Skip to content
Snippets Groups Projects
Verified Commit 7bb53aae authored by Johannes Pfeifer's avatar Johannes Pfeifer Committed by Sébastien Villemot
Browse files

Add function for updating measurement error covariance matrix

(cherry picked from commit 69fc7acb)
parent 1bbc7c6a
Branches
Tags
1 merge request!1815WIP Cherry-picks for 4.6
function M_ = set_measurement_errors(xparam1,estim_params_,M_)
% function M_=set_measurement_errors(xparam1,estim_params_,M_)
% Sets parameters value (except measurement errors)
% This is called for computations such as IRF and forecast
% when measurement errors aren't taken into account; in contrast to
% set_parameters.m, the global M_-structure is not altered
%
% INPUTS
% xparam1: vector of parameters to be estimated (initial values)
% M_: Dynare model-structure
%
% OUTPUTS
% M_: Dynare model-structure
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
H = M_.H;
Correlation_matrix_ME = M_.Correlation_matrix_ME;
% setting measument error variance; on the diagonal of Covariance matrix; used later
% for updating covariances
offset = estim_params_.nvx;
if estim_params_.nvn
for i=1:estim_params_.nvn
k = estim_params_.nvn_observable_correspondence(i,1);
H(k,k) = xparam1(i+offset)^2;
end
end
% update offset
offset = estim_params_.nvx+estim_params_.nvn+estim_params_.ncx;
% setting measurement error covariances
if estim_params_.ncn
corrn_observable_correspondence = estim_params_.corrn_observable_correspondence;
for i=1:estim_params_.ncn
k1 = corrn_observable_correspondence(i,1);
k2 = corrn_observable_correspondence(i,2);
Correlation_matrix_ME(k1,k2) = xparam1(i+offset);
Correlation_matrix_ME(k2,k1) = Correlation_matrix_ME(k1,k2);
end
end
%build covariance matrix from correlation matrix and variances already on
%diagonal
H = diag(sqrt(diag(H)))*Correlation_matrix_ME*diag(sqrt(diag(H)));
%if calibrated covariances, set them now to their stored value
if isfield(estim_params_,'calibrated_covariances_ME')
H(estim_params_.calibrated_covariances_ME.position)=estim_params_.calibrated_covariances_ME.cov_value;
end
M_.H = H;
M_.Correlation_matrix_ME=Correlation_matrix_ME;
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment