Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dynare
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dynare
dynare
Commits
f392c786
Verified
Commit
f392c786
authored
1 year ago
by
Sébastien Villemot
Browse files
Options
Downloads
Patches
Plain Diff
Drop unused riccati_update MEX
parent
fbb89dc1
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Pipeline
#9971
passed
1 year ago
Stage: build
Stage: test
Stage: pkg
Changes
3
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
meson.build
+0
-5
0 additions, 5 deletions
meson.build
mex/sources/riccati_update/mexFunction.f08
+0
-98
0 additions, 98 deletions
mex/sources/riccati_update/mexFunction.f08
tests/riccatiupdate.m
+0
-87
0 additions, 87 deletions
tests/riccatiupdate.m
with
0 additions
and
190 deletions
meson.build
+
0
−
5
View file @
f392c786
...
...
@@ -346,10 +346,6 @@ shared_module('logarithmic_reduction', [ 'mex/sources/logarithmic_reduction/mexF
shared_module
(
'disclyap_fast'
,
[
'mex/sources/disclyap_fast/disclyap_fast.f08'
]
+
mex_blas_fortran_iface
,
kwargs
:
mex_kwargs
,
dependencies
:
[
blas_dep
,
lapack_dep
])
# TODO: Same remark as A_times_B_kronecker_C
shared_module
(
'riccati_update'
,
[
'mex/sources/riccati_update/mexFunction.f08'
]
+
mex_blas_fortran_iface
,
kwargs
:
mex_kwargs
,
dependencies
:
[
blas_dep
,
lapack_dep
])
qmc_sequence_src
=
[
'mex/sources/sobol/qmc_sequence.cc'
,
'mex/sources/sobol/sobol.f08'
]
# Hack for statically linking libgfortran
...
...
@@ -1811,7 +1807,6 @@ mod_and_m_tests = [
'solver-test-functions/wood.m'
,]
},
{
'test'
:
[
'cyclereduction.m'
]
},
{
'test'
:
[
'logarithmicreduction.m'
]
},
{
'test'
:
[
'riccatiupdate.m'
]
},
{
'test'
:
[
'kalman/likelihood/test_kalman_mex.m'
]
},
{
'test'
:
[
'contribs.m'
],
'extra'
:
[
'sandbox.mod'
,
...
...
This diff is collapsed.
Click to expand it.
mex/sources/riccati_update/mexFunction.f08
deleted
100644 → 0
+
0
−
98
View file @
fbb89dc1
! Copyright © 2022-2023 Dynare Team
!
! This file is part of Dynare.
!
! Dynare is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! Dynare is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with Dynare. If not, see <https://www.gnu.org/licenses/>.
! Implements Ptmp = T*(P-K*Z*P)*transpose(T)+Q where
! P is the (r x r) variance-covariance matrix of the state vector
! T is the (r x r) transition matrix of the state vector
! K is the (r x n) gain matrix
! Z is the (n x r) matrix linking observable variables to state variables
! Q is the (r x r) variance-covariance matrix of innovations in the state equation
! and accounting for different properties:
! P is a (symmetric) positive semi-definite matrix
! T can be triangular
subroutine
mexFunction
(
nlhs
,
plhs
,
nrhs
,
prhs
)
bind
(
c
,
name
=
'mexFunction'
)
use
matlab_mex
use
blas
implicit
none
(
type
,
external
)
type
(
c_ptr
),
dimension
(
*
),
intent
(
in
),
target
::
prhs
type
(
c_ptr
),
dimension
(
*
),
intent
(
out
)
::
plhs
integer
(
c_int
),
intent
(
in
),
value
::
nlhs
,
nrhs
real
(
real64
),
dimension
(:,:),
pointer
,
contiguous
::
P
,
T
,
K
,
Z
,
Q
,
Pnew
real
(
real64
),
dimension
(:,:),
allocatable
::
tmp1
,
tmp2
integer
::
i
,
n
,
r
character
(
kind
=
c_char
,
len
=
2
)
::
num2str
! 0. Checking the consistency and validity of input arguments
if
(
nrhs
/
=
5_c_int
)
then
call
mexErrMsgTxt
(
"Must have 5 input arguments"
)
end
if
if
(
nlhs
>
1_c_int
)
then
call
mexErrMsgTxt
(
"Too many output arguments"
)
end
if
do
i
=
1
,
5
if
(
.not.
(
c_associated
(
prhs
(
i
))
.and.
mxIsDouble
(
prhs
(
i
))
.and.
&
(
.not.
mxIsComplex
(
prhs
(
i
)))
.and.
(
.not.
mxIsSparse
(
prhs
(
i
)))))
then
write
(
num2str
,
"(i2)"
)
i
call
mexErrMsgTxt
(
"Argument "
//
trim
(
num2str
)
//
" should be a real dense matrix"
)
end
if
end
do
r
=
int
(
mxGetM
(
prhs
(
1
)))
! Number of states
n
=
int
(
mxGetN
(
prhs
(
3
)))
! Number of observables
if
((
r
/
=
mxGetN
(
prhs
(
1
)))
&
! Number of columns of P
&
.or.
(
r
/
=
mxGetM
(
prhs
(
2
)))
&
! Number of lines of T
&
.or.
(
r
/
=
mxGetN
(
prhs
(
2
)))
&
! Number of columns of T
&
.or.
(
r
/
=
mxGetM
(
prhs
(
3
)))
&
! Number of lines of K
&
.or.
(
n
/
=
mxGetM
(
prhs
(
4
)))
&
! Number of lines of Z
&
.or.
(
r
/
=
mxGetN
(
prhs
(
4
)))
&
! Number of columns of Z
&
.or.
(
r
/
=
mxGetM
(
prhs
(
5
)))
&
! Number of lines of Q
&
.or.
(
r
/
=
mxGetN
(
prhs
(
5
)))
&
! Number of columns of Q
)
then
call
mexErrMsgTxt
(
"Input dimension mismatch"
)
end
if
! 1. Storing the relevant information in Fortran format
P
(
1
:
r
,
1
:
r
)
=>
mxGetPr
(
prhs
(
1
))
T
(
1
:
r
,
1
:
r
)
=>
mxGetPr
(
prhs
(
2
))
K
(
1
:
r
,
1
:
n
)
=>
mxGetPr
(
prhs
(
3
))
Z
(
1
:
n
,
1
:
r
)
=>
mxGetPr
(
prhs
(
4
))
Q
(
1
:
r
,
1
:
r
)
=>
mxGetPr
(
prhs
(
5
))
plhs
(
1
)
=
mxCreateDoubleMatrix
(
int
(
r
,
mwSize
),
int
(
r
,
mwSize
),
mxREAL
)
Pnew
(
1
:
r
,
1
:
r
)
=>
mxGetPr
(
plhs
(
1
))
! 2. Computing the Riccati update of the P matrix
allocate
(
tmp1
(
r
,
r
),
tmp2
(
r
,
r
))
! Pnew <- Q
Pnew
=
Q
! tmp1 <- K*Z
call
matmul_add
(
"N"
,
"N"
,
1._real64
,
K
,
Z
,
0._real64
,
tmp1
)
! tmp2 <- P
tmp2
=
P
! tmp2 <- tmp2 - tmp1*P
call
matmul_add
(
"N"
,
"N"
,
-1._real64
,
tmp1
,
P
,
1._real64
,
tmp2
)
! tmp1 <- T*tmp2
call
matmul_add
(
"N"
,
"N"
,
1._real64
,
T
,
tmp2
,
0._real64
,
tmp1
)
! Pnew <- tmp1*T' + Pnew
call
matmul_add
(
"N"
,
"T"
,
1._real64
,
tmp1
,
T
,
1._real64
,
Pnew
)
end
subroutine
mexFunction
This diff is collapsed.
Click to expand it.
tests/riccatiupdate.m
deleted
100644 → 0
+
0
−
87
View file @
fbb89dc1
source_dir
=
getenv
(
'source_root'
);
addpath
([
source_dir
filesep
'matlab'
]);
dynare_config
;
testFailed
=
0
;
skipline
()
disp
(
'*** TESTING: riccatiupdate.m ***'
);
t0
=
clock
;
% Set the number of experiments for time measurement
N
=
5000
;
% Set the dimension of the problem to be solved.
r
=
50
;
n
=
100
;
tol
=
1e-15
;
% Set the input arguments
% P, Q: use the fact that for any real matrix A, A'*A is positive semidefinite
P
=
rand
(
n
,
r
);
P
=
P
'*
P
;
Q
=
rand
(
n
,
r
);
Q
=
Q
'*
Q
;
K
=
rand
(
r
,
n
);
Z
=
rand
(
n
,
r
);
T
=
rand
(
r
,
r
);
% Computing an upperbound for the norm the updated variance-covariance matrix
ub
=
norm
(
T
,
1
)
^
2
*
norm
(
P
,
1
)
*
(
1
+
norm
(
K
*
Z
,
1
))
+
norm
(
Q
,
1
);
% Weighting the P and Q matrices to keep the norm of the variance-covariance matrix below 1
P
=
0.5
*
P
/
ub
;
Q
=
0.5
*
Q
/
ub
;
% 1. Update the state vairance-covariance matrix with Matlab
tElapsed1
=
0.
;
tic
;
for
i
=
1
:
N
Ptmp_matlab
=
T
*
(
P
-
K
*
Z
*
P
)
*
transpose
(
T
)
+
Q
;
end
tElapsed1
=
toc
;
disp
([
'Elapsed time for the Matlab Riccati update is: '
num2str
(
tElapsed1
)
' (N='
int2str
(
N
)
').'
])
% 2. Update the state varance-covariance matrix with the mex routine
tElapsed2
=
0.
;
Ptmp_fortran
=
P
;
try
tic
;
for
i
=
1
:
N
Ptmp_fortran
=
riccati_update
(
P
,
T
,
K
,
Z
,
Q
);
end
tElapsed2
=
toc
;
disp
([
'Elapsed time for the Fortran Riccati update is: '
num2str
(
tElapsed2
)
' (N='
int2str
(
N
)
').'
])
R
=
norm
(
Ptmp_fortran
-
Ptmp_matlab
,
1
);
if
(
R
>
tol
)
testFailed
=
testFailed
+
1
;
dprintf
(
'The Fortran Riccati update is wrong'
)
end
catch
testFailed
=
testFailed
+
1
;
dprintf
(
'Fortran Riccati update failed'
)
end
% Compare the Fortran and Matlab execution time
if
tElapsed1
<
tElapsed2
skipline
()
dprintf
(
'Matlab Riccati update is %5.2f times faster than its Fortran counterpart.'
,
tElapsed2
/
tElapsed1
)
skipline
()
else
skipline
()
dprintf
(
'Fortran Riccati update is %5.2f times faster than its Matlab counterpart.'
,
tElapsed1
/
tElapsed2
)
skipline
()
end
% Compare results after multiple calls
N
=
50
;
disp
([
'After 1 update using the Riccati formula, the norm-1 discrepancy is '
num2str
(
norm
(
Ptmp_fortran
-
Ptmp_matlab
,
1
))
'.'
]);
for
i
=
2
:
N
Ptmp_matlab
=
T
*
(
Ptmp_matlab
-
K
*
Z
*
Ptmp_matlab
)
*
transpose
(
T
)
+
Q
;
Ptmp_fortran
=
riccati_update
(
Ptmp_fortran
,
T
,
K
,
Z
,
Q
);
disp
([
'After '
int2str
(
i
)
' updates using the Riccati formula, the norm-1 discrepancy is '
num2str
(
norm
(
Ptmp_fortran
-
Ptmp_matlab
,
1
))
'.'
])
end
t1
=
clock
;
fprintf
(
'\n*** Elapsed time (in seconds): %.1f\n\n'
,
etime
(
t1
,
t0
));
quit
(
testFailed
>
0
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment