Skip to content
Snippets Groups Projects
Verified Commit 3a3d1db7 authored by Stéphane Adjemian's avatar Stéphane Adjemian
Browse files

Add example for PAC equation (with estimation).

(cherry picked from commit 415a86d1)
parent 50c1fb35
No related branches found
No related tags found
No related merge requests found
Pipeline #10118 passed
// --+ options: json=compute, stochastic +--
var y x z v;
varexo ex ey ez ;
parameters a_y_1 a_y_2 b_y_1 b_y_2 b_x_1 b_x_2 d_y; // VAR parameters
parameters beta e_c_m c_z_1 c_z_2; // PAC equation parameters
a_y_1 = .2;
a_y_2 = .3;
b_y_1 = .1;
b_y_2 = .4;
b_x_1 = -.1;
b_x_2 = -.2;
d_y = .5;
beta = .9;
e_c_m = .1;
c_z_1 = .7;
c_z_2 = -.3;
var_model(model_name=toto, eqtags=['eq:x', 'eq:y']);
pac_model(auxiliary_model_name=toto, discount=beta, model_name=pacman);
pac_target_info(pacman);
target v;
auxname_target_nonstationary vns;
component y;
auxname pv_y_;
kind ll;
component x;
growth diff(x(-1));
auxname pv_dx_;
kind dd;
end;
model;
[name='eq:y']
y = a_y_1*y(-1) + a_y_2*diff(x(-1)) + b_y_1*y(-2) + b_y_2*diff(x(-2)) + ey ;
[name='eq:x']
diff(x) = b_x_1*y(-2) + b_x_2*diff(x(-1)) + ex ;
[name='eq:v']
v = x + d_y*y ; // Composite target, no residuals here only variables defined in the auxiliary VAR model.
[name='zpac']
diff(z) = e_c_m*(pac_target_nonstationary(pacman)-z(-1)) + c_z_1*diff(z(-1)) + c_z_2*diff(z(-2)) + pac_expectation(pacman) + ez;
end;
shocks;
var ex = .10;
var ey = .15;
var ez = .05;
end;
// Initialize the PAC model (build the Companion VAR representation for the auxiliary model).
pac.initialize('pacman');
// Update the parameters of the PAC expectation model (h0 and h1 vectors).
pac.update.expectation('pacman');
/*
**
** Simulate artificial dataset
**
*/
// Set initial conditions to zero.
initialconditions = dseries(zeros(10, M_.endo_nbr+M_.exo_nbr), 2000Q1, vertcat(M_.endo_names,M_.exo_names));
// Simulate the model for 5000 periods
TrueData = simul_backward_model(initialconditions, 5000);
/*
**
** Estimate PAC equation (using the artificial data)
**
*/
// Provide initial conditions for the estimated parameters
clear eparams
eparams.e_c_m = .9;
eparams.c_z_1 = .5;
eparams.c_z_2 = .2;
edata = TrueData; // Set the dataset used for estimation
edata.ez = dseries(NaN, 2000Q1); // Remove residuals for the PAC equation from the database.
pac.estimate.nls('zpac', eparams, edata, 2005Q1:2005Q1+4000, 'fmincon'); // Should produce a table with the estimates (close to the calibration given in lines 21-23)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment