiag(R,eye(vobs));
                H   = zeros(vobs,vobs);
                Z   = [Z, eye(vobs)];
                my_mf = find(any(Z))';
            end
        end
        [Pstar,Pinf] = compute_Pinf_Pstar(my_mf,T,R,Q,options_.qz_criterium);
    elseif options_.lik_init == 4           % Start from the solution of the Riccati equation.
        Pstar = kalman_steady_state(transpose(T),R*Q*transpose(R),transpose(build_selection_matrix(mf,np,vobs)),H);
        Pinf  = [];
        if kalman_algo~=2
            kalman_algo = 1;
        end
    elseif options_.lik_init == 5            % Old diffuse Kalman filter only for the non stationary variables
        [eigenvect, eigenv] = eig(T);
        eigenv = diag(eigenv);
        nstable = length(find(abs(abs(eigenv)-1) > 1e-7));
        unstable = find(abs(abs(eigenv)-1) < 1e-7);
        V = eigenvect(:,unstable);
        indx_unstable = find(sum(abs(V),2)>1e-5);
        stable = find(sum(abs(V),2)<1e-5);
        nunit = length(eigenv) - nstable;
        Pstar = options_.Harvey_scale_factor*eye(np);
        if kalman_algo ~= 2
            kalman_algo = 1;
        end
        R_tmp = R(stable, :);
        T_tmp = T(stable,stable);
        Pstar_tmp=lyapunov_solver(T_tmp,R_tmp,Q,options_);
        Pstar(stable, stable) = Pstar_tmp;
        Pinf  = [];
    end
    kalman_tol = options_.kalman_tol;
    diffuse_kalman_tol = options_.diffuse_kalman_tol;
    riccati_tol = options_.riccati_tol;
    data1 = Y-trend;
    % -----------------------------------------------------------------------------
    %  4. Kalman smoother
    % -----------------------------------------------------------------------------
    
    if ~missing_value
        for i=1:smpl
            data_index{i}=(1:vobs)';
        end
    end
    
    ST = T;
    R1 = R;
    
    if options_.heteroskedastic_filter
        Q=get_Qvec_heteroskedastic_filter(Q,smpl,M_);
    end
    
    if options_.occbin.smoother.status
        if kalman_algo == 1
            kalman_algo = 2;
        end
        if kalman_algo == 3
            kalman_algo = 4;
        end
    end
    
    if kalman_algo == 1 || kalman_algo == 3
        a_initial     = zeros(np,1);
        a_initial=set_Kalman_smoother_starting_values(a_initial,M_,oo_,options_);
        a_initial=T*a_initial; %set state prediction for first Kalman step;
        [alphahat,epsilonhat,etahat,ahat,P,aK,PK,decomp,state_uncertainty, aahat, eehat, d, alphahat0, aalphahat0, state_uncertainty0] = missing_DiffuseKalmanSmootherH1_Z(a_initial,ST, ...
            Z,R1,Q,H,Pinf,Pstar, ...
            data1,vobs,np,smpl,data_index, ...
            options_.nk,kalman_tol,diffuse_kalman_tol,options_.filter_decomposition,options_.smoothed_state_uncertainty,options_.filter_covariance,options_.smoother_redux);
        if isinf(alphahat)
            if kalman_algo == 1
                fprintf('\nDsgeSmoother: Switching to univariate filter. This may be a sign of stochastic singularity.\n')
                kalman_algo = 2;
            elseif kalman_algo == 3
                fprintf('\nDsgeSmoother: Switching to univariate filter. This is usually due to co-integration in diffuse filter,\n')
                fprintf(' otherwise it may be a sign of stochastic singularity.\n')
                kalman_algo = 4;
            else
                error('This case shouldn''t happen')
            end
        end
    end
    
    if kalman_algo == 2 || kalman_algo == 4
        if ~all(all(abs(H-diag(diag(H)))<1e-14))% ie, the covariance matrix is diagonal...
            if ~expanded_state_vector_for_univariate_filter
                %Augment state vector (follows Section 6.4.3 of DK (2012))
                expanded_state_vector_for_univariate_filter=1;
                Z   = [Z, eye(vobs)];
                ST  = blkdiag(ST,zeros(vobs));
                np  = size(ST,1);
                if options_.heteroskedastic_filter
                    Qvec=Q;
                    Q=NaN(size(Qvec,1)+size(H,1),size(Qvec,1)+size(H,1),smpl+1);
                    for kv=1:size(Qvec,3)
                        Q(:,:,kv) = blkdiag(Qvec(:,:,kv),H);
                    end
                else
                    Q   = blkdiag(Q,H);
                end
                R1  = blkdiag(R,eye(vobs));
                if kalman_algo == 4
                    %recompute Schur state space transformation with
                    %expanded state space
                    [Pstar,Pinf] = compute_Pinf_Pstar(mf,ST,R1,Q,options_.qz_criterium);
                else
                    Pstar = blkdiag(Pstar,H);
                    if ~isempty(Pinf)
                        Pinf  = blkdiag(Pinf,zeros(vobs));
                    end
                end
                %now reset H to 0
                H   = zeros(vobs,vobs);
            else
                %do nothing, state vector was already expanded
            end
        end
        
        a_initial     = zeros(np,1);
        a_initial=set_Kalman_smoother_starting_values(a_initial,M_,oo_,options_);
        a_initial=ST*a_initial; %set state prediction for first Kalman step;
        [alphahat,epsilonhat,etahat,ahat,P,aK,PK,decomp,state_uncertainty, aahat, eehat, d, alphahat0, aalphahat0, state_uncertainty0, regimes_,TT,RR,CC,TTx,RRx,CCx] = missing_DiffuseKalmanSmootherH3_Z(a_initial,ST, ...
            Z,R1,Q,diag(H), ...
            Pinf,Pstar,data1,vobs,np,smpl,data_index, ...
            options_.nk,kalman_tol,diffuse_kalman_tol, ...
            options_.filter_decomposition,options_.smoothed_state_uncertainty,options_.filter_covariance,options_.smoother_redux,occbin_info);
        if options_.occbin.smoother.status
            oo_.occbin.smoother.regime_history = regimes_;
        end
    end
    
    if expanded_state_vector_for_univariate_filter && (kalman_algo == 2 || kalman_algo == 4)
        % extracting measurement errors
        % removing observed variables from the state vector
        k = (1:np-vobs);
        alphahat = alphahat(k,:);
        ahat = ahat(k,:);
        aK = aK(:,k,:,:);
        epsilonhat=etahat(end-vobs+1:end,:);
        etahat=etahat(1:end-vobs,:);
        if ~isempty(PK)
            PK = PK(:,k,k,:);
        end
        if ~isempty(decomp)
            decomp = decomp(:,k,:,:);
        end
        if ~isempty(P)
            P = P(k,k,:);
        end
        if ~isempty(state_uncertainty)
            state_uncertainty = state_uncertainty(k,k,:);
        end
    end
    
    if ~options_.smoother_redux
        %reset old setting of restricted var_list
        oo_.dr.restrict_var_list = oldoo.restrict_var_list;
        oo_.dr.restrict_columns = oldoo.restrict_columns;
    else
        ic = [ M_.nstatic+(1:M_.nspred) M_.endo_nbr+(1:size(oo_.dr.ghx,2)-M_.nspred) ]';
        
        if isempty(options_.nk)
            nk=1;
        else
            nk=options_.nk;
        end
            
        if options_.occbin.smoother.status
            % reconstruct occbin smoother
            if length_varargin>0
                % sequence of regimes is provided in input
                isoccbin=1;
            else
                isoccbin=0;
            end
            if length_varargin>1
                TT=varargin{2};
                RR=varargin{3};
                CC=varargin{4};
                if size(TT,3)<(smpl+1)
                    TT=repmat(T,1,1,smpl+1);
                    RR=repmat(R,1,1,smpl+1);
                    CC=repmat(zeros(size(T,1),1),1,smpl+1);
                end
            end
            if isoccbin==0
                [A,B] = kalman_transition_matrix(oo_.dr,(1:M_.endo_nbr)',ic);
            else
                opts_simul = options_.occbin.simul;
            end
            % reconstruct smoothed variables
            aaa=zeros(M_.endo_nbr,gend+1);
            aaa(oo_.dr.restrict_var_list,1)=alphahat0;
            aaa(oo_.dr.restrict_var_list,2:end)=alphahat;
            iTx = zeros(size(TTx));
            for k=1:gend
                if isoccbin
                    A = TT(:,:,k);
                    B = RR(:,:,k);
                    C = CC(:,k);
                else
                    C=0;
                end
                iT = pinv(TTx(:,:,k));
                % store pinv
                iTx(:,:,k) = iT;
                Tstar = A(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list),oo_.dr.restrict_var_list);
                Rstar = B(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list),:);
                Cstar = C(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list));
                AS = Tstar*iT;
                BS = Rstar-AS*RRx(:,:,k);
                CS = Cstar-AS*CCx(:,k);
                static_var_list = ~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list);
                ilagged = any(abs(AS*TTx(:,:,k)-Tstar)'>1.e-12);
                static_var_list0 = static_var_list;
                static_var_list0(static_var_list) = ilagged;
                static_var_list(static_var_list) = ~ilagged;
                aaa(static_var_list,k+1) = AS(~ilagged,:)*alphahat(:,k)+BS(~ilagged,:)*etahat(:,k)+CS(~ilagged);
                if any(ilagged) 
                    if k>1
                        aaa(static_var_list0,k+1) = Tstar(ilagged,:)*alphahat(:,k-1)+Rstar(ilagged,:)*etahat(:,k)+Cstar(ilagged);
                    else
                        aaa(static_var_list0,2) = Tstar(ilagged,:)*alphahat0+Rstar(ilagged,:)*etahat(:,1)+Cstar(ilagged);
                    end
    
                end
                
            end
            alphahat0=aaa(:,1);
            alphahat=aaa(:,2:end);
    
            % reconstruct updated variables
            bbb=zeros(M_.endo_nbr,gend);
            bbb(oo_.dr.restrict_var_list,:)=ahat; % this is t|t
            for k=1:gend
                if isoccbin
                    A = TT(:,:,k);
                    B = RR(:,:,k);
                    C = CC(:,k);
                    iT = iTx(:,:,k);
                    Tstar = A(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list),oo_.dr.restrict_var_list);
                    Rstar = B(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list),:);
                    Cstar = C(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list));
                    AS = Tstar*iT;
                    BS = Rstar-AS*RRx(:,:,k);
                    CS = Cstar-AS*CCx(:,k);
                    static_var_list = ~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list);
                    ilagged = any(abs(AS*TTx(:,:,k)-Tstar)'>1.e-12);
                    static_var_list0 = static_var_list;
                    static_var_list0(static_var_list) = ilagged;
                    static_var_list(static_var_list) = ~ilagged;
                    bbb(static_var_list,k) = AS(~ilagged,:)*ahat(:,k)+BS(~ilagged,:)*eehat(:,k)+CS(~ilagged);
                    if any(ilagged) && k>d+1
                        bbb(static_var_list0,k) = Tstar(ilagged,:)*aahat(:,k-1)+Rstar(ilagged,:)*eehat(:,k)+Cstar(ilagged);
                    end
                elseif k>d+1
                    opts_simul.curb_retrench = options_.occbin.smoother.curb_retrench;
                    opts_simul.waitbar = options_.occbin.smoother.waitbar;
                    opts_simul.maxit = options_.occbin.smoother.maxit;
                    opts_simul.periods = options_.occbin.smoother.periods;
                    opts_simul.check_ahead_periods = options_.occbin.smoother.check_ahead_periods;
                    opts_simul.full_output = options_.occbin.smoother.full_output;
                    opts_simul.piecewise_only = options_.occbin.smoother.piecewise_only;
                    opts_simul.SHOCKS = zeros(nk,M_.exo_nbr);
                    opts_simul.SHOCKS(1,:) =  eehat(:,k);
                    tmp=zeros(M_.endo_nbr,1);
                    tmp(oo_.dr.restrict_var_list,1)=aahat(:,k-1);
                    opts_simul.endo_init = tmp(oo_.dr.inv_order_var,1);
                    opts_simul.init_regime = []; %regimes_(k);
                    opts_simul.waitbar=0;
                    options_.occbin.simul=opts_simul;
                    [~, out] = occbin.solver(M_,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state);
                    % regime in out should be identical to regimes_(k-2) moved one
                    % period ahead (so if regimestart was [1 5] it should be [1 4]
                    % in out
                    %         end
                    bbb(oo_.dr.inv_order_var,k) = out.piecewise(1,:) - out.ys';
                end
            end
            ahat0=ahat;
            ahat=bbb;
            if ~isempty(P)
                PP=zeros(M_.endo_nbr,M_.endo_nbr,gend+1);
                PP(oo_.dr.restrict_var_list,oo_.dr.restrict_var_list,:)=P;
                P=PP;
                clear PP
            end
            
            if ~isempty(state_uncertainty)
                mm=size(T,1);
                sstate_uncertainty=zeros(M_.endo_nbr,M_.endo_nbr,gend);
                sstate_uncertainty(oo_.dr.restrict_var_list,oo_.dr.restrict_var_list,:)=state_uncertainty(1:mm,1:mm,:);
                state_uncertainty=sstate_uncertainty;
                clear sstate_uncertainty
            end
            if ~isempty(state_uncertainty0)
                mm=size(T,1);
                sstate_uncertainty=zeros(M_.endo_nbr,M_.endo_nbr);
                sstate_uncertainty(oo_.dr.restrict_var_list,oo_.dr.restrict_var_list)=state_uncertainty0(1:mm,1:mm);
                state_uncertainty0=sstate_uncertainty;
                clear sstate_uncertainty
            end
            
            aaa = zeros(nk,M_.endo_nbr,gend+nk);
            aaa(:,oo_.dr.restrict_var_list,:)=aK;
            
            for k=2:gend+1
                opts_simul.curb_retrench = options_.occbin.smoother.curb_retrench;
                opts_simul.waitbar = options_.occbin.smoother.waitbar;
                opts_simul.maxit = options_.occbin.smoother.maxit;
                opts_simul.periods = options_.occbin.smoother.periods;
                opts_simul.check_ahead_periods = options_.occbin.smoother.check_ahead_periods;
                opts_simul.full_output = options_.occbin.smoother.full_output;
                opts_simul.piecewise_only = options_.occbin.smoother.piecewise_only;
                opts_simul.SHOCKS = zeros(nk,M_.exo_nbr);
                tmp=zeros(M_.endo_nbr,1);
                tmp(oo_.dr.restrict_var_list,1)=ahat0(:,k-1);
                opts_simul.endo_init = tmp(oo_.dr.inv_order_var,1);
                opts_simul.init_regime = []; %regimes_(k);
                opts_simul.waitbar=0;
                options_.occbin.simul=opts_simul;
                [~, out] = occbin.solver(M_,options_,oo_.dr,oo_.steady_state,oo_.exo_steady_state,oo_.exo_det_steady_state);
                % regime in out should be identical to regimes_(k-2) moved one
                % period ahead (so if regimestart was [1 5] it should be [1 4]
                % in out
                %         end
                for jnk=1:nk
                    aaa(jnk,oo_.dr.inv_order_var,k+jnk-1) = out.piecewise(jnk,:) - out.ys';
                end
            end
            aK=aaa;
            
            if ~isempty(PK)
                PP = zeros(nk,M_.endo_nbr,M_.endo_nbr,gend+nk);
                PP(:,oo_.dr.restrict_var_list,oo_.dr.restrict_var_list,:) = PK;
                PK=PP;
                clear PP
            end
        else
            % reconstruct smoother
            [A,B] = kalman_transition_matrix(oo_.dr,(1:M_.endo_nbr)',ic);
            iT = pinv(T);
            Tstar = A(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list),oo_.dr.restrict_var_list);
            Rstar = B(~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list),:);
            C = Tstar*iT;
            D = Rstar-C*R;
            static_var_list = ~ismember(1:M_.endo_nbr,oo_.dr.restrict_var_list);
            ilagged = any(abs(C*T-Tstar)'>1.e-12);
            static_var_list0 = static_var_list;
            static_var_list0(static_var_list) = ilagged;
            static_var_list(static_var_list) = ~ilagged;
            % reconstruct smoothed variables
            aaa=zeros(M_.endo_nbr,gend+1);
            if ~isempty(alphahat0)
                aaa(oo_.dr.restrict_var_list,1)=alphahat0;
            end
            aaa(oo_.dr.restrict_var_list,2:end)=alphahat;
            for k=1:gend
                aaa(static_var_list,k+1) = C(~ilagged,:)*alphahat(:,k)+D(~ilagged,:)*etahat(:,k);
            end
            if any(ilagged)
                for k=2:gend
                    aaa(static_var_list0,k+1) = Tstar(ilagged,:)*alphahat(:,k-1)+Rstar(ilagged,:)*etahat(:,k);
                end
                aaa(static_var_list0,2) = Tstar(ilagged,:)*alphahat0+Rstar(ilagged,:)*etahat(:,1);
            end
            alphahat0=aaa(:,1);
            alphahat=aaa(:,2:end);
            
            % reconstruct updated variables
            aaa=zeros(M_.endo_nbr,gend);
            aaa(oo_.dr.restrict_var_list,:)=ahat;
            for k=1:gend
                aaa(static_var_list,k) = C(~ilagged,:)*ahat(:,k)+D(~ilagged,:)*eehat(:,k);
            end
            if any(ilagged)
                %         bbb=zeros(M_.endo_nbr,gend);
                %         bbb(oo_.dr.restrict_var_list,:)=aahat;
                if ~isempty(aalphahat0)
                    aaa(static_var_list0,d+1) = Tstar(ilagged,:)*aalphahat0+Rstar(ilagged,:)*eehat(:,d+1);
                end
                for k=d+2:gend
                    aaa(static_var_list0,k) = Tstar(ilagged,:)*aahat(:,k-1)+Rstar(ilagged,:)*eehat(:,k);
                end
            end
            ahat1=aaa;
            % reconstruct aK
            aaa = zeros(nk,M_.endo_nbr,gend+nk);
            aaa(:,oo_.dr.restrict_var_list,:)=aK;
            for k=1:gend
                for jnk=1:nk
                    aaa(jnk,static_var_list,k+jnk) = C(~ilagged,:)*dynare_squeeze(aK(jnk,:,k+jnk));
                end
            end
            if any(ilagged)
                for k=1:gend
                    aaa(1,static_var_list0,k+1) = Tstar(ilagged,:)*ahat(:,k);
                    for jnk=2:nk
                        aaa(jnk,static_var_list0,k+jnk) = Tstar(ilagged,:)*dynare_squeeze(aK(jnk-1,:,k+jnk-1));
                    end
                end
            end
            aK=aaa;
            ahat=ahat1;
            
            % reconstruct P
            if ~isempty(P)
                PP=zeros(M_.endo_nbr,M_.endo_nbr,gend+1);
                PP(oo_.dr.restrict_var_list,oo_.dr.restrict_var_list,:)=P;
                if ~options_.heteroskedastic_filter                
                    DQD=D(~ilagged,:)*Q*transpose(D(~ilagged,:))+C(~ilagged,:)*R*Q*transpose(D(~ilagged,:))+D(~ilagged,:)*Q*transpose(C(~ilagged,:)*R);
                    DQR=D(~ilagged,:)*Q*transpose(R);
                end
                for k=1:gend+1
                    if options_.heteroskedastic_filter
                        DQD=D(~ilagged,:)*Q(:,:,k)*transpose(D(~ilagged,:))+C(~ilagged,:)*R*Q(:,:,k)*transpose(D(~ilagged,:))+D(~ilagged,:)*Q(:,:,k)*transpose(C(~ilagged,:)*R);
                        DQR=D(~ilagged,:)*Q(:,:,k)*transpose(R);
                    end
                    PP(static_var_list,static_var_list,k)=C(~ilagged,:)*P(:,:,k)*C(~ilagged,:)'+DQD;
                    PP(static_var_list,oo_.dr.restrict_var_list,k)=C(~ilagged,:)*P(:,:,k)+DQR;
                    PP(oo_.dr.restrict_var_list,static_var_list,k)=transpose(PP(static_var_list,oo_.dr.restrict_var_list,k));
                end
                P=PP;
                clear PP
            end
            
            % reconstruct state_uncertainty
            if ~isempty(state_uncertainty)
                mm=size(T,1);
                ss=length(find(static_var_list));
                sstate_uncertainty=zeros(M_.endo_nbr,M_.endo_nbr,gend);
                sstate_uncertainty(oo_.dr.restrict_var_list,oo_.dr.restrict_var_list,:)=state_uncertainty(1:mm,1:mm,:);
                for k=1:gend
                    sstate_uncertainty(static_var_list,static_var_list,k)=[C(~ilagged,:) D(~ilagged,:)]*state_uncertainty(:,:,k)*[C(~ilagged,:) D(~ilagged,:)]';
                    tmp = [C(~ilagged,:) D(~ilagged,:)]*state_uncertainty(:,:,k);
                    sstate_uncertainty(static_var_list,oo_.dr.restrict_var_list,k)=tmp(1:ss,1:mm);
                    sstate_uncertainty(oo_.dr.restrict_var_list,static_var_list,k)=transpose(sstate_uncertainty(static_var_list,oo_.dr.restrict_var_list,k));
                end
                state_uncertainty=sstate_uncertainty;
                clear sstate_uncertainty
            end
            if ~isempty(state_uncertainty0)
                mm=size(T,1);
                ss=length(find(static_var_list));
                sstate_uncertainty=zeros(M_.endo_nbr,M_.endo_nbr);
                sstate_uncertainty(oo_.dr.restrict_var_list,oo_.dr.restrict_var_list)=state_uncertainty0(1:mm,1:mm);
                    sstate_uncertainty(static_var_list,static_var_list)=[C(~ilagged,:) D(~ilagged,:)]*state_uncertainty0*[C(~ilagged,:) D(~ilagged,:)]';
                    tmp = [C(~ilagged,:) D(~ilagged,:)]*state_uncertainty0;
                    sstate_uncertainty(static_var_list,oo_.dr.restrict_var_list)=tmp(1:ss,1:mm);
                    sstate_uncertainty(oo_.dr.restrict_var_list,static_var_list)=transpose(sstate_uncertainty(static_var_list,oo_.dr.restrict_var_list));
                state_uncertainty0=sstate_uncertainty;
                clear sstate_uncertainty
            end
            
            % reconstruct PK
            if ~isempty(PK)
                PP = zeros(nk,M_.endo_nbr,M_.endo_nbr,gend+nk);
                PP(:,oo_.dr.restrict_var_list,oo_.dr.restrict_var_list,:) = PK;
                if ~options_.heteroskedastic_filter
                    DQD=D(~ilagged,:)*Q*transpose(D(~ilagged,:))+C(~ilagged,:)*R*Q*transpose(D(~ilagged,:))+D(~ilagged,:)*Q*transpose(C(~ilagged,:)*R);
                    DQR=D(~ilagged,:)*Q*transpose(R);
                    for f=1:nk
                        for k=1:gend
                            PP(f,static_var_list,static_var_list,k+f)=C(~ilagged,:)*squeeze(PK(f,:,:,k+f))*C(~ilagged,:)'+DQD;
                            PP(f,static_var_list,oo_.dr.restrict_var_list,k+f)=C(~ilagged,:)*squeeze(PK(f,:,:,k+f))+DQR;
                            PP(f,oo_.dr.restrict_var_list,static_var_list,k+f)=transpose(squeeze(PP(f,static_var_list,oo_.dr.restrict_var_list,k+f)));
                        end
                    end
                end
                PK=PP;
                clear PP
            end
        end
        
        bayestopt_.mf = bayestopt_.smoother_var_list(bayestopt_.smoother_mf);
    end
    
    function a=set_Kalman_smoother_starting_values(a,M_,oo_,options_)
    % function a=set_Kalman_smoother_starting_values(a,M_,oo_,options_)
    % Sets initial states guess for Kalman filter/smoother based on M_.filter_initial_state
    %
    % INPUTS
    %   o a             [double]   (p*1) vector of states
    %   o M_            [structure] decribing the model
    %   o oo_           [structure] storing the results
    %   o options_      [structure] describing the options
    %
    % OUTPUTS
    %   o a             [double]    (p*1) vector of set initial states
    
    if isfield(M_,'filter_initial_state') && ~isempty(M_.filter_initial_state)
        state_indices=oo_.dr.order_var(oo_.dr.restrict_columns);
        for ii=1:size(state_indices,1)
            if ~isempty(M_.filter_initial_state{state_indices(ii),1})
                if options_.loglinear && ~options_.logged_steady_state
                    a(oo_.dr.restrict_columns(ii)) = log(eval(M_.filter_initial_state{state_indices(ii),2})) - log(oo_.dr.ys(state_indices(ii)));
                elseif ~options_.loglinear && ~options_.logged_steady_state
                    a(oo_.dr.restrict_columns(ii)) = eval(M_.filter_initial_state{state_indices(ii),2}) - oo_.dr.ys(state_indices(ii));
                else
                    error(['The steady state is logged. This should not happen. Please contact the developers'])
                end
            end
        end
    end