Skip to content
Snippets Groups Projects
Commit 3fe758c2 authored by Stéphane Adjemian's avatar Stéphane Adjemian
Browse files

Cosmetic change in doc headers.

parent 8f53be2a
No related branches found
No related tags found
No related merge requests found
function [eigenvalues_,result,info] = check(M, options, oo)
% Checks determinacy conditions by computing the generalized eigenvalues.
%@info:
%! @deftypefn {Function File} {[result,info] =} check (@var{M},@var{options},@var{oo})
%! @anchor{check}
%! @sp 1
%! Checks determinacy conditions by computing the generalized eigenvalues.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item M
%! Matlab's structure describing the model (initialized by dynare).
%! @item options
%! Matlab's structure describing the options (initialized by dynare).
%! @item oo
%! Matlab's structure gathering the results (initialized by dynare).
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item eigenvalues_
%! Eigenvalues of the model.
%! @item result
%! Integer scalar equal to one (BK conditions are satisfied) or zero (otherwise).
%! @item info
%! Integer scalar, error code as returned by @ref{resol}.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{smm_objective}
%! @sp 2
%! @strong{This function calls:}
%! @sp 1
%! @ref{resol}
%! None.
%! @end deftypefn
%@eod:
% Checks determinacy conditions by computing the generalized eigenvalues.
%
% INPUTS
% - M [structure] Matlab's structure describing the model (M_).
% - options [structure] Matlab's structure describing the current options (options_).
% - oo [structure] Matlab's structure containing the results (oo_).
%
% OUTPUTS
% - eigenvalues_ [double] vector, eigenvalues.
% - result [integer] scalar, equal to 1 if Blanchard and Kahn conditions are satisfied, zero otherwise.
% - info [integer] scalar or vector, error code as returned by resol routine.
% Copyright (C) 2001-2014 Dynare Team
% Copyright (C) 2001-2018 Dynare Team
%
% This file is part of Dynare.
%
......
function [dr, info, M, options, oo] = resol(check_flag, M, options, oo)
%@info:
%! @deftypefn {Function File} {[@var{dr},@var{info},@var{M},@var{options},@var{oo}] =} resol (@var{check_flag},@var{M},@var{options},@var{oo})
%! @anchor{resol}
%! @sp 1
%! Computes the perturbation-based decisions rules of the DSGE model (orders 1 to 3).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item check_flag
%! Integer scalar, equal to 0 if all the approximation is required, positive if only the eigenvalues are to be computed.
%! @item M
%! Matlab's structure describing the model (initialized by @code{dynare}).
%! @item options
%! Matlab's structure describing the options (initialized by @code{dynare}).
%! @item oo
%! Matlab's structure gathering the results (initialized by @code{dynare}).
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item dr
%! Matlab's structure describing the reduced form solution of the model.
%! @item info
%! Integer scalar, error code.
%! @sp 1
%! @table @ @code
%! @item info==0
%! No error.
%! @item info==1
%! The model doesn't determine the current variables uniquely.
%! @item info==2
%! MJDGGES returned an error code.
%! @item info==3
%! Blanchard & Kahn conditions are not satisfied: no stable equilibrium.
%! @item info==4
%! Blanchard & Kahn conditions are not satisfied: indeterminacy.
%! @item info==5
%! Blanchard & Kahn conditions are not satisfied: indeterminacy due to rank failure.
%! @item info==6
%! The jacobian evaluated at the deterministic steady state is complex.
%! @item info==19
%! The steadystate routine has thrown an exception (inconsistent deep parameters).
%! @item info==20
%! Cannot find the steady state, info(2) contains the sum of square residuals (of the static equations).
%! @item info==21
%! The steady state is complex, info(2) contains the sum of square of imaginary parts of the steady state.
%! @item info==22
%! The steady has NaNs.
%! @item info==23
%! M_.params has been updated in the steadystate routine and has complex valued scalars.
%! @item info==24
%! M_.params has been updated in the steadystate routine and has some NaNs.
%! @item info==30
%! Ergodic variance can't be computed.
%! @end table
%! @sp 1
%! @item M
%! Matlab's structure describing the model (initialized by @code{dynare}).
%! @item options
%! Matlab's structure describing the options (initialized by @code{dynare}).
%! @item oo
%! Matlab's structure gathering the results (initialized by @code{dynare}).
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{dynare_estimation_init}
%! @sp 2
%! @strong{This function calls:}
%! @sp 1
%! None.
%! @end deftypefn
%@eod:
% Computes the perturbation based decision rules of the DSGE model (orders 1 to 3)
%
% INPUTS
% - check_flag [integer] scalar, equal to 0 if all the approximation is required, equal to 1 if only the eigenvalues are to be computed.
% - M [structure] Matlab's structure describing the model (M_).
% - options [structure] Matlab's structure describing the current options (options_).
% - oo [structure] Matlab's structure containing the results (oo_).
%
% OUTPUTS
% - dr [structure] Reduced form model.
% - info [integer] scalar or vector, error code.
% - M [structure] Matlab's structure describing the model (M_).
% - options [structure] Matlab's structure describing the current options (options_).
% - oo [structure] Matlab's structure containing the results (oo_).
%
% REMARKS
% Possible values for the error codes are:
%
% info(1)=0 -> No error.
% info(1)=1 -> The model doesn't determine the current variables uniquely.
% info(1)=2 -> MJDGGES returned an error code.
% info(1)=3 -> Blanchard & Kahn conditions are not satisfied: no stable equilibrium.
% info(1)=4 -> Blanchard & Kahn conditions are not satisfied: indeterminacy.
% info(1)=5 -> Blanchard & Kahn conditions are not satisfied: indeterminacy due to rank failure.
% info(1)=6 -> The jacobian evaluated at the deterministic steady state is complex.
% info(1)=19 -> The steadystate routine has thrown an exception (inconsistent deep parameters).
% info(1)=20 -> Cannot find the steady state, info(2) contains the sum of square residuals (of the static equations).
% info(1)=21 -> The steady state is complex, info(2) contains the sum of square of imaginary parts of the steady state.
% info(1)=22 -> The steady has NaNs.
% info(1)=23 -> M_.params has been updated in the steadystate routine and has complex valued scalars.
% info(1)=24 -> M_.params has been updated in the steadystate routine and has some NaNs.
% info(1)=30 -> Ergodic variance can't be computed.
% Copyright (C) 2001-2018 Dynare Team
%
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment