Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dynare
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dynare
dynare
Commits
ad2fe012
Commit
ad2fe012
authored
14 years ago
by
Marco Ratto
Browse files
Options
Downloads
Patches
Plain Diff
Minor improvements to printed and plotted output.
parent
7ae824b1
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
matlab/plot_identification.m
+11
-9
11 additions, 9 deletions
matlab/plot_identification.m
with
11 additions
and
9 deletions
matlab/plot_identification.m
+
11
−
9
View file @
ad2fe012
...
@@ -56,7 +56,7 @@ siLREnorm = idelre.siLREnorm;
...
@@ -56,7 +56,7 @@ siLREnorm = idelre.siLREnorm;
if
SampleSize
==
1
,
if
SampleSize
==
1
,
siJ
=
idemoments
.
siJ
;
siJ
=
idemoments
.
siJ
;
normJ
=
max
(
abs
(
siJ
)
')'
;
normJ
=
max
(
abs
(
siJ
)
')'
;
figure
(
'Name'
,[
tittxt
,
'Identification using info from observables'
]),
figure
(
'Name'
,[
tittxt
,
'
-
Identification using info from observables'
]),
subplot
(
211
)
subplot
(
211
)
mmm
=
(
idehess
.
ide_strength_J
);
mmm
=
(
idehess
.
ide_strength_J
);
[
ss
,
is
]
=
sort
(
mmm
);
[
ss
,
is
]
=
sort
(
mmm
);
...
@@ -99,10 +99,11 @@ if SampleSize == 1,
...
@@ -99,10 +99,11 @@ if SampleSize == 1,
title
(
'Sensitivity bars'
)
title
(
'Sensitivity bars'
)
if
advanced
if
advanced
disp
(
'Press ENTER to display advanced diagnostics'
),
pause
,
% identificaton patterns
% identificaton patterns
for
j
=
1
:
size
(
idemoments
.
cosnJ
,
2
),
for
j
=
1
:
size
(
idemoments
.
cosnJ
,
2
),
pax
=
NaN
(
nparam
,
nparam
);
pax
=
NaN
(
nparam
,
nparam
);
fprintf
(
'\n
\n
'
)
fprintf
(
'\n'
)
disp
([
'Collinearity patterns with '
,
int2str
(
j
)
,
' parameter(s)'
])
disp
([
'Collinearity patterns with '
,
int2str
(
j
)
,
' parameter(s)'
])
fprintf
(
'%-15s [%-*s] %10s\n'
,
'Parameter'
,(
15
+
1
)
*
j
,
' Expl. params '
,
'cosn'
)
fprintf
(
'%-15s [%-*s] %10s\n'
,
'Parameter'
,(
15
+
1
)
*
j
,
' Expl. params '
,
'cosn'
)
for
i
=
1
:
nparam
,
for
i
=
1
:
nparam
,
...
@@ -118,7 +119,7 @@ if SampleSize == 1,
...
@@ -118,7 +119,7 @@ if SampleSize == 1,
end
end
fprintf
(
'%-15s [%s] %10.3f\n'
,
name
{
i
},
namx
,
idemoments
.
cosnJ
(
i
,
j
))
fprintf
(
'%-15s [%s] %10.3f\n'
,
name
{
i
},
namx
,
idemoments
.
cosnJ
(
i
,
j
))
end
end
figure
(
'name'
,[
tittxt
,
'Collinearity patterns with '
,
int2str
(
j
)
,
' parameter(s)'
]),
figure
(
'name'
,[
tittxt
,
'
-
Collinearity patterns with '
,
int2str
(
j
)
,
' parameter(s)'
]),
imagesc
(
pax
,[
0
1
]);
imagesc
(
pax
,[
0
1
]);
set
(
gca
,
'xticklabel'
,
''
)
set
(
gca
,
'xticklabel'
,
''
)
set
(
gca
,
'yticklabel'
,
''
)
set
(
gca
,
'yticklabel'
,
''
)
...
@@ -147,18 +148,18 @@ if SampleSize == 1,
...
@@ -147,18 +148,18 @@ if SampleSize == 1,
if
idehess
.
flag_score
,
if
idehess
.
flag_score
,
[
U
,
S
,
V
]
=
svd
(
idehess
.
AHess
,
0
);
[
U
,
S
,
V
]
=
svd
(
idehess
.
AHess
,
0
);
if
nparam
<
5
,
if
nparam
<
5
,
f1
=
figure
(
'name'
,[
tittxt
,
'Identification patterns (Information matrix)'
]);
f1
=
figure
(
'name'
,[
tittxt
,
'
-
Identification patterns (Information matrix)'
]);
else
else
f1
=
figure
(
'name'
,[
tittxt
,
'Identification patterns (Information matrix): SMALLEST SV'
]);
f1
=
figure
(
'name'
,[
tittxt
,
'
-
Identification patterns (Information matrix): SMALLEST SV'
]);
f2
=
figure
(
'name'
,[
tittxt
,
'Identification patterns (Information matrix): HIGHEST SV'
]);
f2
=
figure
(
'name'
,[
tittxt
,
'
-
Identification patterns (Information matrix): HIGHEST SV'
]);
end
end
else
else
[
U
,
S
,
V
]
=
svd
(
siJ
.
/
normJ
(:,
ones
(
nparam
,
1
)),
0
);
[
U
,
S
,
V
]
=
svd
(
siJ
.
/
normJ
(:,
ones
(
nparam
,
1
)),
0
);
if
nparam
<
5
,
if
nparam
<
5
,
f1
=
figure
(
'name'
,[
tittxt
,
'Identification patterns (moments)'
]);
f1
=
figure
(
'name'
,[
tittxt
,
'
-
Identification patterns (moments)'
]);
else
else
f1
=
figure
(
'name'
,[
tittxt
,
'Identification patterns (moments): SMALLEST SV'
]);
f1
=
figure
(
'name'
,[
tittxt
,
'
-
Identification patterns (moments): SMALLEST SV'
]);
f2
=
figure
(
'name'
,[
tittxt
,
'Identification patterns (moments): HIGHEST SV'
]);
f2
=
figure
(
'name'
,[
tittxt
,
'
-
Identification patterns (moments): HIGHEST SV'
]);
end
end
end
end
for
j
=
1
:
min
(
nparam
,
8
),
for
j
=
1
:
min
(
nparam
,
8
),
...
@@ -226,6 +227,7 @@ else
...
@@ -226,6 +227,7 @@ else
end
end
title
(
'MC mean of sensitivity measures'
)
title
(
'MC mean of sensitivity measures'
)
if
advanced
,
if
advanced
,
disp
(
'Press ENTER to display advanced diagnostics'
),
pause
,
options_
.
nograph
=
1
;
options_
.
nograph
=
1
;
figure
(
'Name'
,
'MC Condition Number'
),
figure
(
'Name'
,
'MC Condition Number'
),
subplot
(
221
)
subplot
(
221
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment