Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dynare
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dynare
dynare
Commits
62e28dac
Commit
62e28dac
authored
10 years ago
by
Stéphane Adjemian
Browse files
Options
Downloads
Patches
Plain Diff
Use makedataset in condition forecast routine.
parent
03395a74
Branches
Branches containing commit
Tags
Tags containing commit
Loading
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
matlab/imcforecast.m
+5
-23
5 additions, 23 deletions
matlab/imcforecast.m
with
5 additions
and
23 deletions
matlab/imcforecast.m
+
5
−
23
View file @
62e28dac
...
...
@@ -102,30 +102,13 @@ if estimated_model
error
(
'imcforecast:: The dimension of the vector of parameters doesn
''
t match the number of estimated parameters!'
)
end
end
set_parameters
(
xparam
);
% Load and transform data.
transformation
=
[];
if
options_
.
loglinear
&&
~
options_
.
logdata
transformation
=
@
log
;
end
xls
.
sheet
=
options_
.
xls_sheet
;
xls
.
range
=
options_
.
xls_range
;
if
~
isfield
(
options_
,
'nobs'
)
options_
.
nobs
=
[];
end
dataset_
=
initialize_dataset
(
options_
.
datafile
,
options_
.
varobs
,
options_
.
first_obs
,
options_
.
nobs
,
transformation
,
options_
.
prefilter
,
xls
);
data
=
dataset_
.
data
;
data_index
=
dataset_
.
missing
.
aindex
;
gend
=
options_
.
nobs
;
missing_value
=
dataset_
.
missing
.
state
;
[
dataset_
,
dataset_info
]
=
makedataset
(
options_
);
data
=
transpose
(
dataset_
.
data
);
data_index
=
dataset_info
.
missing
.
aindex
;
gend
=
dataset_
.
nobs
;
missing_value
=
dataset_info
.
missing
.
state
;
[
atT
,
innov
,
measurement_error
,
filtered_state_vector
,
ys
,
trend_coeff
]
=
DsgeSmoother
(
xparam
,
gend
,
data
,
data_index
,
missing_value
);
trend
=
repmat
(
ys
,
1
,
options_cond_fcst
.
periods
+
1
);
for
i
=
1
:
M_
.
endo_nbr
j
=
strmatch
(
deblank
(
M_
.
endo_names
(
i
,:)),
options_
.
varobs
,
'exact'
);
...
...
@@ -134,7 +117,6 @@ if estimated_model
end
end
trend
=
trend
(
oo_
.
dr
.
order_var
,:);
InitState
(:,
1
)
=
atT
(:,
end
);
else
InitState
(:,
1
)
=
zeros
(
M_
.
endo_nbr
,
1
);
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment